solving the challenge of stray field immunity for safety-critical applications

33
Solving the Challenge of Stray Field Immunity for Safety-Critical Applications The Need for Magnetic Position Sensors with Stray Field Immunity Heinz Oyrer 1 6/10/2015

Upload: heinz-oyrer

Post on 06-Aug-2015

27 views

Category:

Technology


2 download

TRANSCRIPT

Page 1: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

The Need for Magnetic Position Sensorswith Stray Field Immunity

Heinz Oyrer 16/10/2015

Page 2: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Agenda

• Sensors exposed to environmental factors

• Stray fields – definition, issues, examples

• Magnetic position sensors

• Solution options

• Unique solution, working principle

• Problem resolution and benefits

• Summary

Heinz Oyrer 26/10/2015

Page 3: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Sensors

• Use of sensors has dramatically increased

• Number and strengths of electric fields have increased

• Exposure to environmental factors such as magnetic stray fields,

vibration and misalignment cause issues with system safety and

reliability

Heinz Oyrer 36/10/2015

Page 4: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Sensors exposed to environmental factors

6/10/2015 Heinz Oyrer 4

Page 5: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

What is a stray field?

• Magnetic fields are generated by magnets, motors, transformers or

any current-carrying conductors

• Stray Fields are parasitic magnetic fields as observed by a

magnetic sensor

Heinz Oyrer 56/10/2015

Page 6: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

6/10/2015 Heinz Oyrer 6

Stray fields

Page 7: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Issues caused by stray fields

• High levels of electro-magnetic interference (EMI) are a strong

concern in industrial and automotive applications

• An even larger concern are:

- Increased electrification of automobiles

- Electric cars - large high current carrying wires run between the front

and back of the vehicle

Heinz Oyrer 76/10/2015

Page 8: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Examples of Magnetic Stray fields• Electric motor

- Generates a magnetic field that effect e.g. the angle position sensor accuracy

• Drivetrain of vehicles becomes partially or wholly electrified

- Battery cable connections can be negatively impacted e.g. the position sensor in an acceleration pedal or an electronic power steering system

- Stray magnetic field from a high-voltage power line in an EV or HEV is easily large enough to affect safety-critical systems such as the brake pedal

• Huge induction fields – such as in future charging stations of electric vehicles.

• Can result in an adverse impact on all on-board sensors in a car

Heinz Oyrer 86/10/2015

Page 9: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

6/10/2015 Heinz Oyrer 9

Stray magnetic fields in pedals

Page 10: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

6/10/2015 Heinz Oyrer 10

Stray magnetic fields in EPS

Page 11: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

6/10/2015 Heinz Oyrer 11

Stray magnetic fields in EV and HEV

Position sensor with integrated stray

field immunity achieves high accuracy

performance even near high current

carrying cables

Page 12: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Magnetic position sensors

• Magnetic position sensing technology is more robust and reliable

than optical encoders and contacting potentiometers

- Immune to dirt, dust, grease, moisture, and vibration

- All conditions commonly found in industrial and automotive

applications

Heinz Oyrer 126/10/2015

Page 13: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Magnetic position sensors

• However, the Achilles heel with magnetic position sensor

technology is

- Needs to be sensitive to a paired target magnetic field

- But also susceptible to unintended magnetic stray fields.

Heinz Oyrer 136/10/2015

Page 14: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Magnetic position sensors

• The unintended stray fields can impair the accuracy of the

magnetic position sensor’s output

- Reducing the signal to noise ratio (SNR) to unacceptable levels within

the device

- A sensor sub-system could yield inaccurate results which could lead to

reduced system performance and safety issues

Heinz Oyrer 146/10/2015

Page 15: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Traditional solution – shielding

• Magnetic shielding

- Expensive and takes up space

- Adds to cost and size of the sensor subsystem

- Can shunt away the target magnetic field that the sensor is supposed

to be measuring

- Bares the risk of becoming magnetized over time and its performance

could vary with temperature

- Finding the effective shielding solution takes time, effort and adds to

the development cost of the sensor sub-system

Heinz Oyrer 156/10/2015

Page 16: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Traditional solution – magnet

• Use of a stronger magnet

- A magnet with a stronger field, and/or position the magnet closer to the

magnetic sensor

- A magnet with a stronger field, drives up the sensor cost to unacceptable

levels

• Narrow the gap between the magnet and sensor

- Tendency to drive up costs as tighter mechanical tolerances are

required

Heinz Oyrer 166/10/2015

Page 17: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

A unique integrated solution

• The best solution for addressing the stray field issue is to integrate

stray field immunity circuitry into the magnetic position sensor IC

- Makes the device immune to any and all magnetic stray fields

- Architectural design features as key enabler for preventing magnetic

stray fields from interfering with sensor IC performance

Heinz Oyrer 176/10/2015

Page 18: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Integrated stray field immunity –

how does it work?

