split-octonions and geometry of itsconferences.hepi.tsu.ge/rdp_qcd_2019/talks/... · • we...

14
Alexandre Gurchumelia (PhD student) Supervisor: Assoc. Prof. Merab Gogberashvili School and Workshop “Frontiers of QCD” (2019/09/24 - Tbilisi, Georgia) SPLIT-OCTONIONS AND GEOMETRY OF ITS AUTOMORPHISM GROUP

Upload: others

Post on 23-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Alexandre Gurchumelia

(PhD student)

Supervisor: Assoc. Prof. Merab Gogberashvili

School and Workshop “Frontiers of QCD” (2019/09/24 - Tbilisi, Georgia)

SPLIT-OCTONIONS AND

GEOMETRY OF ITS

AUTOMORPHISM GROUP 𝑮𝟐𝐍𝐂

Page 2: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 2Cayley-Dickson doubling process

• Given algebra 𝔸, we can double it

𝑎1, 𝑎2 ∈ 𝔸 × 𝔸, 𝑎1, 𝑎2 ∈ 𝔸

• Multiplication rule

𝑎1, 𝑎2 𝑏1, 𝑏2 = 𝑎1𝑏1 + 𝛿𝑏2𝑎2∗ , 𝑎1

∗𝑏2 + 𝑏1𝑎2

• Involution

𝑎1, 𝑎2∗ = 𝑎1

∗ , −𝑎2

• Norm of 𝑎 = 𝑎1, 𝑎2

𝑎 2 = 𝑎∗𝑎 = 𝑎12 + 𝑎2

2, 0

• Setting 𝛿 = 1 and iterating

ℝ → ℂ → ℍ → 𝕆 → 𝕊 → ⋯

• Complex numbers: 𝑖 = 0,1

𝑎1, 𝑎2 = 𝑎1 + 𝑖𝑎2

Page 3: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 3Complex & split-complex numbers

𝑖2 = −1

𝑒𝑖𝜑 = cos𝜑 + 𝑖 sin𝜑

𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ

𝑧 2 = 𝑥2 + 𝑦2

𝑗2 = 1

𝑒𝑗𝜑 = cosh𝜑 + 𝑗 sinh𝜑

𝑧 = 𝑡 + 𝑗𝑥 ∈ split-complex

𝑧 2 = 𝑡2 − 𝑥2

Page 4: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 4Quaternions ℍ: 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1

• Quaternionic algebra

𝑞12 = 𝑞2

2 = 𝑞32 = 𝑞1𝑞2𝑞3 = −1

• Spatial rotations of 𝐀 = 𝐴𝑛𝑞𝑛

𝐀′ = exp1

2𝜃𝑛𝑞𝑛 𝐀exp −

1

2𝜃𝑛𝑞𝑛

• Isomorphism with Clifford algebra

ℂ⊗ℍ ≃ ℂ𝑙 3

𝑖𝑞1 ↔ 𝜎1, 𝑖𝑞2 ↔ 𝜎2, 𝑖𝑞3 ↔ 𝜎3

• Grassmann numbers (nilpotent)

𝑎 =1

2𝑞1 + 𝑖𝑞2 , 𝑎† = −

1

2𝑞1 − 𝑖𝑞2

• Projection operator (idempotent)

𝑎𝑎† =1

21 − 𝑖𝑞3

• Ladder structure

𝑎, 𝑎 = 𝑎†, 𝑎† = 0, 𝑎, 𝑎† = 1

C. Furey 2018

Page 5: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 5

Page 6: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 6Split-octonions

• Multiplication table • Split-octonion & its conjugte

𝑠 = 𝜔 + 𝜆𝑛𝐽𝑛 + 𝑡𝐼 + 𝑥𝑛𝑗𝑛

𝑠 = 𝜔 − 𝜆𝑛𝐽𝑛 − 𝑡𝐼 − 𝑥𝑛𝑗𝑛

• Norm

𝑠𝑠 = 𝜔2 − 𝜆𝑚𝜆𝑚 − 𝑡2 + 𝑥𝑛𝑥

𝑛

• Other involutions (conjugtions)

conj𝐼,𝑗 𝑠 = 𝐽3 𝐽2 𝐽1𝑠𝐽1 𝐽2 𝐽3conj𝐽,𝑗 𝑠 = 𝑠†𝐼 = 𝐼𝑠𝐼

conj𝐽,𝐼 𝑠 = 𝐼 𝐽3 𝐽2 𝐽1𝑠𝐽1 𝐽2 𝐽3 𝐼

Page 7: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 7Spin & chirality with split-octonions

• Eluding non-associativity

𝐴𝐵𝐶𝑓 ≡ 𝐴 𝐵 𝐶𝑓

• Ladder operators

𝛼 =1

2𝐽1 − 𝑗2 , 𝛼† =

1

2𝐽1 + 𝑗2

• Commutation relations

𝛼, 𝛼 = 𝛼†, 𝛼† = 0, 𝛼, 𝛼† = 1

• “Complex” numbers, 𝐴, 𝐵, 𝐶, 𝐷

𝑥 = 𝑥0 + 𝑗3𝑥1

• Idempotents

𝑣𝑅 = 𝛼𝛼† =1

21 − 𝐽3

𝑣𝐿 = 𝛼†𝛼 =1

21 + 𝐽3

• Finding minimal left ideal (spinor)

