sp1_e

4
Losses Index 50 < 0-100 Distance 4000 mm < =slab_length*Index/100 Hollowcore slab length 8000 < outside to outside length 1. Relaxation of strand Jacking_Factor 0,7 < StrandSetupInfo.StressFactor Jack_tot 2064,0 kN < TotalJackInfo.ApsFpu Relax Percent 3,0 % < =1.2*(1+(Jacking_Factor*100-60)*0.15) Delta Pr 10,84 kN < =Jack_tot*Jacking_Factor*Relax_Percent/400 2. Elastic shortening h_slab 200 mm < FSize.y - thickness of slab, no screed included A_slab 308996 mm² < AyI_noncomp.Area Ix_slab 1,41E+09 mm 4 < AyI_noncomp.Ixx y_Slab_top 100,19 mm < AyI_noncomp.y_bar - measured from top fibres y_strands 31,25 mm < TotJMoment/TotJForce - measured from btm fibres E_strand 195 kN/mm² < JackingInfo.ApsFpu_E/JackingInfo.ApsFpu total_Aps 1110 mm² < JackingInfo.Aps conc_fci 40 N/mm² < ConcreteInfo.transfer_str conc_fcu 50 N/mm² < ConcreteInfo.service_str M_sw 61,03 kNm < TransferMom[FIdx] e_centroid 68,56 mm < =y_Slab-y_strands P_es_init 1433,96 kN < =Jack_tot*Jacking_Factor-Delta_Pr P_A_es 4,64 N/mm² < =1000*P_es_init/A_slab Pee_I_es 4,77 N/mm² < =1000*P_es_init*(e_centroid)^2/Ix_slab Msw_e_I_es -2,96 N/mm² < =-1000000*M_sw*e_centroid/Ix_slab stress_es 6,45 N/mm² < =P_A_es+Pee_I_es+Msw_e_I_es Stress @ centroid of strands Ec 28 30,00 kN/mm² < =20+conc_fcu/5 Ec t 26,40 kN/mm² < =Ec_28*(0.4+0.6*conc_fci/conc_fcu) m 7,39 < =E_strand/Ec_t Delta Pe 52,86 kN < =m*stress_es*total_Aps/1000 P_transfer 1381,11 kN < =Jack_tot*Jacking_Factor-(Delta_Pr+Delta_Pe) % losses Tr 4,41 % < =100*(1-P_transfer/(Jack_tot*Jacking_Factor)) 3. Shrinkage of Concrete e_strain 300 (x1e-6) < Strain for indoor exposure Delta Ps 64,92 kN < =E_strand*e_strain*total_Aps/1000000 4. Creep Creep_factor 2 < ConcreteInfo.creep_factor P_Creep 1381,11 kN < =P_transfer P/A creep 4,47 N/mm² < =1000*P_Creep/A_slab Pee/I creep 4,59 N/mm² < =1000*P_Creep*(e_centroid)^2/Ix_slab stress_creep 6,10 N/mm² < =P_A_creep+Pee_I_creep+Msw_e_I_es Delta Pc 100,03 kN < =Creep_factor*m*stress_creep*total_Aps/1000 P_service 1183,65 kN < =Jack_tot-4*Delta_Pr-Delta_Pe-Delta_Ps-Delta_Pc p_Loss_Serv 18,08 % < =100*(1-P_service/(Jack_tot*Jacking_Factor))

Upload: adnandj

Post on 13-Feb-2016

214 views

Category:

Documents


0 download

DESCRIPTION

f

TRANSCRIPT

Page 1: SP1_E

Losses Index 50 < 0-100 Distance 4000 mm < =slab_length*Index/100

Hollowcore slab length 8000 < outside to outside length

1. Relaxation of strandJacking_Factor 0,7 < StrandSetupInfo.StressFactorJack_tot 2064,0 kN < TotalJackInfo.ApsFpuRelax Percent 3,0 % < =1.2*(1+(Jacking_Factor*100-60)*0.15)Delta Pr 10,84 kN < =Jack_tot*Jacking_Factor*Relax_Percent/400

2. Elastic shorteningh_slab 200 mm < FSize.y - thickness of slab, no screed includedA_slab 308996 mm² < AyI_noncomp.AreaIx_slab 1,41E+09 mm4 < AyI_noncomp.Ixxy_Slab_top 100,19 mm < AyI_noncomp.y_bar - measured from top fibresy_strands 31,25 mm < TotJMoment/TotJForce - measured from btm fibresE_strand 195 kN/mm² < JackingInfo.ApsFpu_E/JackingInfo.ApsFputotal_Aps 1110 mm² < JackingInfo.Apsconc_fci 40 N/mm² < ConcreteInfo.transfer_strconc_fcu 50 N/mm² < ConcreteInfo.service_strM_sw 61,03 kNm < TransferMom[FIdx]e_centroid 68,56 mm < =y_Slab-y_strandsP_es_init 1433,96 kN < =Jack_tot*Jacking_Factor-Delta_PrP_A_es 4,64 N/mm² < =1000*P_es_init/A_slabPee_I_es 4,77 N/mm² < =1000*P_es_init*(e_centroid)^2/Ix_slabMsw_e_I_es -2,96 N/mm² < =-1000000*M_sw*e_centroid/Ix_slabstress_es 6,45 N/mm² < =P_A_es+Pee_I_es+Msw_e_I_es Stress @ centroid of strandsEc 28 30,00 kN/mm² < =20+conc_fcu/5Ec t 26,40 kN/mm² < =Ec_28*(0.4+0.6*conc_fci/conc_fcu)m 7,39 < =E_strand/Ec_tDelta Pe 52,86 kN < =m*stress_es*total_Aps/1000P_transfer 1381,11 kN < =Jack_tot*Jacking_Factor-(Delta_Pr+Delta_Pe)% losses Tr 4,41 % < =100*(1-P_transfer/(Jack_tot*Jacking_Factor))

