space-filling designs - gatech.edu

37
Space-Filling Designs C. F. Jeff Wu Georgia Institute of Technology Most commonly used designs for computer experiments C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 1 / 35

Upload: others

Post on 15-Nov-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Space-Filling Designs - gatech.edu

Space-Filling Designs

C. F. Jeff Wu

Georgia Institute of Technology

Most commonly used designs for computer experiments

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 1 / 35

Page 2: Space-Filling Designs - gatech.edu

Overview

1 Latin Hypercube DesignLatin Hypercube Design (LHD)Orthogonal Array-based Latin Hypercube Design (OA-LHD)

2 Designs Based on Measures of DistanceminiMax Distance Design (mM Design)Maximin Distance Design (Mm Design)

3 Maximin Latin Hypercube Design (MmLHD)

4 Maximum Projection Design (MaxPro)

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 2 / 35

Page 3: Space-Filling Designs - gatech.edu

Latin Hypercube Design (LHD) - Introduction

Mckay, Beckman and Conover (1979).

An example: p = 2, n = 5:

••

••

D =

1 22 43 34 1

Each row and column has one and only one point.

Each factor has n levels.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 3 / 35

Page 4: Space-Filling Designs - gatech.edu

Factorial Design 22

On the other hand, a factorial 22 design is constructed as

• •

• •

D =

1 11 44 14 4

If x1 (or x2) is not significant, replication is wasted for computerexperiments.

“Effect sparsity” principle: only a few factors are expected to beimportant.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 4 / 35

Page 5: Space-Filling Designs - gatech.edu

Latin Hypercube Design (LHD) - Definition

Definition

A Latin hypercube design (LHD) with n runs and p inputs variables,denoted by LHD(n, p), is an n × p matrix, in which each column is arandom permutation of {1, 2, . . . , n}.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 5 / 35

Page 6: Space-Filling Designs - gatech.edu

Construct an LHD(n, p)

How to construct an LHD(n, p)?

Step1 Randomly permute {1, 2, . . . , n} for each x1, . . . , xp.

D =

x1 x2 x3

1 2 72 n 93 5 1...

......

n 3 2

Step2 D ′ ← D−0.5

n , where D ∈ {1, 2, . . . , n}p. Thus, D ′ ∈ [0, 1]p.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 6 / 35

Page 7: Space-Filling Designs - gatech.edu

Optimal LHD(n, p)

Thus, there are (n!)p−1 LHDs.

Not all of them are good. For example,

••

••

D =

1 12 23 34 4

This design is perfectly correlated and not space-filling.

Finding an “optimal” LHD is a challenge.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 7 / 35

Page 8: Space-Filling Designs - gatech.edu

Orthogonal Array-based LHD (OA-LHD) - Introduction

Owen (1992) and Tang (1993).

LHD: one-dimensional balancing property but two and higherdimensional projections can be very bad.

Orthogonal Array (OA) of strength 2 has two dimensional balancingproperty, so use it to generate an LHD.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 8 / 35

Page 9: Space-Filling Designs - gatech.edu

Orthogonal Array-based LHD (OA-LHD) - Example

For example, n = 9, p = 2,

OA

x1 x2

1 11 21 32 12 22 33 13 23 3

1→ {1, 2, 3} → {3, 2, 1}2→ {4, 5, 6} → {4, 5, 6}3→ {7, 8, 9} → {8, 7, 9}

OA-LHD

x1 x2

1 32 43 84 25 56 77 18 69 9

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 9 / 35

Page 10: Space-Filling Designs - gatech.edu

Orthogonal Array-based LHD (OA-LHD) - Example

••

••

••

••

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 10 / 35

Page 11: Space-Filling Designs - gatech.edu

Latin Hypercube Design (LHD) - Properties

McKay, Beckman, and Conover (1979) introduced Latin hypercubesampling and subsequently other authors (for example, Stein (1987)and Owen (1992)) have explored their properties. Roughly speaking,suppose we want to find the mean of some known function G (y(x))over X . Then the sample mean of G (y(x)) computed from a Latinhypercube design usually has smaller variance than the sample meancomputed from a simple random sample.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 11 / 35

Page 12: Space-Filling Designs - gatech.edu

Designs Based on Measures of Distance

Johnson, Moore, and Ylvisaker (1991).

