special limits (2)

69
Special Limits definition of e The number e is defined as a limit. Here is one definition: e= lim x0 + (1 + x) 1 x

Upload: truongthuy

Post on 27-Jan-2017

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Special limits (2)

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Page 2: Special limits (2)

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.

x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Page 3: Special limits (2)

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x

2.5937 2.70481 2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Page 4: Special limits (2)

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937

2.70481 2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Page 5: Special limits (2)

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481

2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Page 6: Special limits (2)

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692

2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Page 7: Special limits (2)

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692 2.71814

2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Page 8: Special limits (2)

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692 2.71814 2.71826

→ e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Page 9: Special limits (2)

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·

This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Page 10: Special limits (2)

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Page 11: Special limits (2)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692 2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Page 12: Special limits (2)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x

2.70481 2.71692 2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Page 13: Special limits (2)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481

2.71692 2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Page 14: Special limits (2)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692

2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Page 15: Special limits (2)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692 2.71815

2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Page 16: Special limits (2)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692 2.71815 2.71827

→ e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Page 17: Special limits (2)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692 2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Page 18: Special limits (2)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692 2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Page 19: Special limits (2)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692 2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Page 20: Special limits (2)

Special Limitse the natural base

I the number e is the natural base in calculus. Manyexpressions in calculus are simpler in base e than in otherbases like base 2 or base 10

I e = 2.71828182845904509080 · · ·I e is a number between 2 and 3. A little closer to 3.

I e is easy to remember to 9 decimal places because 1828repeats twice: e = 2.718281828. For this reason, do not use2.7 to extimate e.

I use the ex button on your calculator to find e. Use 1 for x.

I example: F = Pert is often used for calculating compoundinterest in business applications.

Page 21: Special limits (2)

Special Limitse the natural base

I the number e is the natural base in calculus. Manyexpressions in calculus are simpler in base e than in otherbases like base 2 or base 10

I e = 2.71828182845904509080 · · ·

I e is a number between 2 and 3. A little closer to 3.

I e is easy to remember to 9 decimal places because 1828repeats twice: e = 2.718281828. For this reason, do not use2.7 to extimate e.

I use the ex button on your calculator to find e. Use 1 for x.

I example: F = Pert is often used for calculating compoundinterest in business applications.

Page 22: Special limits (2)

Special Limitse the natural base

I the number e is the natural base in calculus. Manyexpressions in calculus are simpler in base e than in otherbases like base 2 or base 10

I e = 2.71828182845904509080 · · ·I e is a number between 2 and 3. A little closer to 3.

I e is easy to remember to 9 decimal places because 1828repeats twice: e = 2.718281828. For this reason, do not use2.7 to extimate e.

I use the ex button on your calculator to find e. Use 1 for x.

I example: F = Pert is often used for calculating compoundinterest in business applications.

Page 23: Special limits (2)

Special Limitse the natural base

I the number e is the natural base in calculus. Manyexpressions in calculus are simpler in base e than in otherbases like base 2 or base 10

I e = 2.71828182845904509080 · · ·I e is a number between 2 and 3. A little closer to 3.

I e is easy to remember to 9 decimal places because 1828repeats twice: e = 2.718281828. For this reason, do not use2.7 to extimate e.

I use the ex button on your calculator to find e. Use 1 for x.

I example: F = Pert is often used for calculating compoundinterest in business applications.

Page 24: Special limits (2)

Special Limitse the natural base

I the number e is the natural base in calculus. Manyexpressions in calculus are simpler in base e than in otherbases like base 2 or base 10

I e = 2.71828182845904509080 · · ·I e is a number between 2 and 3. A little closer to 3.

I e is easy to remember to 9 decimal places because 1828repeats twice: e = 2.718281828. For this reason, do not use2.7 to extimate e.

I use the ex button on your calculator to find e. Use 1 for x.

I example: F = Pert is often used for calculating compoundinterest in business applications.

Page 25: Special limits (2)

Special Limitse the natural base

I the number e is the natural base in calculus. Manyexpressions in calculus are simpler in base e than in otherbases like base 2 or base 10

I e = 2.71828182845904509080 · · ·I e is a number between 2 and 3. A little closer to 3.

I e is easy to remember to 9 decimal places because 1828repeats twice: e = 2.718281828. For this reason, do not use2.7 to extimate e.

I use the ex button on your calculator to find e. Use 1 for x.

I example: F = Pert is often used for calculating compoundinterest in business applications.

Page 26: Special limits (2)

Special Limitsf(x) = 1

x

Here are four useful limits:

I

limx→+∞

1

x→ 0+ = 0

I

limx→−∞

1

x→ 0− = 0

I

limx→0+

1

x→ +∞

I

limx→0−

1

x→ −∞

Page 27: Special limits (2)

Special Limitsf(x) = 1

x

Here are four useful limits:

I

limx→+∞

1

x→ 0+ = 0

I

limx→−∞

1

x→ 0− = 0

I

limx→0+

1

x→ +∞

I

limx→0−

1

x→ −∞

Page 28: Special limits (2)

Special Limitsf(x) = 1

x

Here are four useful limits:

I

limx→+∞

1

x→ 0+ = 0

I

limx→−∞

1

x→ 0− = 0

I

limx→0+

1

x→ +∞

I

limx→0−

1

x→ −∞

Page 29: Special limits (2)

Special Limitsf(x) = 1

x

Here are four useful limits:

I

limx→+∞

1

x→ 0+ = 0

I

limx→−∞

1

x→ 0− = 0

I

limx→0+

1

x→ +∞

I

limx→0−

1

x→ −∞

Page 30: Special limits (2)

Special Limitsf(x) = 1

x cont.

