some math behind m.c. escher’s circle limit patternsddunham/umdmath09.pdf · some math behind...

38
Some Math Behind M.C. Escher’s Circle Limit Patterns Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: [email protected] Web Site: http://www.d.umn.edu/˜ddunham/ 1

Upload: duongnhan

Post on 01-Sep-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Some Math Behind M.C. Escher’sCircleLimit Patterns

Douglas DunhamDepartment of Computer ScienceUniversity of Minnesota, DuluthDuluth, MN 55812-3036, USA

E-mail: [email protected] Site: http://www.d.umn.edu/˜ddunham/

1

Page 2: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Outline

• Some history ofCircle Limit patterns

• Some mathematics and symmetries ofCircle Limitpatterns

• How to make Circle Limit patterns

• Conclusions

2

Page 3: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

History H.S.M. Coxeter’s 1957 Figure

3

Page 4: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Circle Limit I

4

Page 5: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Circle Limit II

5

Page 6: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Circle Limit III

6

Page 7: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Circle Limit IV

7

Page 8: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Two Math Questions:

• What are the correct orientations for the CircleLimit patterns?

• What is the symmetry groups of theCircle Limitpatterns?

8

Page 9: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

What are the correct orientations ofCircleLimit I, Circle Limit II, and Circle Limit III?

Answer: They are usually correctly oriented, exceptthat Circle Limit II is sometimes rotated 45 degrees sothat cross arms are horizontal.

9

Page 10: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

What is the correct orientation for CircleLimit IV? Answer:

10

Page 11: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

A Sub-question

Why aren’t there signatures in all three of the blankdevils’ faces next to the central angels?

11

Page 12: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Escher’s Signature (graphic)

12

Page 13: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Escher’s Signature (text)

MCEVII-’60

13

Page 14: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Why Examine Orientation Now?

• The Symmetries of ThingsConway, Burgiel, GoodmanStrassA.K. Peters, 2008, Figure 17.4 page 224.

• Euclidean and Non-Euclidean Geometries: Devel-opment and History 4th Ed.Marvin GreenbergW.H. Freeman, 2008, cover.

• Analysis, Geometry, and Modeling in Finance: Ad-vanced Methods in Option Pricing, P. Henry-Labordere,Chapman & Hall/CRC Press, 2008, cover.

• Math and Art: an Introduction to Visual Mathe-matics, S. Kalajdzievski, Chapman & Hall/CRCPress, 2008, page 166.

14

Page 15: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

The Symmetries of Things page 224

15

Page 16: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Euclidean and Non-Euclidean Geometries,4th Ed.

16

Page 17: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Euclidean and Non-Euclidean Geometries,3rd Ed.

17

Page 18: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

The World of M.C. Escher His Life andComplete Graphic Work(Harry N. Abrams, 1981)

• Page 98 (large image): correctly oriented

• Page 322 (small image — Catalogue number 436):

18

Page 19: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

M.C. Escher web site

19

Page 20: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

The Signature

20

Page 21: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Second Question: What is the symmetrygroup of Circle Limit I ?

It is cmm3,2 using a notation suggested by Coxeter.

In Coxeter’s notation cmmp/2,q/2 is the symmetry groupgenerated by reflections in the sides of a rhombus withvertex anglesπ/2p and π/2q (p and q must be even).This generalizes the Euclidean groupcmm = cmm2,2.

21

Page 22: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

What are the symmetry groups ofCircleLimit II and Circle Limit IV ?

Answer: they are [3+, 8] and [4+, 6] (again, Coxeter’snotation) — but the last is true only if we assume thatthe interior details of all angels and devils have beenfilled in.

22

Page 23: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

A Circle Limit IV Pattern with SymmetryGroup [4+,6]

What is the actual symmetry group ofCircleLimit IV ? C3?

23

Page 24: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

It seems to beD3

24

Page 25: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Escher (in M.C. Escher The Graphic WorkBarnes & Noble/TASCHEN 2007ISBN 0-7607-9669-6, page 10):

Here too, we have the components diminishing in sizeas they move outwards. The six largest (three whiteangels and three black devils) are arranged about thecentre and radiate from it. The disc is divided intosix sections in which, turn and turn about, the angelson a black background and then the devils on a whiteone gain the upper hand. In this way, heaven and hellchange place six times. In the intermediate, “earthly”stages, they are equivalent.

25

Page 26: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

What is the symmetry group ofCircle LimitIII ?

Answer: it is (4,3,3) in a common notation, generatedby 4-fold rotations about the right fin tips of the fish,and 3-fold rotations about the noses and left fin tips.

