space communication and navigation (scan) integrated network

14
7/21/2009 1 Space Communication and Navigation (SCaN) Integrated Network Architecture Definition Document (ADD) Overview and Status Briefing to the NASA Advisory Committee (NAC) Planetary Science Subcommittee John Rush, Director, Systems Planning NASA Space Communications Office July 10, 2009

Upload: others

Post on 03-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Space Communication and Navigation (SCaN) Integrated Network

7/21/2009 1

Space Communication and Navigation (SCaN)Integrated Network 

Architecture Definition Document (ADD)Overview and Status

Briefing to the NASA Advisory Committee (NAC)Planetary Science Subcommittee

John Rush, Director, Systems Planning

NASA Space Communications OfficeJuly 10, 2009

Page 2: Space Communication and Navigation (SCaN) Integrated Network

Background

• With the consolidation of NASA’s space communication networks in the Space Communication and Navigation (SCaN) Office, it was determined that there was a need for a “Go To” architecture to help guide our technology investments, standards development, and system acquisitions

• The architecture should be targeted for the 2025 time frame

• A multi‐Center NASA team was established that that developed requirements, determined what technologies should be considered, and identified system trades

• The Architecture Team went on to develop the architecture which was recently baselined at the SCaN Configuration Control Board

Page 3: Space Communication and Navigation (SCaN) Integrated Network

7/21/2009 3

NASA Level 0 Requirements(Presented to and accepted  by SMC – 8/27/08)

1. SCaN shall develop a unified space communications and navigation network infrastructure capable of meeting both robotic and human exploration mission needs

2. SCaN shall implement a networked communication and navigation infrastructure across space.  

3. SCaN infrastructure shall provide the highest data rates technically and financially feasible for both robotic and human exploration missions.

4. SCaN shall assure data communication protocols for Space Exploration missions are internationally interoperable.

5. SCaN shall provide the end space communication and navigation infrastructure on Lunar and Mars surfaces.

6. SCaN shall provide anytime/anywhere communication and navigation services as needed for Lunar and Mars human missions

7. SCaN shall continue to meet its commitments to provide space communications and navigation services to existing and planned missions.

Page 4: Space Communication and Navigation (SCaN) Integrated Network

7/21/2009 4

Architectural Goal and Challenges

• Goal: To detail the high level SCaN integrated network architecture, its elements, architectural options, views, and evolution until 2025 in response to NASA’s key driving requirements and missions.  The architecture is a framework for SCaN system evolution and will guide the development of Level 2 requirements and designs. 

• Challenges:

– Forming an integrated network from three pre‐existing individual networks

– Addressing requirement‐driven, capability‐driven, technology‐driven and affordable approaches simultaneously

– Interoperability with U.S. and foreign spacecraft and networks

– Uncertainty in timing and nature of future communications mission requirements

– Requirements for support of missions already in operation, as well as those to which support commitments have already been made

Page 5: Space Communication and Navigation (SCaN) Integrated Network

7/21/2009 5

SCaN Current Networks

Space Network ‐ constellation of geosynchronous relays (TDRSS) and associated ground systems

The current NASA space communications architecture embraces three operational networks that collectively provide communications services to supported missions using space‐based and ground‐based assets

NASA Integrated Services Network (NISN) ‐ not part of SCaN; provides terrestrial connectivity

Deep Space Network ‐ ground stations spaced around the world providing continuous coverage of satellites from  Earth Orbit (GEO) to the edge of our solar system

Near Earth Network ‐ NASA, commercial, and partner ground stations and integration systems providing space commun‐ications and tracking services to orbital and suborbital missions

Page 6: Space Communication and Navigation (SCaN) Integrated Network

7/21/2009 6

Key Requirements, Mission Drivers, and Capabilities Flowdown

20152015 20202020 2025+2025+TodayToday

Mission

 Drivers

• Orion/ISS

• Mars – Coordinated and Complex Science Missions

• Lunar Robotic Missions

• Human Lunar Missions

• Multi‐Robotic Missions

• Outer Planet – 1

• Mars Sample Return

• Landsat‐class imaging at Mars and beyond

• Lunar Human Outpost

• Earth Sensor Web

• Mars Exploration

• Shuttle/ISS

• Mars Landers

• Great Observatories

• Coordinated Earth Observation

• LRO

Capa

bilities • Up to 1.2 Gbps (Near Earth)

