spatio temporal variation of phytoplankton in relation to...

16
Indian Journal of Geo Marine Sciences Vol. 47 (07), July 2018, pp. 1502-1517 Spatio temporal variation of Phytoplankton in relation to physicochemical parameters along Mahanadi estuary & inshore area of Paradeep coast, north east coast of India in Bay of Bengal * Sangeeta Mishra 1 , Sumitra Nayak 2 , Sharada Shrinivas Pati 2 , Satya Narayana Nanda 1 , Sarat Mahanty 2 & Anupam Behera 2 1 CMCE, State Pollution Control Board, ICZMP, Odisha, India 2 Coastal Laboratory, State Pollution Control Board, ICZMP, Bhubaneswar, Odisha, India [E.Mail: [email protected]] Received 05 October 2016; revised 06 April 2017 Percentage contribution of each group of phytoplankton was in the order of: Diatom > Cyanobacteria & Chlorophyceans > Dinoflagelles. Out of all, only three species (Asterionellopsis glacialis, Nitzschia sp. and Thalassiothrix longissima) contributed more than 50% to the total phytoplankton population. Abundance varied from115 nos.ml -1 to 555 nos.ml -1 which is 8 times more than the earlier studies made in the coast of Odisha. Significant variations is also observed in physicochemical parameters viz., salinity, dissolved oxygen (DO), nitrites (NO 2 –N), nitrates (NO 3 -N), Ammonia (NH 3 -N), Phosphate (PO 4 -P), silicate (SiO 4 -Si) . By analyzing the N:P ratio, in the samples of the study area, it was observed that nitrogen is the limiting factor for phytoplankton. The similarity and group average clustering (Bray Curtis) divide the area in to two distinct phytoplankton groupings with their location of sampling as (A) low salinity and high turbidity and (B) high salinity. Higher species diversity (H’= 2.6-3.0) and higher equitability in plankton flora (J’=0.8-0.9) were observed in estuarine monitoring points having lower levels of anthropogenic influence (BOD=1.2-1.9 mg L -1 ). [Keywords: Spatial, phytoplankton, Mahanadi estuary, Paradeep, assemblages, species] Introduction Phytoplankton initiate the marine food chain, by serving as food to the primary consumers, which include zooplankton, shellfish, finfish and others 1-4 . Theyalsoplay as an important factor in the carbon budget and modulation of sea surface temperature through absorption of solar radiation. Quantification of phytoplankton biomass and their community composition is very important for understanding the structure and dynamics of marine ecosystem 5 .Changes in dominance and diversity of phytoplankton species often have been used as indicators of water quality 6 and hence, spatial and temporal changes in phytoplankton community were analyzed. Changes in phytoplankton biomass and primary productivity in coastal waters of northern Bay of Bengal (NB) and western Bay of Bengal (WB) is influenced significantly by change in surface salinity due to heavy fresh water influx from rivers. This quantum of influx influences vertical stratification thus impeded vertical transfer of nutrients 7 . Beside river discharges, cyclones and physical oceanographic processes also controls the distribution of phytoplankton biomass 8 . Relatively higher nutrient concentrations was also found along the WB than central Bay of Bangle (CB) contributing higher phytoplankton abundance in WB 9 . Extensive works pertaining to the qualitative and quantitative aspects of phytoplankton in relation to physicochemical parameter in spatial and temporal scale have been carried out in different coastal ecosystems of India 10-14 . This type of study along the northeast cost of India has also been carried out by different researchers 11&15-19 . However, in Paradeep coast different aspects such as water quality 20-25 and phytoplankton ecology though dealt by different studies 11&26-27 are sporadic and without comprehensive evaluation. Present work was focused on studying both quantitative as well as qualitative phytoplankton ecology for estuarine and coastal waters by considering the influence of physicochemical parameters in a holistic manner. Materials and Methods Paradeep coast is located (20 19’01.61”N to 20 10’41.20”N & 86 45’22.82”E, 86 32’12.72”E) along the eastern coast, in the Bay of Bengal. It is a ____________ * Corresponding author

Upload: others

Post on 25-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

Indian Journal of Geo Marine Sciences Vol. 47 (07), July 2018, pp. 1502-1517

Spatio temporal variation of Phytoplankton in relation to physicochemical parameters along Mahanadi estuary & inshore area of Paradeep coast, north east

coast of India in Bay of Bengal *Sangeeta Mishra1, Sumitra Nayak2, Sharada Shrinivas Pati2, Satya Narayana Nanda1, Sarat Mahanty2 & Anupam Behera2

1CMCE, State Pollution Control Board, ICZMP, Odisha, India 2Coastal Laboratory, State Pollution Control Board, ICZMP, Bhubaneswar, Odisha, India

[E.Mail: [email protected]]

Received 05 October 2016; revised 06 April 2017

Percentage contribution of each group of phytoplankton was in the order of: Diatom > Cyanobacteria & Chlorophyceans > Dinoflagelles. Out of all, only three species (Asterionellopsis glacialis, Nitzschia sp. and Thalassiothrix longissima) contributed more than 50% to the total phytoplankton population. Abundance varied from115 nos.ml-1 to 555 nos.ml-1 which is 8 times more than the earlier studies made in the coast of Odisha. Significant variations is also observed in physicochemical parameters viz., salinity, dissolved oxygen (DO), nitrites (NO2–N), nitrates (NO3-N), Ammonia (NH3-N), Phosphate (PO4-P), silicate (SiO4-Si) . By analyzing the N:P ratio, in the samples of the study area, it was observed that nitrogen is the limiting factor for phytoplankton. The similarity and group average clustering (Bray Curtis) divide the area in to two distinct phytoplankton groupings with their location of sampling as (A) low salinity and high turbidity and (B) high salinity. Higher species diversity (H’= 2.6-3.0) and higher equitability in plankton flora (J’=0.8-0.9) were observed in estuarine monitoring points having lower levels of anthropogenic influence (BOD=1.2-1.9 mg L-1).

[Keywords: Spatial, phytoplankton, Mahanadi estuary, Paradeep, assemblages, species]

Introduction Phytoplankton initiate the marine food chain, by

serving as food to the primary consumers, which include zooplankton, shellfish, finfish and others1-4.Theyalsoplay as an important factor in the carbon budget and modulation of sea surface temperature through absorption of solar radiation. Quantification of phytoplankton biomass and their community composition is very important for understanding the structure and dynamics of marine ecosystem5.Changes in dominance and diversity of phytoplankton species often have been used as indicators of water quality6and hence, spatial and temporal changes in phytoplankton community were analyzed. Changes in phytoplankton biomass and primary productivity in coastal waters of northern Bay of Bengal (NB) and western Bay of Bengal (WB) is influenced significantly by change in surface salinity due to heavy fresh water influx from rivers. This quantum of influx influences vertical stratification thus impeded vertical transfer of nutrients7. Beside river discharges, cyclones and physical oceanographic processes also

controls the distribution of phytoplankton biomass8. Relatively higher nutrient concentrations was also found along the WB than central Bay of Bangle (CB) contributing higher phytoplankton abundance in WB9. Extensive works pertaining to the qualitative and quantitative aspects of phytoplankton in relation to physicochemical parameter in spatial and temporal scale have been carried out in different coastal ecosystems of India10-14. This type of study along the northeast cost of India has also been carried out by different researchers11&15-19. However, in Paradeep coast different aspects such as water quality 20-25 and phytoplankton ecology though dealt by different studies11&26-27are sporadic and without comprehensive evaluation. Present work was focused on studying both quantitative as well as qualitative phytoplankton ecology for estuarine and coastal waters by considering the influence of physicochemical parameters in a holistic manner.

Materials and Methods Paradeep coast is located (2019’01.61”N to

2010’41.20”N & 8645’22.82”E, 8632’12.72”E) along the eastern coast, in the Bay of Bengal. It is a

____________

*Corresponding author

Page 2: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

fast growingalso having activities likRefinery, PaChemical pl(P) Ltd are owater samplmeters fromincluding esMar 2014 toanalysis witand physicoc

In the prmonsoon aninterpretationmeasured fo(556MPS)poby turbidity meter 135 Salinity, Dammonia, pmeasured foquantitative surface sampolythene bsolution andAfter sedimewas siphonethe above c1ml of samp

Fig. I — Map study area (Par

SAN

g industrial todiverse naturke Paradeeparadeep Phoslant, SKOL Boperating nearles were draw

m 15 locationsstuary (Fig.I)o April 2015. th respect tochemical pararesent study,

nd post monsn. Water samr temperature

ortable sensometer (µC Swith accura

DO, BOD, hosphate, silllowing the stanalysis of

mples were ottle and fixd kept for sentation of phed out leavingconcentrated ple was taken

showing sampladeep Coast).

