special right triangles and area

27

Upload: duane

Post on 09-Feb-2016

30 views

Category:

Documents


0 download

DESCRIPTION

45°- 45° - 90°. 30° - 60° - 90°. Trapezoid. Kite. Rhombus. 10. 10. 10. 10. 10. 20. 20. 20. 20. 20. 30. 30. 30. 30. 30. 40. 40. 40. 40. 50. 50. 50. Special Right Triangles and Area. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Special Right Triangles and Area
Page 2: Special Right Triangles and Area

Special Right Triangles and Area

50505040404040

303030303020202020201010101010

RhombusKiteTrapezoid30° - 60° - 90°

45°- 45° - 90°

Page 3: Special Right Triangles and Area

In triangle ABC, is a right angle and 45°. Find BC. If you answer is not an integer, leave it in simplest radical form.

211112

2.

xx

leghyp

Page 4: Special Right Triangles and Area

Find the length of the hypotenuse.

62343

2322.

xxxx

leghyp

Page 5: Special Right Triangles and Area

Find the length of the leg. If your answer is not an integer, leave it in simplest radical form.

x

x

x

x

xleghyp

282

21622

2162

16216

2.

Page 6: Special Right Triangles and Area

Find the lengths of the missing sides in the triangle.

7

2772

2.

y

xx

leghyp

Page 7: Special Right Triangles and Area

Find the value of the variable. If your answer is not an integer, leave it in simplest radical form.

x

x

x

xleghyp

225

22

2525

252.

Page 8: Special Right Triangles and Area

3663

3

xx

SLLL

Page 9: Special Right Triangles and Area

yy

SLhyp

3102320

2.

303103

3

xx

SLLL

Page 10: Special Right Triangles and Area

Find the value of each variable.

60°

30°x

y

8 Shorter Leg8 = 2xx = 4

Longer Legy = x√3y = 4√3

Page 11: Special Right Triangles and Area

Find the lengths of a 30°-60°-90° triangle with hypotenuse of length 12.

60°

30°

y

x12

Shorter Leg12 = 2x

x = 6

Longer Legy = x√3y = 6√3

Page 12: Special Right Triangles and Area

30°

60°

18

xy Shorter

Leg x 318

318

x

33

318

x

Hypotenuse 362 y

312y

The longer leg of a 30°-60°-90° has length 18. Find the length of the shorter leg and the hypotenuse.

3318

x

36x

Page 13: Special Right Triangles and Area

2

21

66.303

)32.607(21

)2.48)(6.12(21

)2.2919)(6.12(21

)(21

inA

A

A

A

bbhA

Page 14: Special Right Triangles and Area

2

21

70

)140(21

)20)(7(21

)128)(7(21

)(21

inA

A

A

A

bbhA

Page 15: Special Right Triangles and Area

SLSL

SLhyp

428

2.

3443

3

LLLL

SLLL

332

)364(21

)16)(34(21

)106)(34(21

)(21

21

A

A

A

A

bbhA

Page 16: Special Right Triangles and Area

Find the area of the trapezoid. Leave your answer in simplest radical form.

7cm7cm)(21

21 bbhA

hh

Find h. SLLL 3

23 h32h

Find area. )57)(32(2

1A

)12)(32(21

A

)12)(31(A2312 cmA

60°60°

5cm5cm

Page 17: Special Right Triangles and Area

Find the area of the trapezoid. Leave your answer in simplest radical form.

16cm16cm)(21

21 bbhA

hh

Find h. SLLL 3

53 h35h

Find area. )1611)(35(2

1A

)27)(35(21

A

)27)(35.2(A235.67 cmA

60°60°

11cm11cm

Page 18: Special Right Triangles and Area

A kite has diagonals 9.2 ft and 8 ft. What is the area of the kite?

8.36)6.73(2

1)8)(2.9(2

121

21

A

A

A

ddA

Page 19: Special Right Triangles and Area

Find the area of kite KLMN.

2m5m

3m

3mKK

LL

MM

NN

KM=2+5=7LN=3+3=6

2121 ddA

)6)(7(21

A

)42(21

A

221mA

Page 20: Special Right Triangles and Area

Find the area of kite KLMN.

1m4m

3m

3mKK

LL

MM

NNKM=1+4=5LN=3+3=6

2121 ddA

)6)(5(21

A

)30(21

A

215mA

Page 21: Special Right Triangles and Area

Find the area of kite with diagonals that are 12 in. and 9 in. long.

2121 ddA

)9)(12(21

A

)108(21

A

254mA

Page 22: Special Right Triangles and Area
Page 23: Special Right Triangles and Area

Find the area of the rhombus.Find the area of the rhombus.

128)256(2

1)16)(16(2

121

21

A

A

A

ddA

Page 24: Special Right Triangles and Area

Find the area of rhombus ABCD. 15m

12mAA

BB

CC

DD

2121 ddA

)24)(18(21

A

)432(21

A

2216mA

EE

222 cba 222 1512 b

225144 2 b812 b

812 b9b

AC=12+12=2424BDBD=9+9=1818

Page 25: Special Right Triangles and Area

Find the area of rhombus ABCD. 13m

24mAA

BB

CC

DD212

1 ddA

)24)(10(21

A

)240(21

A

2120mA

222 cba 222 1312 b

169144 2 b252 b

252 b5b

AC=12+12=2424BDBD=5+5=1010

12m 12mEE

Page 26: Special Right Triangles and Area
Page 27: Special Right Triangles and Area