spread spectrum communication systems

Upload: shahid78

Post on 03-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Spread Spectrum communication systems

    1/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 1

    Todays Schedule

    Reading: Lathi 9.2 (Spread Spectrum Intro) Quiz 3 Mini-Lecture 1:

    Spread spectrum

  • 7/28/2019 Spread Spectrum communication systems

    2/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 2

    Introduction to Spread Spectrum

    Problems such as capacity limits, propagationeffects, synchronization occur with wireless

    systems Spread spectrum modulation spreads out themodulated signal bandwidth so it is muchgreater than the message bandwidth

    Independent code spreads signal attransmitter and despreads signal at receiver

  • 7/28/2019 Spread Spectrum communication systems

    3/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 3

    Multiplexing in 4 dimensions space (s i) time (t)

    frequency (f) code (c)

    Goal: multiple useof a shared medium

    Important: guard spaces needed!

    s 2

    s 3

    s 1

    Multiplexing

    f

    t

    c

    k2 k3 k4 k5 k6 k1

    f

    tc

    f

    tc

    channels k i

  • 7/28/2019 Spread Spectrum communication systems

    4/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 4

    Frequency multiplex

    Separation of spectrum into smaller frequency bands Channel gets band of the spectrum for the whole time

    Advantages: no dynamic coordination needed works also for analog signals

    Disadvantages: waste of bandwidth

    if traffic distributed unevenly inflexible guard spaces

    k3 k4 k5 k6

    f

    t

    c

  • 7/28/2019 Spread Spectrum communication systems

    5/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 5

    f

    t

    ck2 k3 k4 k5 k6 k1

    Time multiplex

    Channel gets the whole spectrum for a certainamount of time

    Advantages: only one carrier in the

    medium at any time throughput high even

    for many users

    Disadvantages: precise

    synchronizationnecessary

  • 7/28/2019 Spread Spectrum communication systems

    6/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 6

    f

    Time and frequency multiplex

    A channel gets a certain frequency band for acertain amount of time (e.g. GSM)

    Advantages: better protection against tapping protection against frequency

    selective interference higher data rates compared to

    code multiplex Precise coordination

    requiredt

    c

    k2 k3 k4 k5 k6 k1

  • 7/28/2019 Spread Spectrum communication systems

    7/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 7

    Code multiplex

    Each channel has unique code All channels use same spectrum at same time Advantages:

    bandwidth efficient no coordination and synchronization good protection against interference

    Disadvantages: lower user data rates more complex signal regeneration

    Implemented using spread spectrum technology

    k2 k3 k4 k5 k6 k1

    f

    t

    c

  • 7/28/2019 Spread Spectrum communication systems

    8/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 8

    Spread Spectrum Technology

    Problem of radio transmission: frequencydependent fading can wipe out narrow bandsignals for duration of the interference

    Solution: spread the narrow band signal into a broad band signal using a special code

    detection atreceiver

    interference spread

    signal

    signal

    spreadinterference

    f f

    power power

  • 7/28/2019 Spread Spectrum communication systems

    9/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 9

    Spread Spectrum Technology

    Side effects: coexistence of several signals without

    dynamic coordination

    tap-proof Alternatives: Direct Sequence (DS/SS),

    Frequency Hopping (FH/SS)

    Spread spectrum increases BW of messagesignal by a factor N , Processing Gain

    10Processing Gain 10 log ss ss B B N

    B B

  • 7/28/2019 Spread Spectrum communication systems

    10/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 10

    Effects of spreading andinterference

    P

    f i)

    P

    f ii)

    sender P

    f iii)

    P

    f iv)

    receiver

    f v)

    user signalbroadband interferencenarrowband interference

    P

  • 7/28/2019 Spread Spectrum communication systems

    11/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 11

    Spreading and frequencyselective fading

    frequency

    channelquality

    1 23

    4

    5 6

    Narrowbandsignal

    guard space

    22222

    frequency

    channelquality

    1

    spread

    spectrum

    narrowbandchannels

    spread spectrumchannels

  • 7/28/2019 Spread Spectrum communication systems

    12/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 12

    DSSS (Direct Sequence SpreadSpectrum) I

    XOR the signal with pseudonoise (PN) sequence(chipping sequence)

    Advantages reduces frequency selective

    fading in cellular networks

    base stations can use thesame frequency range

    several base stations candetect and recover the signal

    But, needs precise power control

    user data

    chippingsequence

    resultingsignal

    0 1

    0 1 1 0 1 0 1 01 0 0 1 11

    XOR

    0 1 1 0 0 1 0 11 0 1 0 01

    =

    Tb

    Tc

  • 7/28/2019 Spread Spectrum communication systems

    13/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    01010100101011111011111101000011100001011001010