3. Shrinkage of Concretee_strain 300 (x1e-6) < Strain for indoor exposureDelta Ps 64,92 kN < =E_strand*e_strain*total_Aps/1000000

4. CreepCreep_factor 2 < ConcreteInfo.creep_factorP_Creep 1381,11 kN < =P_transferP/A creep 4,47 N/mm² < =1000*P_Creep/A_slabPee/I creep 4,59 N/mm² < =1000*P_Creep*(e_centroid)^2/Ix_slabstress_creep 6,10 N/mm² < =P_A_creep+Pee_I_creep+Msw_e_I_esDelta Pc 100,03 kN < =Creep_factor*m*stress_creep*total_Aps/1000P_service 1183,65 kN < =Jack_tot-4*Delta_Pr-Delta_Pe-Delta_Ps-Delta_Pcp_Loss_Serv 18,08 % < =100*(1-P_service/(Jack_tot*Jacking_Factor))

Page 2: SP1_E

Stress Calcs Distance 4000 mm < from left hand end of slabMINUS indicates tension

1. Transfer StressesP_init/A 4,47 N/mm² < =1000*P_transfer/A_slabPi_eyt/I -6,71 N/mm² < =-1000*P_transfer*e_centroid*y_Slab_top/Ix_SlabPi_eyb/I 6,68 N/mm² < =1000*P_transfer*e_centroid*(h_slab-y_Slab_top)/Ix_SlabM swi strs_t 4,32 N/mm² < =1000000*M_sw*y_Slab_top/Ix_SlabM swi strs_b -4,31 N/mm² < =-1000000*M_sw*(h_slab-y_Slab_top)/Ix_Slabf t init 2,08 N/mm² < =P_init_A+Pi_eyt_I+M_swi_strs_t Total stress top transferf b init 6,85 N/mm² < =P_init_A+Pi_eyb_I+M_swi_strs_b Total stress btm transferp tens init -2,85 N/mm² < =-0.45*SQRT(conc_fci) - permissible concrete stress at transfer in tensionp comp init 18,00 N/mm² < =0.45*conc_fci - permissible concrete stress at transfer in compression

2. Intermediate stresses at wet screed stageM_screed_wet 37,45 kNm < M_screed_wet[FIdx]f_scrd_top_wet 2,65 N/mm² < =1000000*M_screed_wet*y_Slab_top/Ix_Slabf_scrd_btm_wet -2,64 N/mm² < =-1000000*M_screed_wet*(h_slab-y_Slab_top)/Ix_Slabf tt scrd 4,74 N/mm² < =P_init_A+Pi_eyt_I+M_swi_strs_t+f_scrd_top Total stress for wet screed topf tb scrd 4,20 N/mm² < =P_init_A+Pi_eyb_I+M_swi_strs_b+f_scrd_btm Total stress for wet screed btmconc_fcs 45,00 N/mm² < =AVERAGE(conc_fci,conc_fcu)p tens scrd -3,02 N/mm² < =-0.45*SQRT(conc_fcs) Permissible concrete tension stress at wet screedp_comp_scrd 15,00 N/mm² < =conc_fcs/3 Permissible concrete compression stress at wet screed