The general idea is this:

I1

+BIG→ +small

I1

−BIG→ −small

I1

+small→ +BIG

I1

−small→ −BIG

Page 31: Special limits (2)

Special Limitsf(x) = 1

x cont.

The general idea is this:

I1

+BIG→ +small

I1

−BIG→ −small

I1

+small→ +BIG

I1

−small→ −BIG

Page 32: Special limits (2)

Special Limitsf(x) = 1

x cont.

The general idea is this:

I1

+BIG→ +small

I1

−BIG→ −small

I1

+small→ +BIG

I1

−small→ −BIG

Page 33: Special limits (2)

Special Limitsf(x) = 1

x cont.

The general idea is this:

I1

+BIG→ +small

I1

−BIG→ −small

I1

+small→ +BIG

I1

−small→ −BIG

Page 34: Special limits (2)

Special Limitsf(x) = 1

x

x

f

+1.0 +2.5 +4.0 +5.5 +7.0 +8.5−1.0−2.5−4.0−5.5−7.0−8.5

−9.0

−8.0

−7.0

−6.0

−5.0

−4.0

−3.0

−2.0

−1.0

+1.0

+2.0

+3.0

+4.0

+5.0

+6.0

+7.0

+8.0

+9.0

Page 35: Special limits (2)

Special Limits1

BIG = small, 1small = BIG

Look at 1x using some numbers:

x 10 100 1000 10000 100000 → +∞f(x) = 1

x .1 .01 .001 .0001 .00001 → 0+

x -10 -100 -1000 -10000 -100000 → −∞f(x) = 1

x -.1 -.01 -.001 -.0001 -.00001 → −0+

x .1 .01 .001 .0001 .00001 → +0

f(x) = 1x 10 100 1000 10000 100000 → +∞

x -.1 -.01 -.001 -.0001 -.00001 → −0

f(x) = 1x -10 -100 -1000 -10000 -100000 → −∞

Page 36: Special limits (2)

Special Limitsx→ ±∞ for Polynomials

I when taking limits of polynomials to ±∞ drop the lowerdegree terms and only keep the higest degree term of of thepolymomial.

I this is an intermediate step in taking the limit. Use algebra tosimplify the expression at this step then continue to work onfinding the limit to infinity.

I this works because for large values of x the highest powerterm of the polynomial is so much larger that all of thesmaller degree terms that the smaller degree terms have noeffect in the limit to infinity.

Page 37: Special limits (2)

Special Limitsx→ ±∞ for Polynomials

I when taking limits of polynomials to ±∞ drop the lowerdegree terms and only keep the higest degree term of of thepolymomial.

I this is an intermediate step in taking the limit. Use algebra tosimplify the expression at this step then continue to work onfinding the limit to infinity.

I this works because for large values of x the highest powerterm of the polynomial is so much larger that all of thesmaller degree terms that the smaller degree terms have noeffect in the limit to infinity.

Page 38: Special limits (2)

Special Limitsx→ ±∞ for Polynomials

I when taking limits of polynomials to ±∞ drop the lowerdegree terms and only keep the higest degree term of of thepolymomial.

I this is an intermediate step in taking the limit. Use algebra tosimplify the expression at this step then continue to work onfinding the limit to infinity.

I this works because for large values of x the highest powerterm of the polynomial is so much larger that all of thesmaller degree terms that the smaller degree terms have noeffect in the limit to infinity.

Page 39: Special limits (2)

Special Limitsexamples of x→ ±∞ for Polynomials

I limx→+∞2x3+99x+1000

1+2x2+4x3

= limx→+∞2x3

4x3 = limx→+∞24 =

limx→+∞12 = 1

2

Page 40: Special limits (2)

Special Limitsexamples of x→ ±∞ for Polynomials

I limx→+∞2x3+99x+1000

1+2x2+4x3

= limx→+∞2x3

4x3 = limx→+∞24 =

limx→+∞12 = 1

2

Page 41: Special limits (2)

Special Limitsexamples of x→ ±∞ for Polynomials

I limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3

= limx→+∞24 =

limx→+∞12 = 1

2

Page 42: Special limits (2)

Special Limitsexamples of x→ ±∞ for Polynomials

I limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3 = limx→+∞24

=

limx→+∞12 = 1

2

Page 43: Special limits (2)

Special Limitsexamples of x→ ±∞ for Polynomials

I limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3 = limx→+∞24 =

limx→+∞12

= 12

Page 44: Special limits (2)

Special Limitsexamples of x→ ±∞ for Polynomials

I limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3 = limx→+∞24 =

limx→+∞12 = 1

2

Page 45: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x3+99x+1000

1+2x2+4x3

= limx→+∞2x3

4x3

= limx→+∞24

= limx→+∞12

= 12

Page 46: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3

= limx→+∞24

= limx→+∞12

= 12

Page 47: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3

= limx→+∞24

= limx→+∞12

= 12

Page 48: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3

= limx→+∞24

= limx→+∞12

= 12

Page 49: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3

= limx→+∞24

= limx→+∞12

= 12

Page 50: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3

= limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Page 51: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3 = limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Page 52: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3 = limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Page 53: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3 = limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Page 54: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3 = limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Page 55: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3 = limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Page 56: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3 = limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Page 57: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6

= limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Page 58: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Page 59: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Page 60: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Page 61: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Page 62: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Page 63: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Page 64: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Page 65: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Page 66: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Page 67: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Page 68: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Page 69: Special limits (2)

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0