• Standard TT&C Services

• Integrated Services Portal

• Up to 150 Mbps – 1 AU

• Radiometric Enhancements

• Up to 1.2 Gbps from the moon (optical)

• Lunar far side coverage

• Integrated Service Portal with DTN management

• Space Internetworking

• Ka‐band arraying ( Mars)

• Optical Communications to 100 Mbps – 1 Gbps (Mars)

• High capacity multi‐node

• Inter‐networking interoperability

• Up to 300 Mbps (SN)

• Up to 150 Mbps (NEN)

• Up to 6 Mbps at 1 AU

• Radiometric Services

Level 0

 Re

quirem

ents

Provide space communications and navigation capabilities to existing and planned missions.

Implement a networked communication and navigation infrastructure across space

Develop a unified space communications and navigation network infrastructure

Provide the highest data rates technically feasible

Implement internationally interoperable communication protocols

Provide communication and navigation infrastructure on Lunar and Mars surfaces

Provide anytime/anywhere communication and navigation services for Lunar and Mars human missions

Page 7: Space Communication and Navigation (SCaN) Integrated Network

2015 Add:• Standard TT&C Services• Integrated Service Portal (ISP)• Delay Tolerant Networking• Deep Space Antenna Array• Lunar Optical Pathfinder (LADEE)• TDRS K, L• Increased microwave link data rates

2020 Add:• First Lunar Relay Satellite (LRS)• Optical Ground Terminal• Near Earth Optical Initial Capability• TDRS M, N

2025 Add:• Second Lunar Relay Satellite (LRS)• Deep Space Optical Array in Earth orbit

SCaN Services will potentially Provide:• Integrated service‐based architecture• Space internetworking (DTN)• International interoperability• Assured safety and security of missions• Significant increases in bandwidth7/21/2009

Mars¸

Venus

MercurySun

Jupiter

Saturn

Titan

Pluto

Charon

Neptune

Uranus

SCaN OpticalSCaN µwaveNISN

SCaN Notional Integrated Communication Architecture

SCaN ISP

•••

Antenna Array

LADEE

NISN

MOC

NISNNISN

MCC

Antenna Array

•••

2009 SCaN Architecture Baseline will transition to an Integrated Network Architecture which 

follows…

Page 8: Space Communication and Navigation (SCaN) Integrated Network

7/21/2009 8

Enhanced Deep Space Domain Capability

Performance• Possible Deep Space Optical IOC

• 100 Mbps extensible to 1Gbps return link at 1AU; > 2 Mbps forward• RF enhancement for return link

• Predominant use of deep space Ka for data return• New tracking data types for navigation support

• Ka uplink/downlink• Optimetric uplink/downlink (IOC)

• Robust, Scalable RF (Array of antennas)• Anytime, anywhere connectivity within Earth line of sight• Robust emergency X‐band TT&C

• Robust high‐power uplink capability• Standard services across all component networks

Mars Trunk Lines

Point‐to‐point RF links

Point‐to‐point Optical links

RF Antenna  Arrays

Relays for In‐Situ Science

Space‐based Optical

Ground‐based Optical

Next‐gen NavigationPrimitive Body Missions

Coordinated observations

Integrated ServicePortal

Infrastructure Enhancements• Optical Initiatives: flight and ground 

terminals• Potential Deep Space Optical Relay for 

higher availability• RF Ground Stations

• 70m replacement with antenna array• Capacity and performance upgrade

• Space / Ground Internetworking Nodes

Mission/Program Drivers•MAVEN: Extends reliable communications for Mars relay•Mars Orbiter:Mars relay and high‐rate trunk line• Large Scale Lander: High data rate• return for high resolution camera•Outer Planetary: long distance link to Jovian or Saturnian spacecraft; survival‐time limited missions

•New Frontiers: extreme distance return link and emergency TT&C

•Mars Sample Return: higher radiometric accuracy for precision rendezvous and docking

• Integrated network: common services, service interfaces, and service management for interoperability (international and U.S.)