NGEETA et.al.:

own with a mral resources. p Port Trustsphates Ltd. Breweries, anrer or onto thiwn at a depts of assigned) on quarter Samples we chlorophyll,ameters includ, the data osoon are takemples collecte, pH, salinityor based analSystronics -Nacy ±2% of

nutrients (licate) and chtandard meth

f phytoplanktcollected

xed with 1% sedimentationhytoplankton,g a volume osample after

n on a Sedge-w

ling locations in

SPATIO TEMP

major Port, andMega industr

t (PPT), IO(PPL), IFFC

nd Cargill Inis coast. Surfath of 0.5 to

d Paradeep coly basis dur

ere subjected , phytoplankding nutrientsf pre-monso

en for statistited in-situ wy, DO using Ylyzer, Turbid

Nepheloturbidf FS standarnitrite, nitrahlorophyll wods28-30. For ton, 1 liter in pre-cleanLugol’s iod

n for 72 hou, the supernatof 100ml. Frr homogeniziwick Rafter c

n black dots in

PORAL VARIA

d is rial CL CO

ndia face 1.5

oast ing for

kton s. on, ical

were YSI dity dity rd). ate,

were the of

ned dine urs. tant rom ing, cell

for an(Leicacounticollecwith 3preparcollecthe phytopkeys31

were fglass vacuu24hrs were (Perkispectret al3

measuwieneevennRoutinPlymoMultidcorrelPRIMfollow

S =theShannPi= fspecieS = nu∑ = suMargaS = thN = nPielouH’ = SS = to

Thephytopparamfind orespecarea.Msimilaphytopstudy,tests

the

ATION OF PHYT

nalysis undera DM 750 ing. For qu

cted through 3% neutralizered by combi

cted sample asedimented

plankton was1-36.For chlorofiltered imme

fiber filtersum. Filters we

under cold analyzed usinin Elmerophotometer)30. During thured based oer index (H’)ness index (J’nes in Muouth, UK). Sdimensional lation were al

MER v6.Divewing formulae

e number of tnon wiener infraction of thes i umber of specum from specalef index (d’

he number of umber of indu’s Evenness Shannon diveotal number o

e correlationplankton co

meters. Clusteout the similarct to phytopMDS plots arity matrix tplankton asse, BVSTEP an

of the re

TOPLANKTON

r a binocularwith 200 X

ualitative anaa net (mesh

ed formaldehyining the spe

and as well assample.

s carried out ophyll analysediately after s (Whatmanere extractedand dark cong a UV-visier-Lambda ) following this study, Aon species r, Margalef in) applied in Pultivariate E

Statistical anaScaling (M

lso calculatedersity indicese

taxa. ndex (H’) 37 = he entire po

cies encountecies 1 to S ) 38= (S - 1) / taxa. ividuals. index (J’) 39=

ersity index f species in th

n matrices wounts and er analysis (Crity index betplankton abuconstructed to visualize semblages at end BIOENV elationship

N

r research mX magnificatalysis, sampsize-63µm)

yde. The spececies present s the species p

Identificatby following

sis1lt of watecollection wi

n GF/C) und into 90% aconditions. Theible spectroph

45 the method o

Alpha diversirichness (S), ndex (d’) andPRIMER v6 (Ecological alysis such a

MDS) and d by using thes are calcula

opulation ma

ered

ln N

= H' / lnS

he sample.

were appliedthe physico

CA) was carritween the statundance of t

from a Brasimilarities aeach site. In th

are used to between co

1503

microscope tions) for ples were and fixed cies list is in the net present in tion of g standard er samples ith 47 mm nder mild cetone for e extracts hotometer

UV/VIS of Parson ity (α) is

Shannon d Pielou’s (Plymouth Research,

as cluster, Pearson’s

e software ated with

de up of

d to total ochemical ied out to tions with the study ay Curtis mong the he present carry out

ommunity

Page 3: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

INDIAN J. MAR. SCI., VOL. 47, NO. 07, JULY 2018

1504

composition and environmental variables - comparable to multiple regressions. BIOENV examines all possible combinations of variables, from each environmental variable separately through all at the same time. BIOENV is applied to get the impact of environmental variables on the Phytoplankton community. Whereas, BVSTEP first fits the environmental variable with the strongest relationship, then adds in the variable with the next strongest relationship etc, comparable to stepwise regression and find out the influential species to distinguish the area of interest. Results and Discussion

Physicochemical Parameters Seasonal environmental fluctuations influence in

the physico-chemical parameters of coastal water, which in turn affect the phytoplankton community structure in the coastal area of tropical region. The observed variations in physico-chemical parameters of the present study are shown in Table-I. Season wise variation of physicochemical properties is presented in table II. Station wise and season wise Pearson correlation between physico-chemical parameters with chlorophyll and the dominant group of phytoplankton (diatom) is presented in the Table-III and IV, respectively. Figure IV (A&B) representing the correlation of phytoplankton abundance with nitrate and turbidity. Temperature, turbidity, salinity and all the nutrients showed seasonal variation in the present study. During the assessment, the surface water temperature of the assigned site varied from 20.60C to 31.90C, yielding an annual variability of~11.30C, as a whole. However, the variation of surface water temperature in the shoreline (SL) area was 22.8 0C to 31.9 0C (± 2.5), differs from the estuarine (ES) surface temperature of 20.6 0C to 28.70C (±3.0) Highest WT was recorded in Monsoon (MON) whereas, lowest in post-monsoon (POM). Naik et al40 have reported variation 22.6°C to 30.4°C which corroborate our result. On the other hand, our result exhibited higher range compared to those of Khadanga et al21 and panda et al 27 in the same environment. Temperature variation plays a major role in fluctuating and distributing of micro-algae, particularly the diatoms41. A negative correlation (P ≤ 0.05) was also observed between water temperature and DO. Secchi disc depth varies from minimum of 1.0mt. (ES) to maximum 6.0 mt. (SL).The variations in the results of pH are very

marginal ranging from 7.83 to 8.51. Salinity is one of the most important hydrographical parameter. Fluctuation of salinity as observed also varied in wide range i.e. from 1.1PSUat stationMR1 (ES) to 29.8 PSU at station P9& P11 (SL). However, in estuarine water, salinity varied from 1.1PSU to 29.6 PSU and at inshore stations17.9 PSU to 29.8 PSU. Salinity was found highest 29.8 PSU in Pre-monsoon (PRM) (SL) and lowest 1.1 PSU in MON (ES).Similar trends i.e. (min. 0.23PSU to 31.83 PSU) has also been reported in Gauthami Godavari estuary42. In the same study area, Khadanga et al21 observed salinity variation (1.62PSU to 31.36 PSU) and Naik et al40 recorded 2.8PSU to 26.8PSU which are in agreement to our result. Salinity showed an insignificant negative correlation with DO but significant negative correlations with silicate (P≤0.001). Solubility of DO decreases with increase in salinity. Influx of riverine freshwater is considered to be the main source for silicate in the coastal water. The above negative correlation of DO and silicate, in the present study could be due to the invasion of fresh water with low salinity and high silicate in the coastal water. In coastal water, turbidity also exerts a control on phytoplankton growth, as it restricts the area of euphoric zone43. Variation of turbidity was also seen in the study area with wide-difference from 2.4 NTU in POM (SL) to 29.2 NTU in MON (ES). Turbidity showed positive correlation (P ≤ 0.05) with chlorophyll-a confirming that the phytoplankton mainly contributed to the turbidity of the coastal water as reported earlier43. The values of dissolved oxygen were in the range of 4.7 (StationP3) mg/l to 7.3 mg/l (Station MNFJ). There was no major variation found for BOD, ranging from 0.30 mg/l to 2.6 mg/l in the study area. The positive correlation of BOD (P ≤ 0.01) with chlorophyll-a, directly supports the earlier findings43 in Kalpakkam coast, that phytoplankton significantly contribute to the BOD of the coastal water. As, chlorophyll-a constitutes the chief photosynthetic pigment of phytoplankton, provide the primary production potential upon which the biodiversity, biomass, and carrying capacity of a system depends. The Biomass generated from the growth of phytoplankton and their life cycle plays an important role on BOD content of the study area, apart from any anthropogenic activities44. However, the organic matter which is mainly produced by photosynthesis of phytoplankton in the seawater body, BOD is therefore well correlated with the

Page 4: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

SANGEETA et.al.: SPATIO TEMPORAL VARIATION OF PHYTOPLANKTON

1505

Page 5: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

INDIAN J. MAR. SCI., VOL. 47, NO. 07, JULY 2018

1506

Table: II — Seasonal variation of physicochemical Parameter along Paradeep coast.

Season

Area SD (mt.)