    Spread Spectrum Dickerson EE422 13

    DSSS (Direct Sequence SpreadSpectrum) II

    Xuser datam(t)

    chippingsequence, c(t)

    modulator

    radiocarrier

    Spread spectrumSignal y(t)=m(t)c(t) transmit

    signal

    transmitter

    demodulator receivedsignal

    radiocarrier

    X

    Chipping sequence,

    c(t)

    receiver

    integrator

    products

    decisiondata

    sampled

    sums

    correlator

  • 7/28/2019 Spread Spectrum communication systems

    14/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 14

    DS/SS Comments III

    Pseudonoise(PN) sequence chosen so thatits autocorrelation is very narrow => PSD

    is very wide Concentrated around t < T c Cross- correlation between two users codes is

    very small

  • 7/28/2019 Spread Spectrum communication systems

    15/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 15

    DS/SS Comments IV

    Secure and Jamming Resistant Both receiver and transmitter must know c(t)

    Since PSD is low, hard to tell if signal present Since wide response, tough to jam everything

    Multiple access If c i(t) is orthogonal to c j(t), then users do not interfere

    Near/Far problem Users must be received with the same power

  • 7/28/2019 Spread Spectrum communication systems

    16/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 16

    FH/SS (Frequency HoppingSpread Spectrum) I

    Discrete changes of carrier frequency sequence of frequency changes determined via PN sequence

    Two versions Fast Hopping : several frequencies per user bit (FFH) Slow Hopping : several user bits per frequency (SFH)

    Advantages frequency selective fading and interference limited to short period uses only small portion of spectrum at any time

    Disadvantages not as robust as DS/SS simpler to detect

  • 7/28/2019 Spread Spectrum communication systems

    17/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 17

    FHSS (Frequency HoppingSpread Spectrum) II

    user data

    slowhopping(3 bits/hop)

    fasthopping(3 hops/bit)

    0 1

    Tb

    0 1 1 t

    f

    f 1

    f 2

    f 3

    t

    Td

    f

    f 1

    f 2

    f 3

    t

    Td

    Tb: bit period T d: dwell time

  • 7/28/2019 Spread Spectrum communication systems

    18/38

    10111000001111000010101100010010000000

    000011010011100

    001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 18

    FHSS (Frequency HoppingSpread Spectrum) III

    modulator user data

    hoppingsequence

    modulator

    narrowbandsignal

    Spread transmitsignal

    transmitter

    receivedsignal

    receiver

    demodulator data

    frequencysynthesizer

    hoppingsequence

    demodulator

    frequencysynthesizer

  • 7/28/2019 Spread Spectrum communication systems

    19/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 19

    Applications of Spread Spectrum

    Cell phones IS-95 (DS/SS)

    GSM Global Positioning System (GPS) Wireless LANs

    802.11b

  • 7/28/2019 Spread Spectrum communication systems

    20/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 20

    Performance of DS/SS Systems

    Pseudonoise (PN) codes Spread signal at the transmitter

    Despread signal at the receiver Ideal PN sequences should be

    Orthogonal (no interference) Random (security) Autocorrelation similar to white noise (high at

    t =0 and low for t not equal 0)

  • 7/28/2019 Spread Spectrum communication systems

    21/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 21

    PN Sequence Generation

    Codes are periodic and generated by a shiftregister and XOR

    Maximum-length (ML) shift register

    sequences, m- stage shift register, length: n =2 m 1 bits R( t )

    -1/n Tc

    t ->

    -nTc nTc

    +Output

  • 7/28/2019 Spread Spectrum communication systems

    22/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 22

    Generating PN Sequences

    Take m=2 =>L=3 cn=[1,1,0,1,1,0, . . .],

    usually written as bipolar c n=[1,1,-1,1,1,-1, . . .]

    m Stages connected tomodulo-2 adder

    2 1,2

    3 1,3

    4 1,4

    5 1,46 1,6

    8 1,5,6,7

    +Output

    -- 11/1

    01

    1

    1

    Lm L

    m

    cc L

    m R L

    nmnnc

  • 7/28/2019 Spread Spectrum communication systems

    23/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 23

    Problems with m -sequences

    Cross-correlations with other m -sequencesgenerated by different input sequences can

    be quite high Easy to guess connection setup in 2 msamples so not too secure

    In practice, Gold codes or Kasamisequences which combine the output of m-sequences are used.