•Higher data rates:  to enable new missions and increase operations efficiency

Page 9: Space Communication and Navigation (SCaN) Integrated Network

7/21/2009 9

Summary and Next Steps• SCaN has defined an Integrated Network Architecture that will:

1. Meet SOMD, ESMD, SMD, and also external agencies mission requirements 

2. Enable future NASA missions requiring advanced communications and tracking capabilities

3. Increase SCAN operational efficiency through standardization, commonality and technology infusion

• Next steps are:1. Participate and support by the SCaN stakeholders in the base‐lining and 

implementation of the integrated network architecture as documented in the Architecture Definition Document (ADD)

2. Participation from the Mission Directorates in the Architecture Decision Point (ADP) process before their respective implementation

3. Build an advocacy for SCaN architecture development and for the evolution of its enabling technology

4. Jointly develop a plan for flight opportunities to validate new technologies that enable these architectural enhancements 

Page 10: Space Communication and Navigation (SCaN) Integrated Network

Backup Charts

Page 11: Space Communication and Navigation (SCaN) Integrated Network

SCaN Is Taking the 1st Step Now

•Optical Terminal for LADEEon track

• PDR Scheduled for 2 – 4 June

• Fits within LADEE resource margins

• Earth-based photon-counting technology

• Will provide 600 Mbps frommoon

• 10 cm terminal• Earth-based Beacon-aided acquisition & tracking

2012

In Partnership with SMD on LADEE Spacecraft

Page 12: Space Communication and Navigation (SCaN) Integrated Network

12

0255075

100125150175200

Lunar L1/L2 Mars Lunar L1/L2 Mars Lunar L1/L2 Mars Lunar L1/L2 Mars

RF Optical

1000 W 622 Mbps 622 Mbps 1000 Mbps

0.6m 3 m

Mars Reconnaissance Orbiter

Benefits of Optical Communications

• ~50% savings in mass– Reduced mass enables decreased spacecraft 

cost and/or increased science through more mass for the instruments

• ~65% savings in power– Reduced power enables increased mission life 

and/or increased science measurements• Up to 20‐fold increase in data rate

– Increased data rates enable increased data collection and reduced mission operations complexity 

…over existing RF solutions

A comparison of Lunar (LRO), L1/L2 (JWST), and Mars (SCAWG) RF solutions against optical comm. solutions shows vast improvements in mass, power, data rate, and ground complexity

A comparison of Lunar (LRO), L1/L2 (JWST), and Mars (SCAWG) RF solutions against optical comm. solutions shows vast improvements in mass, power, data rate, and ground complexity

This recent image taken by the Mars Reconnaissance Orbiter represents what one could see from a helicopter ride at 1000 feet above the planet. While this

mission is collecting some of the highest resolution images of Mars to date and it will collect 10 to 20 times more data than

previous Mars missions, bandwidth is still a bottleneck.

Data collection for climate observations must be turned off while not over the poles

because we cannot get the data back.

At MRO’s maximum data rate of 6 Mbps (the highest of any Mars mission), it takes

nearly 7.5 hours to empty its on-board recorder and 1.5 hours to transfer a single

HiRISE image to earth.

In contrast, with an optical communications solution at 100 Mbps, the recorder could be emptied in 26 minutes,

and an image could be transferred to earth in less than 5 minutes.

Mars Reconnaissance Orbiter (MRO) ExampleDepending on the mission application, an optical communications solution could achieve…

MASS (kg) POWER (W) DATA RATE (Mbps) GROUND APERTURE (m)

Page 13: Space Communication and Navigation (SCaN) Integrated Network

7/21/2009 13

Notional Mars Relay Capability

Performance‐ Scalable architecture that can easily evolve to support human exploration phase

‐ Up to 6 Mbps RF data rates for near‐term; Up to 150 Mbpsin long‐term

‐ Potential for optical Trunk to Earth receivers (at least 100 Mbps @ 1 AU return and 2 Mbps forward, extensible up to 1 Gbps) 

‐ Can support Earth‐like science around Mars‐ Radiometric capabilities for precision approach, landing, and surface roving

‐ Forms a subnet of the DTN Space Internetworking for coordinated Mars exploration

Mission/Program Drivers• Mars Exploration

‐ Science orbiters‐ Science landers and rovers ‐Mars sample return

• Human Exploration Pre‐cursor‐ Dedicated Mars comm / relay orbiters‐Mars communication terminal

Earth

MarsLegend

DTE/DFEAccess LinkTrunk LineCrosslink

Mars CommTerminal

Mars ScienceMission

Mars Rover

Missions

HybridSci / CommOrbiter

DedicatedComm / Relay

Orbiters

CrossLinks

Surface ‐Orbit

Access Links

TrunkLines

DTE / DFELines

DedicatedComm / Relay

Orbiters

DedicatedComm / Relay

Orbiters

Infrastructure Enhancement• Hybrid Science / Comm Orbiters: relay payloads on science spacecraft