• The first principle involves the direction of measurement

• This principle ensures that the position sensor is only sensitive to

magnetic fields that are vertical to the IC surface

• The z-direction, which is the direction of the sensor magnet.

• Horizontal magnetic field influences x and y are not measured at all.

Heinz Oyrer 186/10/2015

Page 19: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Operation principle normal conditions

Heinz Oyrer 196/10/2015

(1) The magnet is centered over the Hall sensors (2) The magnetic field is sinusoidal, the magnetic field strength increases linearly with radius => 1 turn = 1 sine wave

(3) The differential amplifiers generate one sine and cosine signal with double amplitude

(4) The Cordic transforms sine and cosine into angle and magnitude

vertical magnetic field Bz characteristics

=

)cos(*ˆ

)sin(*ˆarctan

a

aa

a

a)tan(

)cos(*ˆ

)sin(*ˆa

a

a=

a

a

Page 20: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Integrated stray field immunity –

how does it work?

• The second principle is based on an integrated smart algorithm, and

a sensor solution consisting of four integrated hall sensors arranged

in a circle, that together automatically reject any stray fields in the Z-

direction

• This principle is based around a differential measurement

Heinz Oyrer 206/10/2015

Page 21: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Integrated stray field immunity –

how does it work?

• The Hall sensors constantly measure the sensor magnets rotation

and any stray fields in the Z-direction

• Through subtraction of the opposite quadrant values, the z-direction

stray fields drop out of the calculation and the result is the target

magnet’s rotation value only.

Heinz Oyrer 216/10/2015

Page 22: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

External stray fields

(1) An external magnetic field is present near the sensors

(3) The offset does not influence the differential signal

(2) The external magnetic field generates an offset on all sensors.

(4) External magnetic fields do not influence the angle

=

)cos(*ˆ

)sin(*ˆarctan

a

aa

a

a)tan(

)cos(*ˆ

)sin(*ˆa

a

a=

a

a

Page 23: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Differential principle

Heinz Oyrer 236/10/2015

H2

H4 Hall

0

[V]

Volts

1

2

3

4

Vdiff

1

Vdiff

2

external magnetic stray field

Vdiff 1 = Vdiff 2

Page 24: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Patent EP0916074

Page 25: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Adherence to Standards

• Naturally, these unique magnetic position sensors meet the latest

standards for immunity to magnetic fields and functional safety

- ISO11452-8 - immunity to magnetic fields

- ISO26262 - functional safety

Heinz Oyrer 256/10/2015

Page 26: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Integrated stray field immunity –

solving problems

• Stray field immunity is integrated into the magnetic sensor device.

This enables a small form factor and it allows for a cost effective

solution as external components and expensive eternal shielding are

not needed In short:

Heinz Oyrer 266/10/2015

- simple

- inexpensive

- small form factor

- safer usage

- unlimited protection from stray fields

Page 27: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Integrated stray field immunity –

benefits 1/2

• Design engineers can be confident that the sensor is unaffected by

stray fields by design

- Save costs of developing and implementing a verified shielding design

• No need for shielding materials

- Reduces cost, size and weight of the entire system

Heinz Oyrer 276/10/2015

Page 28: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Integrated stray field immunity –

benefits 2/2

• Verified and documented evidence to support manufacturers’

compliance programs (ISO 26262 and ISO 11542-8)

• Number of vehicles carrying powerful magnetic fields is set to grow

- Built-in immunity to magnetic interference delivers reliability and safety

for a large variety of present and future automotive and industrial

applications

- Magnetic position sensors can withstand external magnetic stray fields

far above the limits required by the most demanding car manufacturers

Heinz Oyrer 286/10/2015

Page 29: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Magnetic stray field analysis with

Helmholtz coil

Magnetic Formulas:

B = µo * H

e.g. 1000A/m -> 1,26 mT

Page 30: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Magnetic stray field analysis – position errorMagnetic position sensor IC without integrated stray field immunity

