spectral weed detection and precise spraying laboratory of agromachinery and processing els vrindts,...

46
Spectral Weed Detection and Precise Spraying Laboratory of AgroMachinery and Processing Els Vrindts, Dimitrios Moshou, Jan Reumers Herman Ramon, Josse De Baerdemaeker tholieke Universiteit Research sponsored by IWT and the Belgian Ministry of Small Trade and Agriculture

Upload: reginald-collins

Post on 25-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Spectral Weed Detectionand Precise Spraying Laboratory of AgroMachinery and

ProcessingEls Vrindts, Dimitrios Moshou, Jan ReumersHerman Ramon, Josse De Baerdemaeker

Katholieke Universiteit

Research sponsored by IWT and the Belgian Ministry of Small Trade and Agriculture

Katholieke Universiteit Leuven

OverviewSpectral measurements of crops and weeds

in laboratoryin field

Processing of spectral data with neural networks Precise spraying

Katholieke Universiteit Leuven

Optical detection of weeds

Techniquesred/NIR detectors (vegetation index)image processing (color, texture, shape)remote sensing of weed patchesreflection in visible & NIR light

different detection possibilities, different scales

Requirements for on-line weed detection:fast & accurate weed detectionsynchronized with treatment

Katholieke Universiteit Leuven

Spectral weed detectionFactors affecting spectral plant

signalsleaf reflection, dependent on species and environment, stress, diseasecanopy & measurement geometrylight conditionsdetector sensitivity

Katholieke Universiteit Leuven

Spectral analysis of plant leaves

in laboratory

sample

spectrophotometer

integrating sphere

computer

Diffuse Reflectance Spectroscopy of Crop and Weed Leaves

Laboratory measurementsLaboratory measurements

Katholieke Universiteit Leuven

Diffuse Reflectance of a Leaf

0%

10%

20%

30%

40%

50%

60%

70%

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

wavelength (nm)

refle

ctan

ce (%

)

UV visible near infra red

waterabsorption

red edge

Laboratory measurementsLaboratory measurements

Katholieke Universiteit Leuven

Spectral Dataset

Category Plant Age Spectra indataset a

Spectra indataset b

potato + 30 leaves 63 37beet cotyledones 15 5

15 leaves 85 31maize 3-5 leaves 58 20weeds(14 species)

5-20 leaves,vegetative orgenerative

329 110

soil 16 4

Laboratory measurementsLaboratory measurements

Katholieke Universiteit Leuven

Reflectance of crop and weed leaves

0

10

20

30

40

50

60

200 400 600 800 1000 1200 1400 1600 1800 2000

wavelength (nm)

refl

ecta

nce

(%

)

Beet Lambsquarters Redshank Thistle Cockspur Soil

Laboratory measurementsLaboratory measurements

Katholieke Universiteit Leuven

Spectral analysisstepwise selection of discriminant wavelengths multivariate discriminant analysis, based on reflectance response at selected wavelengths (dataset a)

assuming multivariate normal distributionquadratic discriminant rule

classes with different covariance structure

testing the discriminant function: classification of spectra from dataset b

Laboratory measurementsLaboratory measurements

Katholieke Universiteit Leuven

Spectral response of beet & weeds

Legend: beet - annual mercury - nettle, ground ivy, scarlet pimpernel andplantain - thistle and sow thistle - cockspur - gallant soldier - lambsquarters - chickweed - redshank - black bindweed - black nightshade

Laboratory measurementsLaboratory measurements

Katholieke Universiteit Leuven

Legend: maize - annual mercury - nettle, ground ivy, scarlet pimpernel andplantain - thistle and sow thistle - cockspur - gallant soldier - lambsquarters - chickweed - redshank - black bindweed - black nightshade

Laboratory measurementsLaboratory measurements

Spectral response of maize & weeds

Katholieke Universiteit Leuven

Spectral response of potato & weeds

Legend: potato - annual mercury - nettle, ground ivy, scarlet pimpernel andplantain - thistle and sow thistle - cockspur - gallant soldier - lambsquarters - chickweed - redshank - black bindweed - black nightshade

Laboratory measurementsLaboratory measurements

Katholieke Universiteit Leuven

Classification resultsCategories Wavelength bands

(nm)

Class. Error

dataset a

Class. Error

testdataset b

beet/weed/soil 1925, 1715 1.0 % 0.0 %beet/weed/soil 1925, 1715, 755 0.5 % 0.0 %beet/weed/soil 1925, 755, 905 1.0 % 0.0 %

maize & cs./weed/soil 1285, 455 6.4 % 6.6 %maize & cs./weed/soil 1285, 455, 355 2.7 % 2.9 %maize & cs./weed/soil 1285, 455, 355, 685 1.0 % 1.5 %maize/cockspur 1085, 645, 695 0.0 % 0.0 %

potato/weed/soil 765, 515 2.1 % 2.1 %potato/weed/soil 765, 515, 1935 0.5 % 1.5 %potato/weed/soil 765, 515, 1935, 675 0.2 % 1.5 %