  • 7/28/2019 Spread Spectrum communication systems

    24/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 24

    Detecting DS/SS PSK Signals

    XBipolar, NRZm(t)

    PNsequence, c(t)

    X

    sqrt(2)cos (w ct + q )

    Spread spectrumSignal y(t)=m(t)c(t) transmit

    signal

    transmitter

    X

    receivedsignal

    X

    c(t)

    receiver

    integrator

    z(t)

    decision data

    sqrt(2)cos (w ct + q )

    LPF

    w(t)

    x(t)

  • 7/28/2019 Spread Spectrum communication systems

    25/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 25

    Optimum Detection of DS/SSPSK

    Recall, bipolar signaling (PSK) and whitenoise give the optimum error probability

    Not effected by spreading Wideband noise not affected by spreading Narrowband noise reduced by spreading

    2 bb

    E P Q

  • 7/28/2019 Spread Spectrum communication systems

    26/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 26

    Signal Spectra

    Effective noise power is channel noise power plus jamming (NB) signal power divided by N

    10Processing Gain 10 log ss ss b

    c

    B B T N

    B B T

    T b

    Tc

  • 7/28/2019 Spread Spectrum communication systems

    27/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 27

    Multiple Access Performance

    Assume K users in the same frequency band,

    Interested in user 1, other users interfere4

    13

    5

    2

    6

  • 7/28/2019 Spread Spectrum communication systems

    28/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 28

    Signal Model

    Interested in signal 1, but we also getsignals from other K-1 users:

    At receiver,

    2 cos2 cos

    k k k k k c k k

    k k k k c k k k c k

    x t m t c t t m t c t t

    t t w t q t t w q w t

    - - - - - -

    12

    K

    k k

    x t x t x t

  • 7/28/2019 Spread Spectrum communication systems

    29/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 29

    Interfering Signal

    After mixing and despreading (assume t 1=0)

    After LPF

    After the integrator-sampler

    1 12 cos cosk k k k k c k c z t m t c t c t t t t t w w q - -

    1 1cosk k k k k k w t m t c t c t t t q - - -

    1 10cosbT

    k k k k k k I m t c t c t dt q t t - - -

  • 7/28/2019 Spread Spectrum communication systems

    30/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 30

    At Receiver

    m(t) =+/-1 (PSK), bit duration T b Interfering signal may change amplitude at t k

    At User 1:

    Ideally, spreading codes are Orthogonal:

    1 1 1 0 10cos k bk T

    k k k k k k I b c t c t dt b c t c t dt t

    t q t t -

    - - -

    1 1 1 10bT I m t c t c t dt

    1 1 10 0 0b bT T

    k k c t c t dt A c t c t dt t -

  • 7/28/2019 Spread Spectrum communication systems

    31/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 31

    Multiple Access Interference(MAI)

    If the users are assumed to be equal power interferers, can be analyzed using thecentral limit theorem (sum of IID RVs)

    1

    1 3 2b

    b

    P Q

    K N E

    -

  • 7/28/2019 Spread Spectrum communication systems

    32/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 32

    Example of PerformanceDegradation

    N=8 N=32

  • 7/28/2019 Spread Spectrum communication systems

    33/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 33

    Near/Far Problem (I)

    Performance estimates derived using assumptionthat all users have same power level

    Reverse link (mobile to base) makes thisunrealistic since mobiles are moving Adjust power levels constantly to keep equal

    1k

  • 7/28/2019 Spread Spectrum communication systems

    34/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 34

    Near/Far Problem (II)

    K interferers, one strong interfering signaldominates performance

    Can result in capacity losses of 10-30%

    1

    ( ) (1) (1)2

    1

    3 2b

    K k b b bk

    P Q

    E E N E

  • 7/28/2019 Spread Spectrum communication systems

    35/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 35

    Multipath Propagation

  • 7/28/2019 Spread Spectrum communication systems

    36/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 36

    RAKE Receiver

    Received signal sampled at the rate 1/Ts> 2/Tc for detectionand synchronization

    Fed to all M RAKE fingers. Interpolation/decimation unit provides a data stream on chiprate 1/Tc

    Correlation with the complex conjugate of the spreadingsequence and weighted (maximum-ratio criterion)summationover one symbol

  • 7/28/2019 Spread Spectrum communication systems

    37/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    Spread Spectrum Dickerson EE422 37

    RAKE Receiver

    RAKE Receiver has to estimate: Multipath delays

    Phase of multipath components Amplitude of multipath components Number of multipath components

    Main challenge is receiver synchronizationin fading channels

  • 7/28/2019 Spread Spectrum communication systems

    38/38

    1011100000111100001010

    1100010010000000

    000011010011100001000100001101111101

    010101001010111

    11011111101000011100001011001010

    S d S Di k EE422 38

    Next Time

    Student Presentations 13.3 on Optimal Receivers for FSK and

    MSK systems