WT (C°)

pH Turbidity (NTU)

Salinity (PSU)

DO (mg/L)

BOD (mg/l)

Alkalinity (mg/l)

NO2(µmol/l)

NO3 (µmol/l)

NH4(µmol/l)

PO4(µmol/l)

SiO4 (µmol/l)

Total Chl.(mg/m3)

Pre

-Mon

soon

Estuaries

Min 1.0 26.5 8.0 3.7 11.9 5.3 0.9 46.0 0.0 1.3 0.1 1.7 24.1 0.33 Max 1.8 28.7 8.1 9.7 29.2 6.6 1.8 82.0 2.6 5.2 0.3 5.3 145.4 4.05 Mean 1.3 27.8 8.1 6.2 17.8 6.2 1.5 63.6 0.8 2.8 0.2 4.5 50.9 1.73 SD 0.4 0.9 0.0 2.2 7.2 0.5 0.3 16.8 1.1 1.6 0.1 1.6 52.9 1.44

Shoreline

Min 1.1 26.3 8.0 3.6 28.4 5.8 0.8 76.0 0.2 1.9 0.3 1.1 31.0 0.40 Max 2.0 27.6 8.2 8.8 29.8 6.8 2.3 98.0 1.2 16.5 0.9 28.1 141.5 4.23 Mean 1.7 26.9 8.1 5.9 29.4 6.4 1.6 85.2 0.8 8.6 0.5 10.3 62.5 1.34 SD 0.3 0.3 0.0 1.8 0.5 0.3 0.6 6.4 0.3 5.8 0.3 10.5 41.0 1.16

Mon

soon

Estuaries Min 1.2 24.6 7.8 9.5 1.1 6.0 0.5 92.0 0.2 4.4 6.2 3.2 35.8 1.3 Max 4.0 28.6 8.5 29.2 18.0 7.3 2.3 110.0 2.8 7.1 15.7 58.1 153.2 2.66 Mean 2.4 27.6 8.3 14.8 8.1 6.6 1.1 102.0 1.0 5.3 9.2 14.7 103.7 2.25 SD 1.1 1.7 0.3 8.3 7.6 0.5 0.7 6.6 1.1 1.1 3.8 24.3 48.6 0.56

Shoreline

Min 3.0 27.9 8.2 3.6 17.9 4.7 0.3 68.0 0.1 4.0 7.8 0.7 31.0 0.07 Max 6.0 31.9 8.5 9.2 18.7 6.7 1.2 162.0 0.6 4.8 10.7 2.6 35.3 1.55 Mean 4.4 28.8 8.4 5.3 18.3 6.0 0.7 110.6 0.3 4.4 9.1 1.6 32.7 0.76 SD 1.1 1.1 0.1 1.7 0.3 0.5 0.3 22.6 0.1 0.3 1.0 0.6 1.2 0.44

Pos

t-M

onso

on

Estuaries

Min 1.5 20.6 8.2 6.1 2.6 5.8 1.4 92.0 0.0 5.2 0.3 3.1 17.4 0.53

Max 2.0 22.9 8.5 11.5 29.6 6.3 2.6 124.0 0.1 8.5 1.7 21.8 94.2 4.03

Mean 1.6 22.0 8.3 8.4 13.5 6.1 2.0 109.6 0.0 6.4 0.8 7.2 60.8 1.79

SD 0.2 0.9 0.1 2.3 12.6 0.2 0.4 12.8 0.1 1.4 0.6 8.2 32.2 1.35

Shoreline

Min 2.0 22.8 8.3 2.4 23.8 5.8 0.7 120.0 0.0 5.8 0.0 4.2 12.9 0.69

Max 3.0 23.3 8.5 6.9 24.7 6.5 1.4 128.0 0.2 6.8 0.6 6.8 19.7 2.55

Mean 2.3 23.1 8.4 3.9 24.3 6.3 1.1 124.4 0.0 6.2 0.3 5.4 16.0 1.26

SD 0.4 0.2 0.0 1.3 0.4 0.2 0.2 2.8 0.1 0.3 0.2 0.9 1.9 0.59

concentration of chlorophyll-a (r = 0.66 p < 0.01) in the present study, which is also a measure of phytoplankton biomass45.

Nutrients play a vital role in the biogeochemical cycle in the marine environment. The life supporting processes in the sea requires a variety of inorganic substances. But, the role of nitrogen, phosphorous and silicate are considered the most important in the marine ecosystem. Distribution of nutrient is mainly dependent on season, tidal condition and fresh water inflow from land. Spatial as well as seasonal variation of nutrients in the present study was also observed. Among nitrogenous nutrients, nitrite, nitrate and ammonia (NH4

+ as N) are the major constituents, which play key roles in the phytoplankton growth and

proliferation. The variations of nutrients both for SL and ES are observed for nitrite as N (ES: 0.0-2.8µmol.l-1; SL: 0.0-1.2 µmol.l-1). In ES nitrite was found maximum in MON and in the SL it was maximum in PRM. Naik et al40 also observed the nitrite concentration (0.38 µmol/l to 1.84 µmol/l) in corroborating to our findings in Mahanadi estuary.

Nitrite being the most unstable dissolved inorganic, nitrogen species present in seawater, showed wide variation in the present investigation. Nitrate as N varied between (ES: 1.3-8.5µmol.l-1; SL: 1.9-16.5 µmol.l-1). Seasonally nitrate concentration was maximum during POM in ES. Similarly it was maximum in PRM in SL. Nitrate concentration observed by Srichandan et al46 and Mishra et al11 in

Page 6: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

SANGEETA et.al.: SPATIO TEMPORAL VARIATION OF PHYTOPLANKTON

1507

the same area also giving concurrent to our result. Ammonia showed a variation from 0.1-15.7µmol.l-1 in ES and 0.0-10.7 µmol.l-1 in SL. The NH4 content in the ES and SL were maximum in MON, which corroborates the findings of Panda and Pattnayak47 (3.67 µmol/l to 10.76 µmol/l) in northeast coast of India and Baliarsingh et al48 (0.4 µmol/l to 9.06 µmol/l) in Rushikulya estuary. Phosphate varied between1.7-58.1 µmol.l-1 in ES and 0.74-28.1µmol.l-1

in SL. Whereas, the value of Silicate was 17.4-153.2 µmol.l-1 in ES and 12.92-141.5 µmol.l-1 in SL. Phosphate concentration was maximum in MON in ES and it was maximum in PRM in SL. Panda et al27 reported phosphate concentration in the range from 0.72 µmol/l to 54.37µmol/l, which also corroborate our result. This high concentration of phosphate may be attributed to the inputs of domestic and industrial effluents of fertilizer based industries. Silicate was maximum in MON and minimum in POM in ES. In SL it was maximum in PRM and minimum in POM. Umamaheswra Rao et al42 in Gouthami Godavari estuary (12.24 µM to 165.94 µM) and Srichandan et al46 in Mahanadi estuary (14.15µmol/l to 97.37µmol/l) also recorded similar trend. In the shoreline all the nutrients except ammonia was more in PRM whereas NO2, NH4 and SiO4 was minimum in POM. In ES all the nutrients except nitrate was maximum in MON and except SiO4, all the nutrients were minimum in PRM. Therefore, upwelling may controls the nutrient in shoreline and river discharge play a vital role in estuary.

Nitrate showed negative correlation (P ≤ 0.05) with turbidity and positive correlation (P ≤ 0.001) with

phytoplankton (fig - IV A & B). Similar observation was reported by Sahu et al10. Ammonia showed positive correlation with nitrite (P≤0.05) and negative correlation with dissolved oxygen (P ≤ 0.05). The correlation with nitrite could be due to the oxidation of ammonia, resulted from the synthesis of nitrite43. Silicate is negatively correlated (P ≤ 0.001) with salinity and positively correlated with chlorophyll (P ≤ 0.01). The fresh water is one of the important sources of silicate. Silicate is the major frustule building material of diatom, which corroborate the above correlation. Chlorophyll-a is considered as the most dependable and important index of phytoplankton biomass. Chlorophyll-a concentration was taken as the measure of viable phytoplankton biomass. The chlorophyll-a ranged from 0.38 mg/m3

to 1.25 mg/m3 (Mean 0.70 mg/m3±0.07) and total chlorophyll from 0.58 mg/m3 to 2.42 mg/m3 (Mean 1.39 mg/m3±0.16) presented in Table I. In SL stations chlorophyll concentration vary from maximum (4.23 mg/m3) in PRM concurring with increase in nutrient to minimum (0.07 mg/m3) in MON. In ES the mean chlorophyll was low in PRM (1.73mg/m3) and high in MON (2.25 mg/m3).

Pearson correlation coefficient matrix was computed between different physico-chemical parameters, chlorophyll and dominant group of phytoplankton abundance (Table IV). This helps to understand the relationship between the variables in different season. In PRM diatom exhibited positive correlation with NO3, PO4, NH3, salinity, pH and Secchi depth (SD). In MON chlorophyll correlated positively with turbidity and all the nutrients except NH3

Table: III — Station wise correlation matrix of various environmental parameters with chlorophyll

Parameter SD WT pH Turbidity Salinity DO BOD NO2-N NO3-N NH4-N PO4-P SiO4-Si Chl-a Total Chlo.