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

1 V

; X

; 0 H

z; 0

A/m

1 V

; X

; 0 H

z; 2

50

0 A

/m

1 V

; X

; 50

Hz;

25

00

A/m

1 V

; X

; 20

0 H

z; 1

00

0 A

/m

1 V

; Z;

0 H

z; 0

A/m

1 V

; Z;

0 H

z; 2

50

0 A

/m

1 V

; Z;

50

Hz;

25

00

A/m

1 V

; Z;

20

0 H

z; 1

00

0 A

/m

2,5

V;

X; 0

Hz;

0 A

/m

2,5

V;

X; 0

Hz;

25

00

A/m

2,5

V; X

; 50

Hz;

25

00

A/m

2,5

V;

X; 2

00

Hz;

10

00

A/m

2,5

V;

Z; 0

Hz;

0 A

/m

2,5

V;

Z; 0

Hz;

25

00

A/m

2,5

V;

Z; 5

0 H

z; 2

50

0 A

/m

2,5

V;

Z; 2

00

Hz;

10

00

A/m

4 V

; X

; 0 H

z; 0

A/m

4 V

; X; 0

Hz;

25

00

A/m

4 V

; X

; 50

Hz;

25

00

A/m

4 V

; X

; 20

0 H

z; 1

00

0 A

/m

4 V

; Z;

0 H

z; 0

A/m

4 V

; Z;

0 H

z; 2

50

0 A

/m

4 V

; Z;

50

Hz;

25

00

A/m

4 V

; Z;

20

0 H

z; 1

00

0 A

/m

Po

siti

on

Err

or

[%V

dd

]

tolerance limits in Automotive

Page 31: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Magnetic stray field analysis – position errorMagnetic position sensor IC with integrated stray field immunity

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

1 V

; X

; 0 H

z; 0

A/m

1 V

; X

; 0 H

z; 2

50

0 A

/m

1 V

; X

; 50

Hz;

25

00

A/m

1 V

; X

; 20

0 H

z; 1

00

0 A

/m

1 V

; Z;

0 H

z; 0

A/m

1 V

; Z;

0 H

z; 2

50

0 A

/m

1 V

; Z;

50

Hz;

25

00

A/m

1 V

; Z;

20

0 H

z; 1

00

0 A

/m

2,5

V;

X; 0

Hz;

0 A

/m

2,5

V;

X; 0

Hz;

25

00

A/m

2,5

V; X

; 50

Hz;

25

00

A/m

2,5

V;

X; 2

00

Hz;

10

00

A/m

2,5

V;

Z; 0

Hz;

0 A

/m

2,5

V;

Z; 0

Hz;

25

00

A/m

2,5

V;

Z; 5

0 H

z; 2

50

0 A

/m

2,5

V;

Z; 2

00

Hz;

10

00

A/m

4 V

; X

; 0 H

z; 0

A/m

4 V

; X; 0

Hz;

25

00

A/m

4 V

; X

; 50

Hz;

25

00

A/m

4 V

; X

; 20

0 H

z; 1

00

0 A

/m

4 V

; Z;

0 H

z; 0

A/m

4 V

; Z;

0 H

z; 2

50

0 A

/m

4 V

; Z;

50

Hz;

25

00

A/m

4 V

; Z;

20

0 H

z; 1

00

0 A

/m

Po

siti

on

Err

or

[%V

dd

]

tolerance limits in Automotive

Page 32: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Summary

• Magnetic position sensors with complete stray field immunity deliver reliability and safety for many present and future automotive and industrial applications.

- Integrated stray field immunity ensures resistance to static and dynamic parasitic stray magnetic fields

- Independent of how strong or how far away the field is, the differential principle ensures that the sensor output is unaffected by any magnetic stray fields

- High accuracy measurements even in the noisiest of EMI environments

- No additional unit costs associated with the integrated stray field cancelation features

- Reduces system costs, while maintaining system sensor performance

- Eliminates the need for magnetic shielding and the use of stronger target magnets, or requiring narrow air gaps between target magnets and sensor ICs

Heinz Oyrer 326/10/2015

Page 33: Solving the Challenge of Stray Field Immunity for Safety-Critical Applications

Thank you for your attention!

• Future-proof your product with integrated stray field immunity

position sensor solutions!

For further information:

Please visit: www.ams.com/Magnetic-Position-Sensors

Email to: [email protected]

Heinz Oyrer 336/10/2015