Laboratory measurementsLaboratory measurements

Field measurement of crop and weeds

Variation inlight condition

Measurement geometry

Detector sensitivity

Processingmethod

Signal path

Field measurementsField measurements

Katholieke Universiteit Leuven

Equipment for field measurement

spectrograph + 10-bit CCD, digital camera,computer,12 V battery andtransformer

on mobile platform

Field measurementsField measurements

Katholieke Universiteit Leuven

Equipment - Spectrograph

both spatial and spectral information in images

Field measurementsField measurements

Katholieke Universiteit Leuven

Image datamaize, sugarbeet, 11 weeds2 different days, different light conditions755 x 484 pixels

spatial axis

spectralaxis

Field measurementsField measurements

Katholieke Universiteit Leuven

Spectral response of sensor

0

10000

20000

30000

40000

50000

60000

480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

wavelength (nm)

refl

ecti

on

val

ue

(0-6

4500

)

0

5

10

15

20

25

30

can

op

y re

flec

tan

ce (

%)

reference plate 75% sugarbeet reflection sugarbeet reflectance

Field measurementsField measurements

Katholieke Universiteit Leuven

Data processingspectral resolution: 0.71 nm /pixelplant/soil discrimination with ratio: NIR (745 nm) / red (682 nm)data reduction by calculating average per 2.1 nm, removing noisy endsresulting spectra: 484.8 - 814.6 nm range, 2.1 nm stepindependent datasets of maize, sugarbeet and weeds

Field measurementsField measurements

Katholieke Universiteit Leuven

Dataset Number of spectra

sugarbeet 1 627

sugarbeet 2 343

maize 1 611

maize 2 204

weeds 1 1251

annual mercury (286), small nettle (80), groundivy (114), lambsquarters (181), sow thistle (63),chickweed (178), bluegrass (155), red dead-nettle(19), Shepherd’s purse (141), dandelion (34)weeds 2 724

ground ivy (52), lambsquarters (340), chickweed(53), bluegrass (73), red dead-nettle (168),Arabidopsis (38)

Spectral datasets

Field measurementsField measurements

Katholieke Universiteit Leuven

0

10000

20000

30000

40000

50000

480 530 580 630 680 730 780

wavelength (nm)

me

an

re

fle

cti

on

va

lue

(0

-65

40

00

)

maize sugarbeet lambsquarters annual mercury bluegrass

Mean canopy reflectionsField measurementsField measurements

Canonical analysis of Sugarbeet - weeds

0 5 10

CAN2

-5

0

5

CAN1

Legend: sugarbeet , sow thistle , annual mercury ,small nettle , groundivy , lambsquarters , chickweed , bluegrass , red dead nettle ,shepperd's purse , dandelion

Field measurementsField measurements

Canonical analysis of Maize - weeds

Field measurementsField measurements

0 5 10CAN2

-5

0

5

CAN1

Legend: maize , sow thistle , annual mercury ,small nettle , ground ivy , lambsquarters , chickweed , bluegrass , red dead nettle , shepperd's purse , dandelion

Katholieke Universiteit Leuven

Discriminant analysis Sugarbeet

calibration dataset test datasetwavelength bands(2.1 nm width) indiscriminantfunction

% sugarbeetcorrectlyclassified

% weedscorrectlyclassified

% sugarbeetcorrecty

classified

% weedscorrectlyclassified

814.6, 801.4, 753,713.5, 698.1,522.1, 761.8,603.5, 764, 537.5,579.3

94 94 95 84

572.7, 814.6,801.4, 753, 713.5,698.1, 522.1

93 94 95 81

572.7, 814.6,676.1, 801.4, 753,713.5

92 94 94 77

Field measurementsField measurements

Katholieke Universiteit Leuven

Discriminant analysis Maize

calibration dataset test datasetWavelength bands(of 2.1 nm width)in discriminantfunction

