sonar for environmental monitoring of marine renewable energy technologies · 2017. 4. 5. · and...

25
SONAR FOR ENVIRONMENTAL MONITORING OF MARINE RENEWABLE ENERGY TECHNOLOGIES Project Coordinator : Div. Electricity – Uppsala University WavEC C ARL T RYGGER ' S & J G UST R ICHERT ' S FOUNDATIONS FRANCISCO FRANCISCO JAN SUNDBERG

Upload: others

Post on 03-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • SONAR FOR ENVIRONMENTAL MONITORING OFMARINE RENEWABLE ENERGY TECHNOLOGIES

    Project Coordinator :

    Div. Electricity – Uppsala University

    WavEC

    CARL TRYGGER'S & J GUST RICHERT'S FOUNDATIONS

    FRANCISCO FRANCISCOJAN SUNDBERG

  • Renewable energy - Key trends

    2Source: International Energy Agency 2016

  • 3

    Marine renewable energy technologies Framework

    •Resource assessment

    •Numeric modelling

    •Energy converters

    •Control systems

    •Grid connection

    •Deployments

    •Environmental monitoring

    •Manufacturing

    •Commercialization

    •Marketing

    Marine renewables Framework

  • Objective & vision

    4

  • 5

    Minimize impact & risksassociated with subseawork

    Vision

    Objective

    Develop a platform ableto monitor operation, installation & maintenance of marine renewables

  • 6

    Why the use sonar?

  • MULTI CHANNEL

    RECEIVER

    (ELECTRONICS)

    COMPUTER &

    CONTROLSDISPLAY

    TRANSDUCER

    Source Level (SL)

    Target Strength (TS)

    Transmission Loss (TL)

    TARGETNoise Level (NL)

    Directive Index (DI)

    Array Gain (AG)Digital Signal

    Detection Threshold (DT)

    Beamwidth

    Beam swath

    Sonar mechanism

    Superior underwater Remote Sensing performance especially in murky waters

    Why Sonar?

  • The actual monitoring platform

    8

    • Design

    • Construction

    • Test

    • Deployment

    • Validation

  • The actual monitoring platform

    submerged unit

    communication buoy

    portable pole mount

    9

    Design

  • 10

    The actual monitoring platform

    Cameras

    Multibeam sonar

    Split-beam sonar

    Dual-beam sonar

    Battery box & control electronics

    Installed devices

  • How do we deploy?

    11

  • Deployment strategies

    Ds

    Vessel

    GPSantenna

    WL

    MBS

    DBS/SBS

    Pole mount

    MBS

    DBS

    Configuration-A

    Ds

    fixed structure

    Pole mount

    WL

    Configuration-B

    12

    The actual monitoring platform

    Ds

    MBSSBS

    Vessel

    GPSantenna

    Tripod

    WL

    Configuration-C

    Ds

    fixed structure

    WL

    Configuration-D

    Communication buoy

    Submerged Unity

    WL

    Configuration-E

  • How data is processed?

    13

  • The data acquisition and analysis toolDAQ

    DATA PROCESSING - MATLABROUTINES

    FILTERS: NOISEREDUCTION, TARGET DETECTION& CLASSIFICATION

    FILTEREDECHOGRAM

    OUTPUT DATA

    (ACOUSTIC

    BACKSCATTER

    INTENSITY)

    DECODER

    (SONAR

    VIEWER)

    DECODER

    (MATLAB)

    RAW DATA (AMPLITUDE

    ECHOGAM)DBS

    GEO DATA

    14Number of Pings

    Dep

    th [m

    ]

    1000 1500 2000 2500

    0

    0.5

    1

    1.5

    2

    2.5

    [dB]

    99

    100

    101

    102

    103

    The actual monitoring platform

  • • Biomass estimation

    • WEC - TEC detection

    • Structure and bottom inspection

    • Hi-resolution bottom-depth measurement

    • Cavitating flow measurement

    Performance results

    15

  • Performance results

    WEC detection

    A diver

    UU WECWEC’s acoustic shadow

    Ds

    Vessel

    GPSantenna

    WL

    MBS

    DBS/SBS

    Pole mount

    MBS

    DBS

    Configuration-A

    UU WEC baseplate

    16

    Multibeam acoustic image

  • Performance results

    TEC detection

    A UU turbine Turbine’s acoustic shadow

    b

    Ds

    fixed structure

    Pole mount

    WL

    Configuration-B

    17

    Multibeam acoustic image

  • 18

    Hi-resolution bottom-depth measurement

    To reduce risk of….

  • Conclusions

    19

  • Conclusions

    So far the platform is able to perform:

    • Target detection (in 3D as ecogram & 2D as acoustic image)

    • Bottom inspection

    • Hi-res bathymetry

    • Biomass estimation

    • Observation of cavitating flow

    20

  • Future work

    21

  • Future work

    • Improve the system-integration

    • Improve the deployment procedure

    • Finalize the DAQ

    • Do additional short and long-term surveys

    22

  • Secondments

    Seabased Industry AB

    • Sea bottom inspections

    • Tide data analysis for a WEC’s tide-compensator

    • Wave climate analysis

    • WEC Deployment support at Sotenäs Wave Power Farm

    23

  • I. Parwal, A., Remouit, F., Hong, Y., Francisco, F., Leijon, M., et al., (2015). Wave Energy Research at Uppsala Universityand The Lysekil Research Site, Sweden: A Status Update. Proceedings of the 11th European Wave and Tidal Energy Conference(EWTEC), Nantes, France, 6-11th Sept 2015.

    II. Francisco, F. Sundberg, J. (2015). Sonar for Environmental Monitoring. Initial Setup of an Active Acoustic Platform. TheTwenty-fifth (2015) International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21-26, 2015.Kona, Big Island, Hawaii, USA, June 21-26, 2015.

    III. Francisco, F. Sundberg, J. (2015). Sonar for Environmental Monitoring: Un-derstanding the Functionality of ActiveAcoustics as a Method for Monitoring Marine Renewable Energy Devices. Proceedings of the 11th European Wave and TidalEnergy Conference (EWTEC), Nantes, France, 6-11th Sept 2015.

    IV. Francisco, F. Sundberg, J. Sonar for environmental monitoring: Construction of a multifunctional active acoustic platformapplied for marine renewables. (Sub-mitted paper)

    V. Francisco, F. Carpman, N., Dolguntseva, I., Sundberg, J. Observation of cavi-tation-induced flow using multibeam anddual-beam sonar systems. A compari-son of wake strength caused by propeller vs waterjet thrusted ferry boats: in a marinerenewable energy perspective, Part-a. (Manuscript)

    VI. Francisco, F. Sundberg, J., Ekergård, B., Leijon, M. An estimation of wave energy flux and variability in the Ada Foaregion: Towards commissioning of the first commercial wave power farm in Africa – Ghana. (Submitted paper)

    24

    List of Papers

  • 25