Let ρ(·, ·) be a metric.

ρ(x1, x2) = ρ(x2, x1)

ρ(x1, x2) ≥ 0

ρ(x1, x2) = 0⇔ x1 = x2

ρ(x1, x2) ≤ ρ(x1, x3) + ρ(x3, x2)

For example,

ρ(u, v) = {p∑

j=1

|uj − vj |k}1/k

k = 1 : rectangular distance

k = 2 : Eulidean distance

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 12 / 35

Page 13: Space-Filling Designs - gatech.edu

miniMax Distance Design (mM Design) - Introduction

Let ρ(x ,D) = minxi∈D ρ(x , xi ) be the minimum distance to thedesign.

Let χ = [0, 1]p andh = max

x∈χρ(x ,D)

be the maximum distance in χ.

h is called fill distance.

the largest gapthe radius of the largest ball that can be placed in χ which does notcontain any point in D.

Thus, find a D to minimize h. That is,

minD

maxx∈χ

ρ(x ,D)

→ miniMax distance design (mM).

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 13 / 35

Page 14: Space-Filling Designs - gatech.edu

miniMax Distance Design (mM Design) - Examples

p = 1, n = 1:

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

c(0, 1)

c(1,

1)

0 11/2

p = 1, n = 2:

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

c(0, 1)

c(1,

1)

0 11/4 3/4

p = 2, n = 4:

1/4

3/4

1/4 3/4

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 14 / 35

Page 15: Space-Filling Designs - gatech.edu

miniMax Distance Design (mM Design) - Properties

mM designs ensure that all points in χ are not too far from thedesign.

Consider the owner of a petroleum corporation who wants to opensome gas stations. mM design ensures that no customer is too farfrom one of the company’s gas stations.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 15 / 35

Page 16: Space-Filling Designs - gatech.edu

Maximin Distance Design (Mm Design) - Introduction

The minimum distance between any two points in D is

2q = minx1,x2∈D

ρ(x1, x2),

where q is the separation distance or packing radius - the radius ofthe largest ball that can be placed around every design point suchthat no two balls overlap.

A large q ensures numberical stability in Kriging.

A large q tends to decrease h.

Thus, find a D to maximize 2q. That is,

maxD

minx1,x2∈D

ρ(x1, x2)

→ Maximin distance design (Mm).

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 16 / 35

Page 17: Space-Filling Designs - gatech.edu

Maximin Distance Design (Mm Design) - Example

p = 1, n = 2:

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

c(0, 1)

c(1,

1)

0 1

p = 2, n = 4:

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 17 / 35

Page 18: Space-Filling Designs - gatech.edu

Maximin Distance Design (Mm Design) - Properties

Mm designs ensure that the points in D are as far apart from eachother as possible.

Gas station example: Mm design ensures that no two gas stations aretoo close to each other. It minimizes the competition from each otherby locating the stations as far apart as possible.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 18 / 35

Page 19: Space-Filling Designs - gatech.edu

Summary

In mathematics,

covering problems: cover Rp with spheres. → miniMaxpacking problems: pack spheres in Rp. → Maximin

Experimental design problem is different because we need to cover[0, 1]p or pack in [0, 1]p. → This introduces boundary effects.

1/4

3/4

1/4 3/4

(a) Minimum radius. (b) Maximum radius.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 19 / 35

Page 20: Space-Filling Designs - gatech.edu

Summary

Computationally,

miniMax:minD

maxx∈χ

minxi∈D

ρ(x , xi )→ very hard

Maximin:

maxD

minx1,x2∈D

ρ(x1, x2)→ hard, but easier than miniMax

Mak and Joseph (2017): a new hybrid algorithm combining particleswarm optimization and clustering for generating minimax designs onany convex and bounded design space.

R package: minimaxdesign

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 20 / 35

Page 21: Space-Filling Designs - gatech.edu

Maximin Latin Hypercube Design (MmLHD) - Introduction

Morris and Mitchell (1995).