• Telecommunications, data relay, navigation, and timing services• Store & forward file and initial space internetworking

• Dedicated Comm / Relay Orbiters: scaled for higher availability

• Extended space internetworking services• Integrated Service Portal

Page 14: Space Communication and Navigation (SCaN) Integrated Network

Integrated SCaN Roadmap2010 2015 20252020

MilestoneS/C Launch HighlightArchitecture Decision Point Potential

Driv

ers

Exist

ing

Net

wor

k A

ctiv

ities

DSN

NEN

SNO

ptic

alC

apab

ility

Luna

rN

etw

ork

Shuttle Retirement

Aging SCaN Systems Orion 1

Lunar Outpost

LRO MetOp ILN Landers 1&2JWST

Mars Science & Expl

Ka-Band Transition

New Frontiers

Earth Science Missions

Astrophysics Missions (e.g., Con-X, LISA)Deep Space missions

Altair -1 / HLROrion-13/First Lunar

Flight

IOC LCT Enhanced IOC

LN-1: Orbits & Coverage

ILR (Potential)

Flight Pathfinders LADEE JDEM Mars

Near-Earth Prototype Addit’l Terminals Deep Space Terminal RetirementGround System

Earth Relay Deep Space Relay

RF AssetsRF Assets

Pathfinder II

Deep Space IOC OPT-1:Lunar Trunk

Near-Earth IOCOPT-2: Space &

Ground (Near-Earth)

EnhancedIOC

OPT-3: Mars Trunk

OPT-4: Space & Ground (Deep Space)

SGSSO, P and BeyondSN-3:

4th Gen

K LSN-2: M&NNext Gen TDRS

M N

Decom. Shuttle Systems

Upgrades for Cx Ascent

Upgrades for Cx Lunar FlightsMG2

Full Benefit Commercial

Migration to Ka-BandWS1

Mars Trunk Implementation70m Robustness: New Assets at Can, MadDSN-1: Antenna Array

DSN-2: 70m Replacement

Decommission 70m SubnetUpgrades for Cx Lunar FlightsDeep Space Array

(70m Back-up)

Decom 26m Subnet

Migration to Higher Frequencies (e.g., Ka-Band)

70m Replacement Advanced Development

Mars Trunk Implementation

Migration to Higher Frequencies (e.g., Ka-Band)

Migration to Ka-BandWS1

SVC-1:Portal PortalStd Svc & I/F Portal w/

DTN Mgmt

COM-1: Intrnwking Arch Deploym’t

Mars Trunk Implementation

Shuttle Retirement

Aging SCaN Systems

Deep Space IOC

Mars Trunk Implementation70m Robustness: New Assets at Can, Mad

Decom. Shuttle Systems

Orion 1

Lunar Outpost

LRO MetOp ILN Landers 1&2JWST

Mars Science & Expl

Ka-Band Transition

New Frontiers

Earth Science Missions

Astrophysics Missions (e.g., Con-X, LISA)Deep Space missions

Altair -1 / HLROrion-13/First Lunar

Flight

SGSS

DSN-1: Antenna Array

SVC-1:Portal PortalStd Svc & I/F Portal w/

DTN Mgmt

COM-1: Intrnwking Arch Deploym’t

DSN-2: 70m Replacement

Decommission 70m Subnet

Upgrades for Cx Ascent

Upgrades for Cx Lunar FlightsMG2

O, P and BeyondSN-3:4th Gen

K LSN-2: M&N

Upgrades for Cx Lunar FlightsDeep Space Array

(70m Back-up)

Decom 26m Subnet

OPT-1:Lunar Trunk

Near-Earth IOCOPT-2: Space &

Ground (Near-Earth)

EnhancedIOC

OPT-3: Mars Trunk

IOC LCT Enhanced IOC

LN-1: Orbits & Coverage

ILR (Potential)

Flight Pathfinders LADEE JDEM Mars

Near-Earth Prototype Addit’l Terminals Deep Space Terminal RetirementGround System

Earth Relay Deep Space Relay OPT-4: Space & Ground (Deep Space)

RF AssetsRF Assets

Pathfinder II

Migration to Higher Frequencies (e.g., Ka-Band)

70m Replacement Advanced Development

Next Gen TDRSM N

Full Benefit Commercial

Migration to Ka-BandWS1