% maizecorrectlyclassified

% weedscorrectlyclassified

% maizecorrectlyclassified

% weedscorrectlyclassified

700.3, 511.1, 592.5,484.4, 495.8, 671.7,687.1, 605.7

84 95 15 97

700.3, 511.1, 592.5,484.4, 495.8, 671.7,687.1

79 95 12 97

588.1, 700.3, 511.1,592.5, 484.4, 495.8

78 94 8 96

588.1, 700.3, 511.1,592.5, 484.4

78 94 5 95

588.1, 700.3, 511.1 77 95 7 96

Field measurementsField measurements

Graphic comparison datasets

0

10000

20000

30000

40000

50000

480 580 680 780wavelength (nm)

refl

ecti

on

val

ue

maize 1 maize 2

0

10000

20000

30000

40000

50000

480 580 680 780wavelength (nm)

refl

ecti

on

val

ue

sugarbeet 1 sugarbeet 2 weed 1 weed 2

Field measurementsField measurements

Graphic comparison datasetsField measurementsField measurements

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000 30000590.3 nm

704.7 nm

Maize

5000

10000

15000

20000

25000

30000

0 10000 20000

590.3 nm

704.7 nm

red dead nettle

0

5000

10000

15000

20000

25000

0 5000 10000 15000590.3 nm

704.7 nm

Lambsquarters

Katholieke Universiteit Leuven

Graphic comparison datasets

0

10000

20000

30000

40000

50000

60000

480 530 580 630 680 730 780

wavelength (nm)

refle

ctio

n o

f re

fere

nce

(0

- 6

54

00

)

0

1000

2000

3000

4000

5000

6000

7000

8000

diff

ere

nce

of

me

an

ma

ize

re

flect

ion

75% reference plate in sunlight difference in mean maize reflection (day 2 - day 1)

Field measurementsField measurements

Discriminant analysis ratiosSugarbeet

calibration dataset test datasetwavelength band ratios(2.1 nm width)in discriminant function

% beetcorrectlyclassified

% weedscorrectlyclassified

% beetcorrectlyclassified

% weedcorrectlyclassified

555.1/770, 643.1/687,484.8/770, 632.1/687,654.1/687, 755.2, 487,711.3/592, 775/770,

94 95 95 92

555.1/770, 643.1/687,484.8/770, 632.1/687,654.1/687, 755.2, 487,711.3/592

93 95 94 88

555.1/770, 643.1/687,484.8/770, 632.1/687,654.1/687, 755.2

90 94 92 92

555.1/770, 643.1/687,484.8/770, 632.1/687

85 93 92 92

Field measurementsField measurements

Discriminant analysis ratiosMaizecalibration dataset test dataset

Wavelength band ratios(2.1 nm width)in discriminant function

% maizecorrectlyclassified

% weedcorrectlyclassified

% maizecorrectlyclassified

% weedcorrectlyclassified

559.5/717, 528.7/717,761/548, 638.7,528.7/548, 548.5/717,678.3/687, 517.7/717,563.9/504

92 95 51 94

559.5/717, 528.7/717,761/548, 638.7,528.7/548, 548.5/717,678.3/687

93 94 42 93

559.5/717, 528.7/717,761/548, 638.7,528.7/548

91 95 41 94

559.5/717, 528.7/717,761/548, 638.7

92 94 49 93

559.5/717, 528.7/717,761/548

93 93 56 91

Field measurementsField measurements

Katholieke Universiteit Leuven

Resultsonly spectral info (485-815 nm)classification based on narrow bands in discriminant functions

good results in similar light and crop conditionslarge decrease in performance for other light conditions

using ratios of narrow bandsimprovement, but not sufficient

Field measurementsField measurements

Katholieke Universiteit Leuven

Improving resultsinfluence of light conditions

adaption of classification rule determining light condition and applying appropriate calibration/LUT

spectral inputs that are less affected by environment

measuring irradiance, calculating reflectance

other classification methods

Field measurementsField measurements

Katholieke Universiteit Leuven

Neural network for classification

Comparison of different NN techniques for classificationSelf-Organizing Map (SOM) neural network for classification

used in a supervised way for classificationneurons of the SOM are associated with local models achieves fast convergence and good generalisation.

Crop-weed classificationCrop-weed classification

Neurallattice

(A)

InputSpace

(V)

SOM MLP

class

s3(k)

first hidden layer

s2(k) s4(k)s1(k)

….

….

second hiddenlayer

weights

PNN

x1

DistributionLayer

Pattern Layer

Summation Layer

Decision Layer

)x(f1 )x(f2

Input Layer

Output Layer

1O nO

x2 xn-1 xn

ADVANTAGES• Learns with reducedamounts of data • Fast Learning • Visualisation• RetrainableDISADVANTAGES• Discrete output

ADVANTAGES• Good extrapolationDISADVANTAGES• Slow Learning • Local minima• Needs a lot of data

ADVANTAGES • Fast Learning • RetrainableDISADVANTAGES• Needs all training data during operation• Needs a lot of data

Crop-weed classificationCrop-weed classificationNeural network for

classification

METHOD MAIZE WEEDSMinimum Distance Classifier 73 75Fisher Discriminant 88 88Linear Discriminant 82 74MLP (1 hidden) 90 66MLP (2 hidden) 95 70PNN 85 77SOM (Labeled) 85 73SOM (Supervised) 85 77Hybrid Classifier 85 71SOM based RBF network 85 79LVQ 85 77LLM SOM (Proposed) 96 90