3. Service StressesOverall Depth 280 mm < FDataRec.oa_HeightScreed 80 mm < FDataRec.ScreedVars.Screed - screed depthM sw jointed 60,92 kNm < M_sw_jointed[FIdx]Msuper 131,04 kNm < Msuper[FIdx]M_screed_prop 0,00 kNm < M_screed_prop[FIdx]y_comp_top 132,36 mm < AyI_comp.y_bar - measured from top of structural floorIx_comp 3571042863 mm4 < AyI_comp.IxxP serv/A Slab 3,83 N/mm² < =1000*P_service/A_slabPs_eyt/I -5,75 N/mm² < =-1000*P_service*e_centroid*y_Slab_top/Ix_SlabPs_eyb/I 5,73 N/mm² < =1000*P_service*e_centroid*(h_slab-y_Slab_top)/Ix_Slabfbtm fibres 9,56 N/mm² < =P_serv_A_Slab+Ps_eyb_Iftop fibres -1,92 N/mm² < =P_serv_A_Slab+Ps_eyt_IM sws strs_t 4,32 N/mm² < =1000000*M_sw_jointed*y_Slab_top/Ix_SlabM sws strs_b -4,30 N/mm² < =-1000000*M_sw_jointed*(h_slab-y_Slab_top)/Ix_Slabf_top_super 1,92 N/mm² < =1000000*Msuper*(y_comp_top-screed_depth)/Ix_compf_btm_super -5,42 N/mm² < =-1000000*Msuper*(Overall_Depth-y_comp_top)/Ix_compf_scrd_top_prop 0,00 N/mm² < =1000000*M_screed_prop*(y_comp_top-screed_depth)/Ix_compf_scrd_btm_prop 0,00 N/mm² < =-1000000*M_screed_prop*(Overall_Depth-y_comp_top)/Ix_compf t serv 6,97 N/mm² < =P_serv_A_Slab+Ps_eyt_I+M_sws_strs_t+f_scd_top_wet+f_scd_top_prop+f_top_suf b serv -2,80 N/mm² < =P_serv_A_Slab+Ps_eyb_I+M_sws_strs_b+f_scd_btm_wet+f_scd_btm_prp+f_btm_sup tens serv -3,18 N/mm² < =-0.45*SQRT(conc_fcu)p_comp_serv 16,67 N/mm² < =conc_fcu/3

4. Elastic Moment of resistance (for non-composite slab only)Z top 1,41E+07 mm3 < =Ix_Slab/y_Slab_topf prestr top -1,92 N/mm² < =P_serv_A_Slab+Ps_eyt_IMR elastic top 208,14 kNm < =(p_comp_serv+f_prestr_top)*Z_top/1000000

Z btm 1,42E+07 mm3 < =Ix_Slab/(h_slab-y_Slab_top)f prestr btm 9,56 N/mm² < =P_serv_A_Slab+Ps_eyb_IMR elastic btm 180,50 kNm < =(f_prestr_btm-p_tens_serv)*Z_btm/1000000

MR elastic 180,50 kNm < =MIN(MR_elastic_top,MR_elastic_btm)

Page 3: SP1_E

BM Calcs Distance 4000 mm < from left hand end of slab

Screed 80 mm < FDataRec.ScreedVars.Screed - screed depthMu 385,77 kNm < ULS moment due to gravity loadsForce 1906,81 kN < Sum of all Horizontal forces in section

Positive Bending capacitydcbtm 244,69 mm < Distance of Compression Force to Btm surface in mmdeff 248,75 mm < Distance of Tension Force to Top surface in mmxpos 70,62 mm < =2*(h_slab+screed_depth-dcbtm) - d of Compression blkLever arm 213,44 mm < =deff-xpos/2MR pos 406,99 kNm < =Force*Lever_arm/1000

Negative Bending capacityForce neg 1304,64 kN < Sum of all Horizontal forces in sectiondcbtm neg 12,13 mm < Distance of Compression Force to Btm surface in mmdeff neg 31,25 mm < Distance of Tension Force to Btm surface in mmxneg 24,27 mm < =2*dcbtm_neg - depth of Compression blockLever arm neg 19,12 mm < =deff_neg-xneg/2MR neg 24,94 kNm < =Force_neg*Lever_arm_neg/1000

Page 4: SP1_E

Shear Calcs Distance 4000 mm < from left hand end of slabMo 184,97 kNm < =0.8*fbtm_fibres*Ix_comp/(y_comp*1000000)Section cracked < =IF(Mo<Mu,"Section cracked","Section uncracked")

Uncracked Shear (Vco)V applied 0,00 kN < UltAppliedShear[FIdx] - Ultimate Applied Shr due to all gravity loadsf average 3,83 N/mm² < fcp_effective - Avg prestress on concrete @ centroid (=P/A)h effective 147,03 mm < h_eff - Effective dpth on which shr is taken - 2nd Mom div by 1st Mombv effective 768,00 mm < bv_effective - nett width of concrete near mid-depthftension 1,70 N/mm² < =0.24*SQRT(conc_fcu)feff 2,84 N/mm² < =SQRT(ftension^2+0.8*ftension*fcp_effective)VcoCap 321,00 kN < =bv_effective*h_effective*feff/1000

Cracked Shear (Vcr)Area steel 1109,68 mm² < Total area of tension steelLoss fpu 0,57 < =Jacking_Factor*(1-p_Loss_Serv/100)Loss factor 0,57 < =MIN(0.6,Loss_fpu)pAs 0,58 % < =100*Area_steel/(bv_effective*deff)vc 0,69 N/mm² < =MAX(0.79*(pAs*40/25)^(1/3)*(400/deff)^(1/4)/1.25,0.35)Vcr1 90,83 kN < =(1-0.55*Loss_factor)*vc*bv_effective*deff/1000Vcr2 0,00 kN < =Mo*ABS(V_applied)/Mud effective 248,75 mm < =IF(Mu>0,deff,deff_neg)Vcr min 135,09 kN < =0.1*SQRT(conc_fcu)*bv_effective*d_effective/1000Vcr 135,09 kN < =MAX(Vcr_min,Vcr1+Vcr2)