spectroscopic ellipsometry:

28
H. Tompkins 1-1 Ellipsometry Spectroscopic Ellipsometry: Introduction Fundamentals Anatomy of an ellipsometric spectrum Analysis of an ellipsometric spectrum What you can do, and what you can’t do What it is, what it will do, and what it won’t do by Harland G. Tompkins

Upload: others

Post on 12-Sep-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spectroscopic Ellipsometry:

H. Tompkins1-1 Ellipsometry

Spectroscopic Ellipsometry:

• Introduction• Fundamentals• Anatomy of an ellipsometric spectrum• Analysis of an ellipsometric spectrum• What you can do, and what you can’t do

What it is, what it will do, and what it won’t do

by

Harland G. Tompkins

Page 2: Spectroscopic Ellipsometry:

H. Tompkins1-2 Ellipsometry

Perspective

• Spectroscopic Ellipsometry is an optical technique used for analysis and metrology

• A light beam is reflected off of the sample of interest• The light beam is then analyzed to see what the sample

did to the light beam

• We then draw conclusions about the sample• thickness• optical constants

• microstructure

• Model based• all measurement techniques are model based

Introduction

Page 3: Spectroscopic Ellipsometry:

H. Tompkins1-3 Ellipsometry

Polarized Light

• The Name• “Ellipsometry” comes from

“elliptically polarized light”• better name would be

“polarimetry”

• Linearly Polarized• combining two light beams

in phase, gives linearly polarized light

+

=

Fundamentals

Page 4: Spectroscopic Ellipsometry:

H. Tompkins1-4 Ellipsometry

Polarized Light (continued)

• Elliptically Polarized• combining two light beams

out of phase, gives elliptically polarized light

• Two ways• pass through a retarder• reflect off a surface

• absorbing material• substrate with film

+

=

Fundamentals

Page 5: Spectroscopic Ellipsometry:

H. Tompkins1-5 Ellipsometry

Laws of Reflection and Refraction

• Reflection

• Refraction (Snell’s law)• for dielectric, i.e. k = 0

• in general

• sine function is complex• corresponding complex cosine function

φi = φr

Ñ1 sin φ1 = Ñ 2 sin φ2

n1 sin φ1 = n2 sin φ2

sin 2 φ2 + cos 2 φ2 = 1

Fundamentals

Page 6: Spectroscopic Ellipsometry:

H. Tompkins1-6 Ellipsometry

Reflections (orientation)

• Electric Field Vector

• Plane-of-Incidence• incoming• normal• outgoing

• s-waves and p-waves• “senkrecht” and “parallel”

Ep

Es

Plane of Incidence

Fundamentals

Page 7: Spectroscopic Ellipsometry:

H. Tompkins1-7 Ellipsometry

Equations of Fresnel

• Fresnel reflection coefficients, • complex numbers

• ratio of Amplitude of outgoing to incoming• different for p-waves and s-waves

• Reflectance• ratio of Intensity• square of Amplitude• for a single interface

r12

p =Ñ 2 cos φ1 − Ñ1 cos φ2

Ñ 2 cos φ1 + Ñ1 cos φ2 r12

s =Ñ 1 cos φ1 − Ñ 2 cos φ2

Ñ1 cos φ1 + Ñ 2 cos φ2

pr12sr12

2

12ss r=ℜ2

12pp r=ℜ

Fundamentals

Page 8: Spectroscopic Ellipsometry:

H. Tompkins1-8 Ellipsometry

Brewster Angle (for dielectrics)

• r s always negative and non-zero• r p passes through zero• goes to zero• The Brewster Angle

• sometimes called the principal angle, polarizing angle

• Reflected light is s-polarized • ramifications

pℜ

tan φB =

n2

n1

cos φ2 = sin φB

Fundamentals

Page 9: Spectroscopic Ellipsometry:

H. Tompkins1-9 Ellipsometry

“Brewster” Angle, for metals

• if k is non-zero, r s and r p

are complex• cannot plot r s and r p vs

angle of incidence• However, we can still plot

the Reflectance• has a minimum,

although not zero• Actually called the

“principal angle”

pℜ

Fundamentals

Page 10: Spectroscopic Ellipsometry:

H. Tompkins1-10 Ellipsometry

Reflections with Films

• Ellipsometry,• Amplitude, phase of outgoing vs

incoming

• Reflectometry• Intensity of outgoing vs incoming

• Total Reflection Coefficient• corresponds to Fresnel

Coefficients• complex number

• β is phase change from top to bottom of film

d

φ1

φ3

φ2Ñ2

Ñ3

Ñ1

Rp =r12

p + r23p exp(−j2β)

1 + r12p r23

p exp(−j2β)Rs =

r12s + r23

s exp(−j2β)1+ r12

s r23s exp(−j2β)

β = 2π dλ

Ñ2 cosφ2

Fundamentals

Page 11: Spectroscopic Ellipsometry:

H. Tompkins1-11 Ellipsometry

Ellipsometry and Reflectometry definitions

• Reflectance

• Delta, the phase difference induced by the reflection• if δ1 is the phase difference before, and δ2 the phase difference after the

reflection then ∆∆∆∆ = δδδδ1 - δδδδ2• ranges from zero to 360º (or -180 to +180º )

• Psi, the ratio of the amplitude diminutions• ranges from zero to 90º

• The Fundamental Equation of Ellipsometry

ℜ p = Rp 2ℜ s = Rs 2

tan Ψ =

Rp

R s

ρ = tan Ψe j∆ tan Ψ ej∆ =

Rp

R ss

p

RR=ρ

Fundamentals

Page 12: Spectroscopic Ellipsometry:

H. Tompkins1-12 Ellipsometry

More Perspective

• Ellipsometers measure ∆ and Ψ (sometimes only cos ∆ )• Properties of the probing beam

• Quantities such as thickness and index of refraction are calculated quantities, based on a model.

• Properties of the sample

• Values of ∆ and Ψ are always correct• Whether thickness and index are correct depend on the

model• Both precision and accuracy for ∆ and Ψ• Precision for thickness• Accuracy, ???

Fundamentals

Page 13: Spectroscopic Ellipsometry:

H. Tompkins1-13 Ellipsometry

Examples

• Thin oxides on Silicon

The Anatomy of an Ellipsometric Spectrum

Si Optical Constants

Wavelength (nm)200 400 600 800 1000

Inde

x 'n

'

Ext. C

oeff. 'k'

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

nk SiO2 Optical Constants

Wavelength (nm)200 400 600 800 1000

Inde

x 'n

'

Ext. C

oeff. 'k'

1.46

1.48

1.50

1.52

1.54

1.56

1.58

0.00

0.02

0.04

0.06

0.08

0.10

nk

Wavelength (nm)200 400 600 800 1000

Ψ (

° )

0

10

20

30

40

50

film-free10 Å25 Å60 Å100 Å

Wavelength (nm)200 400 600 800 1000

∆ (

° )

0

30

60

90

120

150

180

film-free10 Å25 Å60 Å100 Å

Page 14: Spectroscopic Ellipsometry:

H. Tompkins1-14 Ellipsometry

Examples

• Thicker oxide on Silicon

The Anatomy of an Ellipsometric Spectrum

Wavelength (nm)200 400 600 800 1000

Ψ in

deg

rees

0

30

60

90

2200 Å2500 Å

Wavelength (nm)200 400 600 800 1000

∆ in

deg

rees

0

120

240

360

2200 Å2500 Å

Wavelength (nm)200 400 600 800 1000

30

60

90

120

150

180

2200 Å2500 Å

Si Optical Constants

Wavelength (nm)200 400 600 800 1000

Inde

x 'n

'

Ext. C

oeff. 'k'

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

nk

SiO2 Optical Constants

Wavelength (nm)200 400 600 800 1000

Inde

x 'n

'

Ext. C

oeff. 'k'

1.46

1.48

1.50

1.52

1.54

1.56

1.58

0.00

0.02

0.04

0.06

0.08

0.10

nk

Page 15: Spectroscopic Ellipsometry:

H. Tompkins1-15 Ellipsometry

Examples• Polysilicon on oxide on silicon

The Anatomy of an Ellipsometric Spectrum

Wavelength (nm)200 400 600 800 1000

Ψ in

deg

rees

0

30

60

90

Wavelength (nm)200 400 600 800 1000

0

60

120

180

polysilicon OC's

Wavelength (nm)200 400 600 800 1000

Inde

x 'n

'

Ext. Coeff. 'k'

1.0

2.0

3.0

4.0

5.0

6.0

0.0

1.0

2.0

3.0

4.0

5.0

nk

0 si 1 mm1 sio2 1000 Å2 polysilicon 3000 Å3 srough 25 Å

Page 16: Spectroscopic Ellipsometry:

H. Tompkins1-16 Ellipsometry

Examples

• Thin chromium on silicon

• caveats

The Anatomy of an Ellipsometric Spectrum

Wavelength (nm)300 400 500 600 700 800

∆ in

deg

rees

0

60

120

180

film-free50 Å100 Å200 Å300 Å

Wavelength (nm)300 400 500 600 700 800

Ψ

0

20

40

60

film-free50 Å100 Å200 Å300 Å

0 si 1 mm1 cr 300 Å

Chromium OC's

Wavelength (nm)300 400 500 600 700 800

Inde

x 'n

'

Ext. Coeff. 'k'

0.0

1.0

2.0

3.0

4.0

5.0

2.4

2.7

3.0

3.3

3.6

3.9

4.2

4.5

nk

Page 17: Spectroscopic Ellipsometry:

H. Tompkins1-17 Ellipsometry

Determining Film properties from SE spectra• Except for substrates, we cannot do a direct calculation

What Ellipsometry Measures: What we are interested in:

Analysis of an Ellipsometric Spectrum

Psi (Ψ)Delta (∆)

Film ThicknessRefractive Index

Surface Roughness Interfacial Regions

CompositionCrystallinityAnisotropyUniformityDesired information must be extracted