Crop-weed classificationCrop-weed classification

Comparison between methods

MLP: Multi-Layer Perceptron, PNN: Probabilistic N Network, SOM: Self-Organizing Map, LVQ: Learning Vector Qantization, LLM: Local Linear Mapping

Moshou et al., 1998, AgEng98, OsloMoshou et al., 2001, Computers and Electronics in Agriculture 31 (1): 5-16

Katholieke Universiteit Leuven

PNN MLP SOM LVQ LLM SOM Corn 93 96 89 92 97 Ranunculus repens 51 49 47 51 59 Cirsium arvense 72 68 70 72 77 Sinapis arvensis 70 64 91 70 81 Stellaria media 72 68 66 72 71 Tarraxacum officinale 66 47 58 66 72 Poa annua 64 68 59 64 66 Polygonum persicaria 66 77 58 66 78 Urtica dioica 46 52 44 44 52 Oxalis. europaea 96 99 88 96 99 Medicago lupulina 85 90 81 84 93

MLP: Multi-Layer Perceptron, PNN: Probabilistic N Network, SOM: Self-Organizing Map, LVQ: Learning Vector Qantization, LLM: Local Linear Mapping

Comparison between methodsCrop-weed classificationCrop-weed classification

Katholieke Universiteit Leuven

PNN MLP SOM LVQ LLM SOM Sugar beet 91 96 88 91 98 R. repens 55 51 49 55 61 C. arvense 74 72 71 74 80 S. arvensis 70 64 63 74 83 S. media 73 70 69 73 71 T. officinale 66 47 58 66 72 P. annua 66 70 61 66 66 P. persicaria 68 79 60 68 76 U. dioica 48 56 48 48 55 O. europaea 94 98 90 94 99 M. lupulina 87 92 84 87 93

Crop-weed classificationCrop-weed classification

MLP: Multi-Layer Perceptron, PNN: Probabilistic N Network, SOM: Self-Organizing Map, LVQ: Learning Vector Qantization, LLM: Local Linear Mapping

Comparison between methods

Katholieke Universiteit Leuven

• The strongest point is the local representation of the data accompanied by a local updating algorithm • Local updating algorithms assure much faster convergence than global updating algorithms (e.g. backpropagation for MLPs) • Because of the topologically preserving character of the SOM, the proposed classification method can deal with missing or noisy data, outperforming “optimal” classifiers (PNN) • The proposed method has been tested and gave superior results compared to a variety statistical and neural classifiers

Crop-weed classificationCrop-weed classification

Conclusions on LLM SOM technique

Precision spraying through controlled dose application

Unwanted variations in dose caused by horizontal and vertical boom movements

Precision treatment Precision treatment

Katholieke Universiteit Leuven

Active horizontal stabilisation of spray boom

Validation with ISO 5008 trackmovement of spray boom tip with and without controller

0 5 10 15 20 25 30-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (s)

Dis

tan

ce (

m)

Precision treatment Precision treatment

Katholieke Universiteit Leuven

Vertical stabilisation of spray boom

Slow-active system for slopes

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Frequency, Hz

Del

ta,

m

Resulting boom movement

boom

frame connected to tractor

electric motor reduction

cable

fixing between plates

rol

ultrasonic sensors

Precision treatment Precision treatment

Katholieke Universiteit Leuven

On-line selective weed treatment

Indoor test of on-line weed detection and treatmentIndoor test of on-line weed detection and treatment

Precision treatment Precision treatment

Katholieke Universiteit Leuven

Sensor: Spectral line cameraClassification: Probabilistic neural networkProgram in Labview with c-code

Image acquisition frequence: 10 images/sec, travel speed: 30cm/sec, segmentation with NDVI ( > 0.3)Off-line training of NN, On-line classification Decision to spray:> 20 weed pixels and > 35% of vegetation is weed

Spray boom with PWM nozzles and controller, provided by Teejet Technologies

Indoor test of on-line weed detection and treatment

Precision treatment Precision treatment

Indoor test of on-line weed detection and treatment

Color image and spectral image

Precision treatment Precision treatment

Katholieke Universiteit Leuven

Indoor test - ResultsComparison of nozzle activation with weed positions

Precision treatment Precision treatment

Katholieke Universiteit Leuven

Indoor test - Results

camera

nozzle

weed

Experimental set up - separate weed classes (4) did not improve crop-weed classification

-Correct detection of nearly all weeds

- Only 6 % redundant spraying of crop

- Up to 70 % reduction of herbicide use

Precision treatment Precision treatment