SD 1 WT 0.17 1 pH 0.55* 0.52* 1 Turbidity -0.51* -0.45 -0.75** 1 Salinity 0.78*** 0.18 0.53* -0.55* 1 DO -0.08 -0.62* -0.25 0.02 -0.39 1 BOD -0.67** -0.16 -0.52* 0.58* -0.72** 0.20 1 NO2-N -0.44 0.27 0.03 0.33 -0.26 -0.41 0.12 1 NO3-N 0.40 -0.11 0.32 -0.50* 0.30 0.42 -0.24 -0.42 1 NH4-N 0.16 0.23 0.33 0.10 0.33 -0.61* -0.31 0.50* 0.01 1 PO4-P -0.25 -0.57* -0.71** 0.49 -0.47 0.46 0.15 -0.27 0.03 -0.23 1 SiO4-Si -0.75** -0.02 -0.46 0.52 -0.79*** 0.07 0.56* 0.39 -0.15 0.15 0.34 1 Chl-a -0.34 -0.40 -0.53* 0.59* -0.48 0.20 0.66** -0.25 -0.11 -0.08 0.50 0.48 1 Total Chlo. -0.54* -0.04 -0.56* 0.58* -0.60* -0.04 0.78*** -0.02 -0.31 -0.13 0.30 0.64** * 1

*Significance at 0.05 level; ** Significance at 0.01level and *** Significance at 0.001level †SD-Secchi disc, WT- Water temperature, DO-Dissolved Oxygen, BOD-Biological Oxygen Demand, Chlo.-Chlorophyl

Page 7: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

INDIAN J. MAR. SCI., VOL. 47, NO. 07, JULY 2018

1508

Table: IV — Season wise Pearson correlation coefficient matrix between different environmental variables, chlorophyll and dominant group of phytoplankton

Parameter SD WT pH Turbidity Salinity DO BOD Alkalinity NO2-N NO3-N NH4-N PO4-P SiO4-Si Chlo. Diatom

SD 1

WT -0.63** 1

pH 0.19 -0.12 1 Pre-monsoon

Turbidity -0.12 -0.21 -0.25 1

Salinity 0.67** -0.90*** 0.24 0.27 1

DO 0.08 0 0.56* -0.37 -0.01 1

BOD 0.15 -0.18 -0.42 -0.11 0.08 -0.05 1

Alkalinity 0.60** -0.93*** 0.09 0.19 0.89*** 0.14 0.18 1

NO2-N 0.12 -0.28 -0.03 0.3 0.43 -0.62** 0.11 0.15 1

NO3-N 0.55* -0.50* 0.58* -0.51* 0.46 0.42 0.09 0.47 0 1

NH4-N 0.37 -0.64** 0.4 -0.22 0.62** 0.09 -0.02 0.60** 0.11 0.78*** 1

PO4-P 0.01 -0.04 0.37 -0.2 0.13 0.36 -0.42 0.19 -0.3 0.53* 0.58* 1

SiO4-Si -0.02 -0.57* -0.09 0.2 0.46 -0.37 0.05 0.45 0.37 0.31 0.67** 0.26 1

Chlorophyll -0.18 0.18 0 -0.01 -0.22 -0.06 0.22 -0.27 0.08 -0.03 -0.04 -0.21 0.19 1

Diatom 0.48* -0.56* 0.83*** -0.2 0.62** 0.56* -0.14 0.57* 0.07 0.82*** 0.66** 0.45 0.16 -0.16 1

SD 1

WT 0.19 1

pH 0.23 0.57* 1 Monsoon

Turbidity -0.34 -0.62** -0.60** 1

Salinity 0.73*** 0.40 0.45 -0.60** 1

DO -0.39 -0.83*** -0.44 0.54** -0.58* 1

BOD -0.31 -0.1 -0.2 0.47 -0.57* 0.17 1

Alkalinity 0.42 0.12 0.54* -0.17 0.23 -0.15 0.1 1

NO2-N -0.61** -0.12 -0.1 0.3 -0.57* 0.28 -0.15 -0.25 1

NO3-N -0.48* -0.74*** -0.83***

0.78*** -0.67** 0.66** 0.49* -0.33 0.24 1

NH4-N 0.31 0.35 0.50* -0.20 0.41 -0.37 -0.22 0.24 -0.24 -0.54* 1

PO4-P -0.29 -0.73*** -0.83***

0.86*** -0.55** 0.51* 0.33 -0.25 0.23 0.89*** -0.41 1

SiO4-Si -0.80***

-0.32 -0.35 0.59* -0.97***

0.51* 0.51* -0.23 0.70*** 0.60** -0.4 0.50* 1

Chlorophyll -0.68** -0.11 -0.38 0.64** -0.70***

0.28 0.35 -0.25 0.61** 0.53* -0.21 0.50* 0.78*** 1

Diatom -0.29 -0.29 -0.13 0.58* -0.38 0.31 0.19 -0.21 0.61** 0.38 -0.39 0.38 0.52* 0.46 1

SD 1

WT 0.54* 1

pH 0.71*** 0.76*** 1 Post-monsoon

Turbidity -0.76***

-0.49* -0.72***

1

Salinity 0.32 0.25 0.25 -0.48* 1

DO 0.63** 0.16 0.47 -0.62** -0.06 1

(contd.)

Page 8: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

Parameter S

BOD -0.

Alkalinity 0.

NO2-N -0

NO3-N -0

NH4-N -0.

PO4-P -0

SiO4-Si -0.

Chlorophyll -0

Diatom 0.

*Significance a

†SD-Secchi dis

and negativetrend as that positively wi

Altogetheby 54 centralgae and 13the Bacillarithe major cofollowed btogether forSimilar Bacillariophcoast119 &

Nizamapatnaof species, re

Fig. II — Phyinshore and estu

SAN

Table: IV — Se

SD WT

.56* -0.70*** 0

.28 0.40

0.22 -0.54* -

0.21 0.15 -

.48* -0.36 -

0.12 0.06 -

.48* -0.57* -

0.19 -0.29 -

.11 0.34 -

at 0.05 level; **

sc, WT- Water te

ely with saliniof chlorophy

ith salinity ander 111 taxa oric, 27 penna3 phytoflagelliophyceans (omponent of by cyanophyrm (15.3%), observation yceans was 26-27, in K

am coast49. In eported (total

ytoplankton: Ovuarine water of

NGEETA et.al.:

eason wise Pearschl

pH Turbidity

-0.62**

0.71***

0.24 -0.40

-0.42 0.09

-0.10 0.31

0.54* 0.81***

-0.18 0.25

0.51* 0.60**

-0.45 0.20

-0.01 -0.17

Significance at 0

emperature, DO-

ity. Diatom shyll. In POM dd negatively wof phytoplankate, 17 blue lates. In over(Centric & Pthe taxa iden

yceans & and dinophy

of doobserved in

alpakkam cthe present s

111 species o

verall group abuParadeep.

SPATIO TEMP

son correlation clorophyll and do

Salinity DO

-0.65** -0.08

0.94*** -0.11

0.24 -0.02

0.10 -0.26

-0.29 -0.41

-0.29 0.04

-0.91*** -0.03

-0.07 -0.06

0.51* 0.01

0.01level and **

-Dissolved Oxyg

howed the sadiatom correlawith SiO4. kton represen

green & greall compositi

Pennate) formntified (72.97chlorophycea

yceans (11.7%ominance n the Paradeoast10, and tudy the num

of phytoplankt

undance (%) in

PORAL VARIA

coefficient matrixominant group of

BOD Alkalin

1

-0.63** 1

-0.03 0.1

0.14 0.14

0.63** -0.2

0.37 -0.1

0.84*** -0.92*

0.26 0.0

-0.25 0.68*

** Significance a

gen, BOD-Biolo

ame ated

nted een ion, med 7%) ans %).

of eep

in mber ton)

is in reportspecie95 speand Kcoastareportpresenvariatinos.mP10 -study by cen

ThedominMore only (33.17longisChaet(3.03%loreziobservHowedominearlierdominP6, cyanoestuarconfluM6, th

the

ATION OF PHYT

x between differf phytoplankton

nity NO2-N NO

1 1

4 -0.14

22 0.08 0.

8 -0.21 0.7

*** -0.06 0

1 0.08 -0

** -0.22 0

at 0.001level

ogical Oxygen D

the same ots11&26. Goudaes from Gopalecies from Or

Kondal Rao50

al waters of ted 186 specnt study, speion in estuary

ml-1(station P1-near Jatadhaarea pennale

ntrales (25.6%e pennales donance of Asthan 70% of8 species n

7%), Nitzschssima (8.46%tceors sp. %), Thalassioanus (2.66%)ved here is never Asterionnating specier study26. In tnant group inP7, P8, P

ophyceans andrine stations uence of rivehe population

TOPLANKTON

rent environmen

O3-N NH4-N P

1

.55* 1

77*** 0.49*

0.06 0.48*

0.26 0.08 -

0.12 -0.05

Demand, Chlo.-C

order with ra and Panigrahlpur coast andrissa coast. Hohave reportedBay of Benies from Kaecies composand sea. Abun

- near PPT) tari Muhana) os were domin

%) (Fig. II). ominance in sterionellopsif the populatinamely Astehia sp. (10.