26

Page 27: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Creating Repeating Hyperbolic Patterns

A two-step process:

1. Design the basic subpattern ormotif(discussed in Math & Design 2004)

2. Transform copies of the motif about the hyperbolicplane: replication

27

Page 28: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Poincare Disk Model of HyperbolicGeometry

28

Page 29: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Repeating PatternsA repeating pattern is composed of congruent copiesof the motif.

29

Page 30: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

The Regular Tessellations{p, q}

• The regular tessellation {p, q} is a tiling composedof regular p-sided polygons, orp-gons meetingq ateach vertex.

• It is necessary that(p− 2)(q− 2) > 4 for the tessel-lation to be hyperbolic.

• If (p − 2)(q − 2) = 4 or (p − 2)(q − 2) < 4 thetessellation is Euclidean or spherical respectively.

30

Page 31: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

The Regular Tessellation{6, 4}

31

Page 32: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

The Replication Algorithm

To reduce the number of transformations and to sim-plify the replication process, we form thep-gon pat-tern from all the copies of the motif touching the cen-ter of the bounding circle.

• Thus in order to replicate the pattern, we applytransformations to the p-gon pattern rather thanto each individual motif.

• Some parts of the p-gon pattern may protrude fromthe enclosing p-gon, as long as there are correspond-ing indentations, so that the final pattern will fittogether like a jigsaw puzzle.

• The p-gon pattern is often called thetranslationunit in repeating Euclidean patterns.

32

Page 33: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

The p-gon pattern for Circle Limit I

33

Page 34: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Layers of p-gons

We note that the p-gons of a{p, q} tessellation are ar-ranged in layers as follows:

• The first layer is just the central p-gon.

• The k + 1st layer consists of all p-gons sharing anedge or a vertex with a p-gon in thekth layer (andno previous layers).

• Theoretically a repeating hyperbolic pattern hasan infinite number of layers, however if we onlyreplicate a small number of layers, this is usuallyenough to appear to fill the bounding circle to ourEuclidean eyes.

34

Page 35: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

The Replication Algorithm

The replication algorithm consists of two parts:

1. A top-level “driver” routine replicate() thatdraws the first layer, and calls a second routine,recursiveRep() , to draw the rest of the layers.

2. A routine recursiveRep() that recursively drawsthe rest of the desired number of layers.

A tiling pattern is determined by how the p-gon pat-tern is transformed across p-gon edges. These trans-formations are in the array edgeTran[]

35

Page 36: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

The Top-level Routinereplicate()

Replicate ( motif ) {

drawPgon ( motif, IDENT ) ; // Draw central p-gon

for ( i = 1 to p ) { // Iterate over each vertex

qTran = edgeTran[i-1]

for ( j = 1 to q-2 ) { // Iterate about a vertex

exposure = (j == 1) ? MIN_EXP : MAX_EXP ;recursiveRep ( motif, qTran, 2, exposure ) ;qTran = addToTran ( qTran, -1 ) ;

}}

}

36

Page 37: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

The Routine recursiveRep()recursiveRep ( motif, initialTran, layer, exposure ) {

drawPgon ( motif, initialTran ) ; // Draw p-gon pattern

if ( layer < maxLayer ) { // If any more layerspShift = ( exposure == MIN_EXP ) ? 1 : 0 ;verticesToDo = ( exposure == MIN_EXP ) ? p-3 : p-2 ;

for ( i = 1 to verticesToDo ) { // Iterate over verticespTran = computeTran ( initialTran, pShift ) ;qSkip = ( i == 1 ) ? -1 : 0 ;qTran = addToTran ( pTran, qSkip ) ;pgonsToDo = ( i == 1 ) ? q-3 : q-2 ;

for ( j = 1 to pgonsToDo ) { // Iterate about a vertexnewExposure = ( i == 1 ) ? MIN_EXP : MAX_EXP ;recursiveRep(motif, qTran, layer+1, newExposure);qTran = addToTran ( qTran, -1 ) ;

}pShift = (pShift + 1) % p ; // Advance to next vertex

}}

}

37

Page 38: Some Math Behind M.C. Escher’s Circle Limit Patternsddunham/umdmath09.pdf · Some Math Behind M.C. Escher’s Circle Limit Patterns ... Chapman & Hall/CRC Press, 2008, page 166

Conclusions and Future Work

• Enhance the program to draw patterns with morecomplex symmetries.

• Automate the generation of color symmetry.

38