Advantage of mM/Mm designs: run size flexibility and “optimal”.

Disadvantage of mM/Mm designs: projections are poor.

Optimal Design Criterion for Computer Experiments

6

Maximin Distance Design Minimax Distance Design

Poor Projections

Use Latin Hypercube Designs (McKay, Conover, Beckman 1979)

(a) Maximin design

Optimal Design Criterion for Computer Experiments

6

Maximin Distance Design Minimax Distance Design

Poor Projections

Use Latin Hypercube Designs (McKay, Conover, Beckman 1979)

(b) Minimax design.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 21 / 35

Page 22: Space-Filling Designs - gatech.edu

Maximin Latin Hypercube Design (MmLHD) - Introduction

LHD: good 1-dimensional projections, but can be poor in terms ofspace-filling in higher dimensions.

Optimal Design Criterion for Computer Experiments

6

Maximin Distance Design Minimax Distance Design

Poor Projections

Use Latin Hypercube Designs (McKay, Conover, Beckman 1979)

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 22 / 35

Page 23: Space-Filling Designs - gatech.edu

Maximin Latin Hypercube Design (MmLHD) - Introduction

Combine these two ideas → Maximin Latin hypercube designs(MmLHD)

maxD

minx1,x2∈D

ρ(x1, x2),

where D is an LHD.

It is the same as

minD

n−1∑i=1

n∑j=i+1

1

ρk(xi , xj)

1/k

and k →∞, where D is an LHD.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 23 / 35

Page 24: Space-Filling Designs - gatech.edu

Maximin Latin Hypercube Design (MmLHD) - Examples

Optimal Design Criterion for Computer Experiments

8

• Maximin Latin hypercube design (MmLHD) (Morris and Mitchell 1995)

where is an LHD.

MmLHD(20,2) MmLHD(20,10)

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 24 / 35

Page 25: Space-Filling Designs - gatech.edu

Maximum Projection Design (MaxPro) - Introduction

Joseph, Gul, and Ba (2015).

MmLHDs only ensure good space-fillingness in p dimensions anduniform projections in a single dimension, but projection properties in2, 3, . . . , p − 1 dimensions may not be good.

In practice, we often have 1<the number of important factors< p.

Optimal Design Criterion for Computer Experiments

8

• Maximin Latin hypercube design (MmLHD) (Morris and Mitchell 1995)

where is an LHD.

MmLHD(20,2) MmLHD(20,10)

Figure : Projection in two dimensions for a 10 dimensional MmLHD.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 25 / 35

Page 26: Space-Filling Designs - gatech.edu

Maximum Projection Design (MaxPro)

How to calculate distances in a projected subspace? Answer: Putweights of 1 on the defining factors and 0 on the remaining factors.

Weighted Euclidean Distance:

d(xi , xj ;θ) = {p∑

l=1

θl(xil − xjl)2}1/2.

Let 0 ≤ θl ≤ 1 be the weight assigned to the factor l and let∑pl=1 θl = 1.

Then the MmLHD criterion can be modified to

minDφk(D;θ) =

n−1∑i=1

n∑j=i+1

1

dk(xi , xj ;θ),

where θ = (θ1, . . . , θp−1)′ and θp = 1−∑p−1

l=1 θl .

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 26 / 35

Page 27: Space-Filling Designs - gatech.edu

Maximum Projection Design (MaxPro)

In practice, we often have no idea about the importance of the factorsbefore the experiment.

Assigning non-informative prior:

p(θ) =1

(p − 1)!,θ ∈ Sp−1,

where Sp−1 = {θ : θ1, . . . , θp−1 ≥ 0,∑p−1

i=1 θi ≤ 1}.The design criterion becomes

minD

E{φk(D;θ)} =

∫Sp−1

n−1∑i=1

n∑j=i+1

1

dk(xi , xj ;θ)p(θ)dθ.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 27 / 35

Page 28: Space-Filling Designs - gatech.edu

Maximum Projection Design (MaxPro) - New Criterion

Theorem

If k = 2p, then under the given prior

E{φk(D;θ)} =1

{(p − 1)!}2

n−1∑i=1

n∑j=i+1

1∏pl=1(xil − xjl)2

.