%), Pseudonitz(3.97%), S

osira Subtilis). The domina

not in the samnellopsis glas in the presthe present st

n the shorelinP9, P10, Pd green algae

(MR1 & r and sea at n were observ

N

ntal variables,

PO4-P SiO4-Si C

1

0.40 1

-0.20 0.08

0.06 -0.53* 0

Chlorophyll

respect to thhi15 have, recod Panda et al2

owever Geethd 249 speciesngal and Smilpakkam coasition showedndance variedto 555 nos.mlon the shorelinated (66.0%)

this area is dis glacialis ion was domerionellopsis .56%), Thalzschia seriata

Skeletonema s (2.89%), Cant species w

me order as obacialis remasent and as wtudy pennales

ne stations (PP11, P12), e were dominMNFJ). Butstations MS1ved combinat

1509

Chlo. Diatom

1

0.25 1

he earlier orded 131 27 reported

ha Madhav s from the ita et al51

ast. In the d a clear d from 115 l-1 (station ine. In the ) followed

due to the (Fig. II).

minated by glacialis

lassiothrix a (6.85%),

costatum Chaetceors which were

bserved26. ained the well as in s were the 1, P3, P5,

whereas nant in the t, at the

1, M1 and tion of all

Page 9: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

1510

groups (Fig.MNFJ) Micsp., Coscinocostatum, Gdominant PseudonitzscNitzschia loglacialis, Tlorenzianus, Subtilis, ChSpatial variascale is repGeethaMadhvariation indifference inphytoplanktoby Pandiyarastudy. Pollusp., Anabaenmicans, Pseuobserved in earlier26. Hphytoplanktoand lowest ((Table VI). was more in phytoplanktoand high indiatoms wer

Table VIIphytoplanktoarea. In thphytoplankto(748 nos. /mIn estuary mMON (224 nos./ml), corPhytoplanktoin all the insignificantin both the especies diveand phytoplain any aquatvarious temspatially rangradient54. Tand Margal(station MS(Table VIII).

. III). In the crocystis sp., Codiscus sp., chGloeocapsa sp

species. Inchia seriata, ongissima , NThalassionema

Bacteriastruaetceors sp. ation in specported by dhav and Konn the distribn compositioon between tajan et al49, w

ution indicatina sp., Dinopudonitzschia sthe study ar

Highest numon were foun(55nos. /ml) In all the shPRM and wa

on density in n MON. Seae dominated. I represents on abundanche shore lion abundanc

ml) and minimmaximum ab

nos./ml) anrroborating won abundancseason, irres

t increase in cestuary and sersity in relaankton densittic environmemporal and nges from laThe highest Slef index (61 & M6) the

INDI

estuarine stChaetceors sphroococcus sp., Oscillatorn the shor

ThalassiothrNitzschia sp., Aa nitzschiodum hyalinum

were domincies composidifferent resedalarao50 repobution of sn and numbetransects werwhich corrobong species l

physis caudateseriata, Oscil

rea, which wamber (1198 nd at station Pat station MRhore line statas low duringthe estuary w

asonally in

the seasonalce in estuaryine maximuce were obsmum in MONbundance wend minimum with the result

e was dominspective of cyanophyceanshoreline areaation to specity is a distingent52. Biodive

spatial scalatitudinal to Shannon wie6.5-6.8) were confluence

IAN J. MAR. SC

ations (MR1p., Scenedesmsp., Skeletoneria sp. were reline statiorix longissimAsterionellop

des, Chaetcem, Thalassiosnant (Table Vition on a loearchers14 &

orted latitudispecies. Spaer of speciese also observorate the preslike Microcyse, Prorocentrllatoria sp. was also repor

nos. /ml) P10 during PRR1 during POtions abundan

g MON. wherwas low in PRall the statio

l distribution y and shorelum number

erved in PRN (114 nos./mere observed

in PRM (1of Chlorophy

nated by diatarea. There ns during MOa. The natureies compositguished attribersity changesles53. Divers

local diversener index (3re observed

of river &

CI., VOL. 47, NO

& mus ema the ons a ,

psis ors

sira V).

ocal 43.

inal tial of ved sent stis

rum were rted

of RM OM nce reas RM ons

of line

of RM ml).

in 101 yll. tom

is ON e of tion bute s at sity sity 3.0)

at sea

In diversparticuNitzscThalaphytopindex distribthat pdepenphytopMargaPRM opposdiffereLow availawas regulaphytoppresenin theconcurespec

Thewith narea. SangeThe pdue toplantsthe Sistationvery influefactorstudy phytop

Fig. I

O. 07, JULY 201

present stusity occur inular species

chia sp., assiothrix plankton popJ’ was not

bution of specphytoplankton

ndant. Earlierplankton in talef index anand low in M

site in estuarent samplingN:P ratio

ability of nitroobserved, th

ate the growthplankton abnted in figuree study area urrent with ctive stations.e runoff intonitrogen as c

Similar obeeta et al19 anphosphate enro the intrusios located in thi:N ratio is (>ns. Silicate chigh (> 25

ence. This inr, for the gr

area. Thplankton is a

II — Station wis

18

udy comparn the shorelis like Aster

Pseudonitzsfrauenfeldii

pulation. It is uniform (0.

cies in this arn communityr Naik et athis area is dnd number of

MON in shore ry Table IX.g location is

during the ogen for phythan phosphoh of phytopla

bundance wie IV. Abund

is dependenthe result o.

o the estuary ompared to pservation wnd Montes erichment in thon of runoffhe vicinity. In>10) whereasconcentration

µmol.l-1) dundicate, silicrowth of Bache utilizatioalso in agree

se group abunda

ratively lowine area whrionellopsisschia seria

dominatenotable that

.5-0.9) statinrea. Our resuly structure l26 also repo

dependent on f species werline area whe

. The Si:N:Ppresented instudied per

oplankton proorous, whicankton. The rith water q

dance of phytont on nitrate, of low N:P

is not enrichphosphate in as also rep

et al55 in theihe study areaf waste fromn the estuarins it is low at

in the studue to strongate is not acillariophycean of nitroement with h

ance (%) of phyt

w species ere some glacialis,

ata and es the evenness

ng uneven t suggests is nitrate

orted that nitrogen.

re high in ere as it is

P ratio of n table X. riod, less oductivity h intern,

relation of quality is oplankton which is ratio in

hed much the study

ported by ir studies.

a might be m fertilizer ne stations

shoreline dy area is g riverine a limiting an in the ogen by high Si:N

oplankton.

Page 10: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

SANGEETA et.al.: SPATIO TEMPORAL VARIATION OF PHYTOPLANKTON

1511

Table: V — Phytoplankton numerical abundance (cell.ml-1) at the selected stations in the estuarine and shoreline area of Paradeep.

Sl. no Species MR1 MNFJ MS1 M1 M6 P1 P3 P5 P6 P7 P8 P9 P10 P11 P12 Mean %

1 Coscinodiscus radiatus 2 0 2 1 0 0 1 0 0 0 1 2 0 0 0 1 0.242 Coscinodiscus

marginatus 0 0 0 1 0 0 0 1 0 2 0 0 3 0 0 1 0.19

3 Coscinodiscus jonesianus 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0.114 Coscinodiscus sp. 11 0 2 0 2 0 1 0 0 1 0 0 0 1 0 1 0.455 Actinocyclus sp. 2 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0.156 Chaetceors

curvisetus 0 0 0 0 0 0 0 3 8 0 0 0 0 11 2 2 0.59

7 Chaetceors eibenii 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.028 Chaetceors peruvianus 0 0 2 0 0 0 0 0 0 1 1 0 0 11 0 1 0.369 Chaetceors lorenzianus 0 1 1 3 1 5 13 20 15 3 6 7 9 19 7 7 2.6610 Chaetceors indicus 0 0 1 0 0 0 0 3 10 0 6 0 14 3 0 2 0.9111 Chaetceors didymus 0 0 0 0 0 0 0 0 0 0 0 0 1 12 0 1 0.3212 Chaetceors coarctatus 0 0 0 0 0 0 0 0 3 1 3 2 0 19 0 2 0.7013 Chaetceors sp. 13 7 4 4 19 0 1 9 22 20 13 10 16 12 12 11 3.9714 Skeletonema costatum 8 59 11 2 16 0 2 2 2 7 2 0 12 0 1 8 3.0315 Bacteriastrum hyalinum 0 0 3 9 5 1 0 8 19 0 11 11 9 4 2 5 2.0016 Bacteriastrum varians 0 0 0 0 0 0 3 2 0 0 0 0 0 3 0 1 0.2217 Bacteriastrum sp. 0 0 0 0 0 0 1 0 0 7 1 7 0 1 0 1 0.4018 Probiscia alata 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0.0519 Rhizosolenia