Ψ = 𝛼 𝐴 + 𝛼† 𝐵 + 𝛼𝛼†|𝐶 + 𝛼†𝛼|𝐷 𝑣

• Left and right Weyl spinors

Ψ𝑅 = 𝛼†𝑣𝑅𝜓𝑅↑ + 𝑣𝑅𝜓𝑅

Ψ𝐿 = 𝑣𝐿𝜓𝐿↑ + 𝛼𝑣𝐿𝜓𝐿

Page 8: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 8Dirac theory with with split-octonions

• Dirac spinor

Ψ𝐷 = Ψ𝑅 +Ψ𝐿

=1

2𝜓𝐿0↑ + 𝜓𝑅0

↓ +1

2𝜓𝐿0↓ + 𝜓𝑅0

↑ 𝐽1 +1

2𝜓𝐿1↓ + 𝜓𝑅1

↑ 𝐽2 +1

2𝜓𝐿0↑ − 𝜓𝑅0

↓ 𝐽3

−1

2𝜓𝐿1↑ − 𝜓𝑅1

↓ 𝐼 −1

2𝜓𝐿1↓ − 𝜓𝑅1

↑ 𝑗1 −1

2𝜓𝐿0↓ − 𝜓𝑅0

↑ 𝑗2 +1

2𝜓𝐿1↑ + 𝜓𝑅1

↓ 𝑗3

• Dirac equation in external 4-potential

𝑗3 𝛻Ψ + conj𝐽,𝐼 𝒜Ψ = 𝑚Ψ

𝛻 =𝜕

𝜕𝑡+ 𝐽𝑚

𝜕

𝜕𝑥𝑚, 𝒜 = 𝐴0 + 𝐽𝑚𝐴𝑚

𝜌 = ΨΨ

• Another way of writing

𝐽3 𝛻Ψ + 𝐼 conj𝐼,𝐽 𝒜Ψ = −𝑚Ψ

𝛻 = −𝐼𝜕

𝜕𝑡+ 𝑗𝑚

𝜕

𝜕𝑥𝑚, 𝒜 = −𝐼𝐴0 + 𝑗𝑚𝐴𝑚

𝜌 = − ΨΨ = Ψ𝐼 Ψ𝐼

Page 9: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 9Exceptional Lie group 𝑮𝟐NC

• Quadratic form

𝑠𝑠 = 𝜔2 − 𝜆𝑚𝜆𝑚 − 𝑡2 + 𝑥𝑛𝑥

𝑛

• Groups that preserve it

𝑆𝑂 4,4 ⊃ 𝑆𝑂 4,3 ⊃ 𝐺2NC

• 𝐺2 root system

Page 10: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 10𝑮𝟐NC generators (other basis)

Gogberashvili, Gurchumelia (2019)

Page 11: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 11Infinitesimal 𝑮𝟐NC transformations

Page 12: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 12Finite transformation examples in 𝑮𝟐𝐍𝐂

• Rotation

• This boost imitates translation, but is non-commutative

Non-commutativity bound 𝑥𝑖 , 𝑥𝑗 < 10−8GeV2

Chaichian, Sheikh-Jabbari, Tureanu (2001)

Page 13: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 13Casimir operator of 𝑮𝟐𝐍𝐂

• Limiting extra dimensions 𝜆 = const𝐶2 → 𝐶Lorentz − 𝜆2𝐶KG

Gogberashvili, Gurchumelia (2019)

Page 14: SPLIT-OCTONIONS AND GEOMETRY OF ITSconferences.hepi.tsu.ge/RDP_QCD_2019/Talks/... · • We constructed spin ladder structure and Dirac equation with split-octonions • Geometrical

Slide: 14Summary & references

Summery• We constructed spin ladder structure and Dirac equation with split-octonions• Geometrical application of split-octonions was also considered

• Representation of rotations by split-octonions gives 𝐺2NC

• Effective space-time is 7D (4 time, 3 space)

• 𝐺2NC imitates Poincaré transformations

• Translations are non-commutative due to extra time-like dimensions

• Casimir of 𝐺2NC reduces to Casimirs of Lorentz and Poincaré in the limit

References• Gogberashvili, M., & Gurchumelia, A. (2019). Geometry of the non-compact G (2). Journal

of Geometry and Physics.

• Gogberashvili, M., & Sakhelashvili, O. (2015). Geometrical applications of split octonions.

Advances in Mathematical Physics, 2015.• Chaichian, M., Sheikh-Jabbari, M. M., & Tureanu, A. (2001). Hydrogen atom spectrum and the Lamb shift in

noncommutative QED. Physical Review Letters, 86(13), 2716.

• Furey, C. (2018). 𝑆𝑈 3 𝐶 × 𝑆𝑈 2 𝐿 × 𝑈 1 𝑌 × 𝑈 1 𝑋 as a symmetry of division algebraic ladder operators.

The European Physical Journal C, 78(5), 375.