Therefore, we propose a new criterion

minDψ(D) =

1(n2

) n−1∑i=1

n∑j=i+1

1∏pl=1(xil − xjl)2

1/p

.

It is called MaxPro Criterion.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 28 / 35

Page 29: Space-Filling Designs - gatech.edu

Maximum Projection Design (MaxPro)

MaxPro Criterion:

minDψ(D) =

1(n2

) n−1∑i=1

n∑j=i+1

1∏pl=1(xil − xjl)2

1/p

.

Maximum projection (MaxPro) design: maximizes space-fillingproperties on projections to all possible subsets of factors.

MaxPro criterion can be computed at a cost no more than a designcriterion that ignores projection properties.

For any l , if xil = xjl , then ψ(D) =∞;→ n distinct levels for eachfactor → MaxPro designs automatically have the LHD property!

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 29 / 35

Page 30: Space-Filling Designs - gatech.edu

Maximum Projection Design (MaxPro) - Algorithm

Design construction algorithm:

Step1 Find an optimal MaxProLHD with simulated annealing (Morris andMitchell 1995).

Step2 Apply a fast derivative-based continuous optimization algorithm to findlocally optimal MaxPro design in the neighborhood of the optimalMaxProLHD:

∂ψp(D)

∂xrs=

2(n2

) ∑i 6=r

1∏pl=1(xil − xjl)2

1

(xis − xjs).

R package: MaxPro.

Available in JMP 12.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 30 / 35

Page 31: Space-Filling Designs - gatech.edu

Maximum Projection Design (MaxPro) - Examples

MaxProLHD(20,2) MaxPro(20,2)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Factor 1

Fact

or 2

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 31 / 35

Page 32: Space-Filling Designs - gatech.edu

Maximum Projection Design (MaxPro) - Examples

MaxProLHD(20,2) MaxPro(20,2)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Factor 1

Fact

or 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Factor 1

Fact

or 2

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 32 / 35

Page 33: Space-Filling Designs - gatech.edu

Maximum Projection Design (MaxPro) - Examples

MaxProLHD(20,2) MaxPro(20,2)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Factor 1

Fact

or 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Factor 1

Fact

or 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Factor 1

Fact

or 2

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 33 / 35

Page 34: Space-Filling Designs - gatech.edu

Maximum Projection Design (MaxPro) - Numerical Results

Maximin Criterion:

Mmq = minr=1,...,(p

q)

1(n2

) n−1∑i=1

n∑j=i+1

1

d2qqr (xi , xj)

−1/(2q)

Numerical Results – Maximin Criterion

21

• Incorporate the index of the design:

𝑴𝑴𝑴𝑴𝒒𝒒 (larger-the-better)

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 34 / 35

Page 35: Space-Filling Designs - gatech.edu

Maximum Projection Design (MaxPro) - Numerical Results

miniMax Criterion:

mMq = maxr=1,...,(p

q)maxu∈χq

(1

n

n∑i=1

1

d2qqr (u, xi )

)−1/(2q)

,

where χq is the set of sample points.

Numerical Results – miniMax Criterion

22

where is the set of sample points.

𝑴𝑴𝑴𝑴𝒒𝒒 (smaller-the-better)

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 35 / 35

Page 36: Space-Filling Designs - gatech.edu

Maximum Projection Design (MaxPro) - Properties

Easy to compute MaxPro criterion.

Good space-filling properties in projections to all subsets of factors.

Available in R Package MaxPro and JMP 12.

Advantageous in Gaussian process modeling.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 36 / 35

Page 37: Space-Filling Designs - gatech.edu

Conclusion

Latin hypercube design:

Good 1-dimensional projections, but might not be space-filling in pdimensions.

miniMax/Maximin distance design:

Run size flexibility and good space-fillingness in p dimensions, but badprojections.

Maximin Latin Hypercube design:

Good space-fillingness in p dimensions and uniform projections in asingle dimension.

Maximum projection design:

Good space-filling properties in projections to all subsets of factors.

C. F. Jeff Wu (Georgia Tech) Space-Filling Designs 37 / 35