styliformis 0 0 2 0 2 2 0 1 0 0 1 0 0 1 0 1 0.24

20 Rhizosolenia stolterfothii 0 0 1 2 1 5 3 8 10 4 2 1 6 9 7 4 1.4421 Rhizosolenia setigera 0 1 1 2 1 0 2 0 1 0 1 0 1 1 6 1 0.4122 Rhizosolenia robusta 0 0 0 0 0 2 0 0 0 0 2 2 0 0 0 0 0.1723 Thalassiosira subtilis 8 5 6 2 8 2 12 12 10 11 14 4 10 9 5 8 2.8924 Thalassiosira cormandial 0 0 0 0 0 0 0 0 0 1 0 0 10 0 0 1 0.2725 Thalassiosira pseudonana 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0226 Odontella mobiliensis 0 0 1 0 2 0 0 0 1 1 3 2 0 3 0 1 0.3527 Odontella senensis 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0.1028 Ditylum brightwellii 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0.0729 Ditylum sol 0 0 2 0 2 0 0 1 0 1 0 1 0 0 0 0 0.1830 Corethron inerme 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.0231 Melosira sp. 0 0 0 0 0 0 0 1 3 1 2 0 1 0 0 1 0.2132 Leptocylindrus minimus 0 1 0 3 7 0 1 0 3 1 2 1 3 2 8 2 0.7933 Leptocylindrus danicus 0 0 1 0 0 1 0 4 2 0 0 0 0 8 0 1 0.4034 Streptotheca indica 0 0 0 0 0 1 2 2 0 1 0 1 1 0 1 1 0.2335 Aulacoseira sp. 1 0 0 0 1 2 0 0 0 0 0 0 1 0 1 0 0.1536 Hemiaulus sp. 0 0 2 0 1 1 2 1 0 1 1 0 6 0 2 1 0.4337 Eucampia zodiacus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.0238 Lithodesmium undulatum 0 0 0 0 3 0 0 0 0 4 0 0 0 0 1 1 0.2139 Cyclotella sp. 8 0 0 0 2 0 0 1 0 0 0 0 0 0 0 1 0.2640 Hemidiscus sp. 0 0 0 2 1 0 0 1 0 0 0 0 0 0 0 0 0.1041 Guinardia flaccida 0 0 0 1 0 0 0 1 0 7 0 0 0 0 1 1 0.2442 Triceratium sp. 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.0243 Navicula pelliculosa 0 4 1 0 0 4 9 0 3 1 0 1 0 3 2 2 0.7244 Navicula sp. 1 1 1 0 1 3 0 0 0 1 0 0 2 1 1 1 0.31

(contd.)

Page 11: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

INDIAN J. MAR. SCI., VOL. 47, NO. 07, JULY 2018

1512

Table: V — Phytoplankton numerical abundance (cell.ml-1) at the selected stations in the estuarine and shoreline area of Paradeep. (contd.)

Sl. no Species MR1 MNFJ MS1 M1 M6 P1 P3 P5 P6 P7 P8 P9 P10 P11 P12 Mean %

45 Nitzschia sigma 7 3 0 0 10 2 23 20 2 2 0 0 0 1 1 5 1.7446 Nitzschia longissima 7 3 4 2 0 9 0 2 0 0 1 5 3 3 0 3 0.9647 Nitzschia sp. 7 9 11 14 8 8 13 27 77 97 22 11 86 19 27 29 10.648 Pseudonitzschia seriata 0 0 19 22 0 19 10 38 21 2 59 23 2 44 22 19 6.8549 Cylindrotheca

closterium 1 0 1 0 0 0 0 2 0 0 0 0 0 0 1 0 0.13

50 Pleurosigma elongatum 0 3 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0.1351 Pleurosigma angulatum 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.0252 Pleurosigma sp. 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0.0753 Gyrosigma sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.0254 Cymbella sp. 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0.0855 Amphiprora alata 0 0 2 1 1 0 0 1 2 2 1 0 2 0 1 1 0.3456 Diploneis smithii 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0.0557 Asterionellopsis glacialis 1 1 3 8 0 8 14 66 200 148 232 207 269 179 26 91 33.1

7 58 Thalassiothrix frauenfeldii 0 0 4 1 9 1 2 1 0 4 6 1 9 1 1 3 0.9759 Thalassiothrix longissima 7 18 28 23 18 17 25 20 21 24 25 24 20 46 31 23 8.4660 Thalassionema nitzschiodes 0 0 2 5 3 6 8 4 1 3 5 3 0 1 5 3 1.1461 Synedra sp. 0 0 0 0 0 7 2 0 0 0 0 0 0 0 0 1 0.2262 Trachyneis sp. 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.0563 Licmophora sp. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.02

Diatoms 64 Oscillatoria limosa 0 0 2 0 0 1 0 0 1 0 1 0 0 0 1 0 0.1565 Oscillatoria sp. 3 10 1 7 2 0 0 0 0 3 1 0 2 0 0 2 0.7266 Gloeocapsa sp. 2 22 7 0 1 0 0 0 0 0 0 0 11 0 1 3 1.0767 Merismopedia sp. 0 0 0 0 0 1 0 0 0 0 0 0 1 0 20 1 0.5368 Chroococcus sp. 10 10 0 0 0 0 0 0 0 0 0 0 3 0 0 2 0.5769 Microcystis sp. 22 13 11 1 4 0 0 0 0 1 4 0 14 1 0 5 1.7570 Anabaena sp. 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.0571 Nodularia sp. 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0.0772 Arthrospira platensis 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 Blue green algae

73 Ankistrodesmus sp. 5 8 7 0 0 0 0 0 2 1 0 0 20 0 0 3 1.0274 Scenedesmus sp. 13 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.3875 Closterium sp. 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0.0776 Pediastrum sp. 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 Green algae

77 Dinophysis caudata 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.0278 Protoperidinium granii 0 0 0 4 0 1 1 2 0 0 9 2 6 2 0 2 0.6779 Protoperidinium depressum 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0.0580 Peridinium sp. 1 3 0 1 2 1 6 1 2 6 1 1 0 0 0 2 0.6281 Ceratiumfurca 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0.0782 Ceratium macroceros 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0.0883 Prorocentrum micans 0 1 0 0 0 1 2 0 0 2 0 0 0 0 2 1 0.2184 Podolampas sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.02 Dinoflagellates

Total 144 195 151 125 139 115 167 271 447 379 444 332 555 439 205 274 100

Page 12: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

SANGEETA et.al.: SPATIO TEMPORAL VARIATION OF PHYTOPLANKTON

1513

Table: VI — Station wise phytoplankton number (nos./ml) in different seasons.

Group St. no. Diatoms Dinoflagellates Cyano

bacteria

Green algae Total

Shore line PRM P1 111 6 6 3 126 MON 97 6 3 0 106 POM 113 0 0 0 113 PRM P3 241 3 3 0 247 MON 69 24 0 0 93 POM 162 0 0 0 162 PRM P5 585 10 0 0 595 MON 72 9 0 0 81 POM 136 0 0 0 136 PRM P6 1088 0 0 10 1098MON 73 14 0 0 87 POM 153 0 3 0 156 PRM P7 893 17 6 3 919 MON 49 7 7 0 63 POM 155 0 0 0 155 PRM P8 1072 26 0 0 1098MON 45 3 19 0 67 POM 166 0 0 0 166 PRM P9 808 7 3 3 821 MON 57 3 0 0 60 POM 116 0 0 0 116 PRM P10 1181 17 0 0 1198MON 132 0 96 59 287 POM 179 0 0 0 179 PRM P11 1065 7 3 0 1075MON 134 3 0 0 137 POM 105 0 0 0 105 PRM P12 291 3 0 0 294 MON 89 3 68 0 160 POM 162 0 0 0 162

ESTUARY

PRM M1 91 0 7 0 98 MON 98 3 16 0 117 POM 140 19 0 0 159 PRM M6 73 3 6 0 82 MON 194 7 16 0 217 POM 118 0 0 0 118 PRM MR1 119 3 3 7 132 MON 85 0 110 50 245 POM 55 0 0 0 55 PRM MNFJ 55 10 3 0 68 MON 148 3 162 30 343 POM 152 0 10 13 175 PRM MS1 87 0 20 17 124 MON 162 0 33 3 198 POM 118 0 10 3 131

Table: VII — Dominant group of phytoplankton abundance (nos./ml) in different seasons.

Sea son

Area Diatom Dino- flagellate

Cyano- bacteria

Green algae

Total

PRM SL 734 10 2 2 748 MON 82 7 19 6 114 POM 145 0 1 0 146

PRM ES 85 3 8 5 101 MON 137 3 67 17 224 POM 117 4 4 3 128

Table: VIII — Phytoplankton: Alpha diversity at the selected stations of Paradeep (Estuarine and Shore line)

St. No. S N Abundance nos./ml

d’ Marga lef index

J' Pielou’s evenness

index

H' Shannon wiener index

MR1 25 144 4.8 0.9 2.9 MNFJ 26 195 4.7 0.8 2.6 MS1 35 151 6.8 0.8 3.0 M1 27 125 5.4 0.8 2.7 M6 33 139 6.5 0.9 3.0 P1 30 115 6.1 0.9 2.9 P3 30 167 5.7 0.8 2.8 P5 36 271 6.2 0.7 2.7 P6 27 447 4.3 0.6 2.1 P7 39 379 6.4 0.6 2.1 P8 34 444 5.4 0.6 2.0 P9 25 332 4.1 0.5 1.7 P10 32 555 4.9 0.6 2.1 P11 37 439 5.9 0.7 2.4 P12 34 205 6.2 0.8 2.8 Min 25 115 4.1 0.5 1.7 Max 39 555 6.8 0.9 3.0 Mean 31 274 5.6 0.7 2.5

Table: IX — Phytoplankton- Alpha diversity for different seasons of Paradeep area (ES and SL)

Season

S

N (Abundance

nos./ml)

d’ (Marg alef

index)

J' (Pielou’s

evenness index)

H' (Shannon

wiener index)

SL PRM

14-26(19)

126-1198(747)

1.8-3.6 (2.8)

0.39-0.84 (0.61)

1.0-2.3 (1.8)

MON

7-18 (11)

60-287 (114)

1.5-3.0 (2.2)

0.73-0.91 (0.84)

1.6-2.4 (2.0)

POM

10-20(15)

105-179 (145)

1.9-3.9 (2.8)

0.83-0.92 (0.87)

2.0-2.7 (2.3)

ES PRM

11-15(13)

68-132 (101)

2.2-3.0 (2.6)

0.82-0.89 (0.85)

2.0-2.4 (2.2)

MON

13-18(16)

117-343 (224)

2.5-3.0 (2.7)

0.72-0.84 (0.8)

1.9-2.3 (2.2)

POM

8-20 (14)

55-175 (128)

1.7-3.9 (2.7)

0.71-0.98 (0.86)

1.6-2.6 (2.2)

Page 13: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

1514

ratio in the reported by in the study16:1 except availability MR1 is at ulocated rightsilicate is mchannel and is ascertaineis inevitablecoastal watfertilizer plan

Table: X — S

St.no.