Through a model-based analysis using equations to describe interaction of

light and materials

Page 18: Spectroscopic Ellipsometry:

H. Tompkins1-18 Ellipsometry

How we analyze data:Analysis of an Ellipsometric Spectrum

Page 19: Spectroscopic Ellipsometry:

H. Tompkins1-19 Ellipsometry

Building the model• Optical Constants

• Tabulated list• when OC’s are very well known• single-crystal• thermal oxide of Si, LPCVD nitride

• Dispersion Equation• Cauchy equation

• dielectrics, primarily• empirical• not K-K consistent

Analysis of an Ellipsometric Spectrum

42)( λλλ nnn

CBAn ++=

0 si 1 mm1 cauchy 0 Å

Page 20: Spectroscopic Ellipsometry:

H. Tompkins1-20 Ellipsometry

Building the model• Optical Constants

• Dispersion Equation• Oscillator equation

Analysis of an Ellipsometric Spectrum

Wavelength (nm)0 300 600 900 1200 1500 1800

Inde

x 'n

'

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Wavelength (nm)0 300 600 900 1200 1500 1800

Ext.

Coe

ff. 'k

'

0.0

1.0

2.0

3.0

4.0

5.0

Photon Energy (eV)0 2 4 6 8 10

ε2

0

5

10

15

20

25

30

Photon Energy (eV)0 2 4 6 8 10

ε 1

-10

-5

0

5

10

15

20

0 si 1 mm1 sio2 1000 Å2 polysilicon 0 Å

Wavelength (nm)0 300 600 900 1200 1500 1800

'n'

0.0

1.0

2.0

3.0

4.0

5.0

Wavelength (nm)0 300 600 900 1200 1500 1800

'k'

0.0

1.0

2.0

3.0

4.0

Page 21: Spectroscopic Ellipsometry:

H. Tompkins1-21 Ellipsometry

Building the model• Optical Constants

• Mixture• EMA, effective medium

approximation

• Graded Layers• Anisotropic Layers• Superlattice

Analysis of an Ellipsometric Spectrum

0 si 1 mm1 sio2 1000 Å2 polysilicon 2000 Å3 srough 0 Å

Page 22: Spectroscopic Ellipsometry:

H. Tompkins1-22 Ellipsometry

Building the model• Seed Values

• Thickness• process engineer’s guess• analyst's guess• trial-and-error

• till it looks good

• Cauchy coefficients• An between ~ 1.4 and 2.2• higher for poly or a_Si

• Oscillators• tough• “GenOsc” formalism

Analysis of an Ellipsometric Spectrum

A wise old sage once said:

“The best way to solve a problem is to have solved one just like it yesterday.”

Page 23: Spectroscopic Ellipsometry:

H. Tompkins1-23 Ellipsometry

The regression process• Don’t turn all the variables

loose to begin with• e.g. for a Cauchy

• thickness first• then An and thickness• then include Bn

• add in extinction coefficient

• For a stack• don’t try to determine thicknesses

and OC’s simultaneously• creative deposition

• “done” is a relative term• does it make sense

Analysis of an Ellipsometric Spectrum

A wise old sage once said:

“You can have it all, you just can’t have it all at once.”

Page 24: Spectroscopic Ellipsometry:

H. Tompkins1-24 Ellipsometry

Requirements• plane parallel interfaces

• roughness

• film must be uniform• graded layers• anisotropic layers

• multilayers• need to know something about OC’s

• coherence• patterned wafers• non-uniform thickness• macroscopic roughness

• helps if the film-of-interest is on top• optical contrast

• polymer on glass

What you can do, and what you can’t do

Page 25: Spectroscopic Ellipsometry:

H. Tompkins1-25 Ellipsometry

Optical Constants of Very Thin Films

• consider a single wavelength (632.8 nm) at 70°

• oxynitride on silicon• Delta/Psi trajectories

• below 100Å, very difficult to determine index, n

• distinguishing one material from another

• determining thicknesses in a stack• e.g., ONO

• however, if you’re willing to assume n, can determine thickness of very thin film

• classic experiment of Archer• how far can you be off?

What you can do, and what you can’t do

Page 26: Spectroscopic Ellipsometry:

H. Tompkins1-26 Ellipsometry

Optical Constants of Very Thin Films

making it better directions• DUV or VUV

• shorter wavelengths• extinction coefficient often

nonzero

• IR• absorption bands are different for

different materials

What you can do, and what you can’t do

Page 27: Spectroscopic Ellipsometry:

H. Tompkins1-27 Ellipsometry

Optical Constants of Very Thin Films

Fundamental Limitation• Our ability to make films with:

• plane parallel interfaces• uniformity

What you can do, and what you can’t do

d

φ1

φ3

φ2Ñ2

Ñ3

Ñ1

Page 28: Spectroscopic Ellipsometry:

H. Tompkins1-28 Ellipsometry

Acknowledgements

• Bell Laboratories, prior to the divestiture (< 1982)

• Motorola• J. A. Woollam Co., Inc.

• James Hilfiker

• Stefan Zollner