MR1 MNFJ MS1 M1 M6 P1 P3 P5 P6 P7 P8 P9 P10 P11 P12

Fig. IV — Re

study area tdifferent othe

y area is loweat points (Mof adequate

upstream of tht in the front

more. Station as dredging id that presene. The low er might bent situated ne

Si:N:P Ratio of present

N:P

1.26 0.20 0.48 1.82 1.00 1.71 1.42 0.44 1.72 1.25 1.01 0.74 2.50 1.27 1.61

elationship (linear

INDI

than the normer studies10&56

er than the RMR1, M1 and

amount of he estuary anof the mouthP3 is situateis a common ce of high silSi:P ratio in

e due to thearby.

different samplint study area.

Si:N

17.16 15.13 18.17 13.84 10.07 5.97

12.81 5.31 4.18 5.05 5.45 7.98 3.00 5.26 6.20

r regression) betw

IAN J. MAR. SC

mal ratio of 6. The Si:P ra

Redfield ratiod P3) indicat

phosphate. nd station M1h; availabilityed near the pphenomenon

licate in the an the estuar

he influence

ng location of th

Si:P

21.613.038.67

25.1510.0910.1818.152.327.216.315.485.917.506.659.96

ween (A) Phytopl

CI., VOL. 47, NO

1:1 atio o of ting As

1 is y of port n; it area rine

of

StatistMu

the dadiffere

he

Fig.V dimensParadee

lankton abundanc

O. 07, JULY 201

tical analysisultivariate staata obtained entiation amo

— (A.Phytoplasional scaling) ep.

ce Vs nitrate and

18

s (Cluster Anaatistical technto assess theong the phyt

ankton Assemblbetween differ

(B) Phytoplankto

alysis) niques were ae similarity atoplankton co

lages and (B).Ment sampling l

on abundance Vs

applied to as well as ommunity

MDS (multi locations of

Turbidity

Page 14: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

SANGEETA et.al.: SPATIO TEMPORAL VARIATION OF PHYTOPLANKTON

1515

at the different stations. The multi-dimensional scaling (MDS) plots were made from Bray Curtis similarity matrix, specially subjected to visualize similarities among the phytoplankton assemblages at each site with hierarchical clustering through group average linking in PRIMER 6. The matrix (numerical abundance vs. locations) was prepared on the basis of an overall mean derived for each location. The square root transformed abundance data were then subjected to clustering and ordination techniques. These analyses were performed to evaluate and spatial variation and species relationships. From the resulting dendrogram, it was apparent to distinguish the phytoplankton populations (at ~ 50.5% similarity) into two distinct assemblages which can be evident from Figure VA. It can be conclude from the result that two structurally distinct phytoplankton populations exist in the study area; one in estuarine (Group-ES) and the other in shoreline (Group-SL); confirmed by MDS (Fig. VB). The SIMPROF test (used for situations where there is no prior division of the data) also revealed that the regions could be sub divided further. The findings have shown significant difference (ANOSIM Global R: 0.657 at 0.1%) in the composition and numerical abundance of phytoplankton between two distinct areas (Group-ES & Group-SL).

In this study, a subset of 8 species as termed as influential species Clarke and Warwick57, were identified, following BVSTE procedure among the 84 species.

They are Coscinodiscus jonesianus, Chaetceors eibenii, Rhizosolenia stolterfothii, Melosira sp., Pleurosigma elongatum, Trachyneis sp. Pediastrum sp, Dinophysis caudate. The results of a BIO-ENV, showed the best fit (supported by Palaniswamy et al58 2015 in Tamil Nadu) between the phytoplankton community patterns and a set of environmental variables (Secchi disc depth, turbidity, salinity and dissolved oxygen)achieved at Pw=0.692.

Conclusion The number of species and the dominant group

remain in the same range as per earlier reports in the study area, whereas the abundance is eight times to that of earlier report. Turbidity, salinity and dissolved oxygen played a significant role in phytoplankton community structure in this area. There exists strong positive correlation of phytoplankton density with nitrate is evident that the phytoplankton population is nitrogen limited.

Acknowledgement The authors are grateful to Integrated coastal Zone

management Project (ICZMP), SPCB, Odisha for the required support for this study. References 1 Steeman, N. E., Marine photosynthesis with special

emphasis on ecological aspects, Amsterdam: Elsevier, (1975), 185.

2 Ananthan, G., Sampathkumar, P., Soundarapandian, P. & Kannan, L., Observation on environmental characteristics of Ariyankuppam estuary and Verampattinam coast of Pondicherry, J. Aqua. Biol., 19(2004) 67-72.

3 Monbet, Y., Control of phytoplankton biomass in estuaries: a comparative analysis of microtidal and macrotidal estuaries, Estuaries and Coasts, 15(1992) 563-571.

4 Chisholm, S.W., Stirring times in the Southern Ocean, Nature, 407(2000) 685-687.

5 Roy, R., Pratihary, A., Mangesh, G. & Naqvi, S.W.A., Spatial variation of phytoplankton pigments along the southwest coast of India, Estuar. Coast. Shelf Sci., 69(2006) 189- 195.

6 Gameiro, P.C., Brotas, V., Environmental drivers of phytoplankton distribution and composition in Tagus estuary, Portugal, Estuar. Coast. Shelf Sci., 75(2007) 21- 34.

7 Gomes, H.R., Goes, J.I. & Saino, T., Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal, Cont. Shelf Res., 20(2000) 313-330.

8 Vinaychandran, P. N., Impact of physical processes on chlorophyll distribution in the Bay of Bengal, in: Indian Ocean Biogeochemical Processes and Ecological Variability, Geophysical Monograph Series 185 (American Geophysical Union), 2009, pp. 71-86.

9 Paul, J.T, Ramaiah, N. & Sardessai, S., Nutrient regimes and their effect on distribution of phytoplankton in the Bay of Bengal, Mar. Environ. Res, 66(2008) 337-344.

10 Sahu, G., Satpathy, K.K., Mohanty, A.K. & Sarkar, S.K., Variations in community structure of phytoplankton in relation to physicochemical properties of coastal waters, Southeast coast of India, Indian J. Mar. Sci., 41(2012) 223–241.

11 Mishra, R.K., Shaw, B.P., Sahu, B. K., Mishra, S. & Senga, Y., Seasonal appearance of Chlorophyceae phytoplankton bloom by river discharge off Paradeep at Orissa Coast in the Bay of Bengal, Environ. Monit. Assess., 149(2009) 261-273.

12 Chandran, R. & Ramamoorthi, K., Hydrobiological studies in the gradient zone of the Vellar Estuary: II. Nutrients, Mahasagar-Bull.Nat.Inst.Oceanogr., 17(1984) 133-140.

13 Mani, P., Krishnamurthy, K., & Palaniappan, P., Ecology of phytoplankton blooms in the Vellar estuary, east coast of India, Indian J. Mar. Sci., 15(2086) 24–28.

14 Devassy, V.P., Goes, J.I., Phytoplankton community structure and succession in a tropical estuarine complex (Central west coast of India), Estuar. Coast. Shelf Sci., 27(1988) 671–685.

15 Gouda, R. & Panigrahi, R.C., Ecology of phytoplankton in coastal waters off Gopalpur, east cost of India, Indian J. Mar. Sci., 25(1996) 81–84.

Page 15: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

INDIAN J. MAR. SCI., VOL. 47, NO. 07, JULY 2018

1516

16 Panigrahi, R. C. & Gouda, R., Occurrence of bloom of the diatom Asterionella glacialis (Castracane) in the Rushikulya estuary, East Coast of India. Mahasagar, 23(1990) 179 - 182

17 Baliarsingh, S.K., Sahu, B.K., Srichandan, S., Sahu, K.C., Lotliker, A.A. & Kumar, T.S., Seasonal variation of phytoplankton community in Gopalpur Creek: a tropical tidal backwater ecosystem, East Cost of India, , Indian J. Mar. Sci., 42(2013) 622–634.

18 Baliarsingh, S.K., Srichandan, S., Sahu, K.C., Lotliker, A. A. & Kumar, T.S., First record of forteen phytoplankton species of Rushikulya estuary, Northwestern Bay of Bengal, Indian J. Mar. Sci., 44 (2015) 490–494.

19 Sangeeta, M., Sahu, G., Mohanty, A.K., Singh, S.K. & Panigrahy, R.C., Impact of the diatom Asterionella glacialis (Castracane) bloom on the water quality and phytoplankton community structure in coastal waters of Gopalpur sea, Bay of Bengal, Asian Journal of Water, Environment and Pollution, 3(2006) 71-77.

20 Upadhyay, S., Physico-chemical characteristics of the Mahanadi estuary ecosystem, east coast of India, Indian J. Mar. Sci., 17(1998) 19–23.

21 Khadanga, M.K., Das, S & Sahu, B. K., Seasonal Variation of the Water Quality Parameters and its Influences in the Mahanadi Estuary and near Coastal Environment, East Coast of India, World Applied Sciences Journal, 17(2012) 797-801.

22 Samantray, P., Mishra, B.K., Panda, C.R. & Rout, S.P., Assessment of water quality index in Mahanadi and Atharabanki river and Taldanda canal in Paradip area, India, J. Hum. Ecol, 26(2009) 153-161.

23 Acharya, C., Pattanaik, S., Satapathy, D., Mohapatra, R.K., Satapathy, D.R., & Panda, C.R., assessment of pollution potential with respect to physico-chemical and biological quality of Paradip port harbour water, Int. j. energy, sustain. env. eng., 2(2015) 16-20.

24 Sundaray, S.K., Panda, U.C., Nayak, B.B. & Bhatta, D., Multivariate statistical techniques for the evaluation of spatial and temporal variation in water quality of the Mahanadi river-estuarine system (India) – a case study, Environ. Geochem. And Health, 28(2006) 317-330.

25 Das, J., Das, S.N. & Sahoo, R.K., Semidiurnal variation of some physic- chemical parameter in the Mahanadi estuary, east coast of India, Indian J. Mar. Sci., 26(1997) 323–326.

26 Naik, S., Acharya, B.C. & Mohapatra, A., Seasonal variation of phytoplankton in Mahanadi estuary, east coast of India, Indian J. Mar. Sci., 38(2009) 184–190.

27 Panda, S. S., Dhal N.K. & Panda, C.R., Phytoplankton diversity in response to abiotic factors along Orissa coast, Bay of Bengal, International J. Environm. Sci., 2(2012) 1818-1832.

28 APHA, Standard methods for the examination of water and waste water, (American Public Health Association, New York) 1998.

29 Grashoff, K., Ehrhardt, M. & Kremling, K., Methods of seawater analysis,(Verlag Chemie Weinheim,Germany) 1999, pp. 600.

30 Parsons, T.R., Maita,Y. & Lalli, C.M., A manual of chemical and biological methods for sea water analysis, (Pergamon Press New York) 1984, pp 173.

31 Subrahmanyam, R., A systematic account of the marine planktonic Diatoms of Madras. Coast.Proc.Indian Acad. Sci., 25(1946), pp 196.

32 Tomas, C.R., Identifying marine phytoplankton, (Academic press. Harcourt Brace & Company, Newyork, London) 1997, pp 858.

33 Desikachary, T.V., Atlas of Diatoms. Vol I. Madras Science Fundation Madras, 1986, Plates 1-77.

34 Desikachary, T.V., Atlas of Diatoms. Vol II, III & IV. Madras Science Fundation Madras, 1987, Plates 78-400.

35 Desikachary, T.V., Atlas of Diatoms. Vol V. Madras Science Fundation Madras, 1988, Plates 401-621.

36 Desikachary, T.V., Atlas of Diatoms. Vol VI. Madras Science Fundation Madras, 1989, Plates 622-809.

37 Shannon, C.E. & Weaver, W., The Mathematical Theory of Communication, (University of Illinois Press, Urbana) 1963, pp. 117.

38 Margaleaf, R., Temporal succession and spatial heteroginity in phytoplankton, Perspectives in Marine Biology, edited by B. Traverso, (University of California Press, California) 1960, pp. 323-349.

39 Pielou, E.C., The measurement of diversity in different types of biological collections, J. Theor. Biol., 13 (1966) 131-144.

40 Naik, S., Mahapatro, D., Behera, D.P., Kumar, M., Panda, C.R. & Mishra, R.K., Spatio-temporal study of zooplankton community in Mahanadi estuary, Bay of Bengal, Indian J. Mar. Sci., 3:6(2013) 185–195.

41 Gopinath, M., Jayasudha, S., Umamageswari, P. & Sampathkumar, P., Physico-biochemical variations in Parangipettai and Nagapattinam Coastal waters, Southeast coast of India. International Journal of Research in Biological Sciences, 3(2013) 149-156.

42 UmamaheswaraRao, T., NageswaraRao, I. & Panda, S., Seasonal Variability and Behavior of Hydrographic and Nutrient Parameters in the Estuarine Waters of Gauthami Godavari, East Coast of India, IOSR Journal of Environmental Science, Toxicology and Food Technology, 9:11(2015) 10-19.

43 Satpathy, K.K., Mohanty, A.K., Sahu, G., Sarkar, S.K., Natesan, U., Venkatesan, R. & Prasad, M.V.R., Variations of physicochemical properties in kalpakkam coastal waters, east coast of india, during southwest to northeast monsoon transition period, Environ. Monit. Assess., 171(2010) 411–424.

44 Faragallah, H.M., Askar1, A.I., Okbah, M.A. & Moustafa, H.M., Physico-chemical characteristics of the openMediterranean sea water far about 60 Km from Damiettaharbor, Egypt, J. Ecol. Nat. Environ., 1:5(2009) 106-119.

45 Ogawa, H. & Ogura, N., Source and behavior of organic carbon of sea water in Tokyo Bay. Chikyu Kagaku (Geochemistry), 24(1990) 27–41.

46 Srichandan, S., Panda, C.R., & Rout, N.C., Seasonal distribution of zooplankton in Mahanadi Estuary (Odisha), east coast of India : A Taxonomical Approach, International Journal of Zoologycal Research, 9:1(2013) 17-31.

47 Panda, A. & Pattnayak, N., Coastal Water Pollution Index (CWPI) –a tool for assessing coastal water quality along the

Page 16: Spatio temporal variation of Phytoplankton in relation to …nopr.niscair.res.in/bitstream/123456789/44599/1/IJMS 47(7... · 2018. 6. 22. · Indian Journal of Geo Marine Sciences

SANGEETA et.al.: SPATIO TEMPORAL VARIATION OF PHYTOPLANKTON

1517

North East Coast of India, International Journal of Scientific & Engineering Research, 4: 6 (2013).

48 Baliarsingh, S.K., Srichandan, S., Naik, S., Sahu, K.C., Lotliker, A.A. & Kumar, T.S., Distribution of hydro-biological parameters in coastal waters off Rushikulya Estuary, East Coast of India: a premonsoon case study, Pak. J. Biol. Sci., 16:16(2013) 779-87.

49 Pandiyarajan, R.S., Tirodkar, P.S.S., Ayajuddin, M. & Ansari, Z.A., Distribution, abundance and diversity of phytoplankton in the inshore water of Nizampatnam, south east coast of India, Indian J. Mar. Sci., 41(2012) 223–241.

50 GeethaMadhav, V. & Kondalarao, B., Distribution of phytoplankton in the coastal water of east coast India, Indian J. Mar. Sci., 43(2014) 348–356.

51 SmitaAchary, M., Sahu, G., Mohanty, A.K., Samatara, M.K., Panigrahy, S.N., Selvanayagam, M., Satpathy, K.K., Prasad, M.V.R. & Panigrahy R.C., Phytoplankton abundance and diversity in the coastal waters of kalpakkam, east coast of india in relation to the environmental variables, The Bioscan, 2(2010) 553-568.

52 Chandran, R., Seasonal and tidal variations of phytoplankton in the gradient zone of Vellar estuary, Mahasagar-Bull. Nat. Inst. Oceanogr, 18(1985) 37-48

53 Krebbs, C.J., Ecology: the experimental analysis of distribution and abundance, 4a edn. Harper Collins College.Publishers, (1994), pp. 801.

54 Pedro Duarte, Maria Filomena Macedo & Luı´s Cancela da Fonseca, The relationship between phytoplankton diversity and community function in a coastal lagoon, Hydrobiologia, 555(2006) 3–18

55 Montes, M.J.F., Macedo, S.J., Koening, M.L., N:Si:P atomic ratio in the Santa Cruz channel, Itamaraca-PE (Northeast Brazil): a Nyctemeral variation, Brazilian J. Biol. Tech., 45(2002) doi:10.1590/S1516-89132002000200002.

56 Brzezinski, M.A., The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables, J. Phycol., 21(1985) 347-357.

57 Clarke, K.R. & Warwick, R.M., Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, Plymouth Marine Laboratory, Plymouth, (2001) 172.

58 Palaniswamy, R., Manoharan, S. & Mohan, A., Characterisation of tropical reservoirs in Tamil Nadu, India in terms of plankton assemblage using multivariate analysis, Indian J. Fish., 62:3(2015) 1-13.