srf niobium cavity processing, fabrication technology · 2020. 2. 3. · ulvac cr300b 5000l/min coi...

33
SRF Niobium cavity processing, fabrication technology Thursday, 30 Jan. 2020 , 09:30 - 10:00 KEK: HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION, Japan Taro Konomi Indo-Japan Accelerator School cum Workshop (IJAS-2020), 28-31 January 2020 January 29, 2020 IJAS2020 1

Upload: others

Post on 29-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • SRF Niobium cavity processing, fabrication technology

    Thursday, 30 Jan. 2020 , 09:30 - 10:00

    KEK: HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION, Japan

    Taro Konomi

    Indo-Japan Accelerator School cum Workshop (IJAS-2020), 28-31 January 2020January 29, 2020 IJAS2020 1

  • contents

    January 29, 2020 IJAS2020 2

    • Cavity measurement method• KEK activities.

    • Standard recipe• Nitrogen doping• Nitrogen infusion

  • ILC Cost down R&D

    3

    e- Source

    e+ Main Linac

    e+ Sourcee- Main Linac

    Damping Ring

    • Main Linac• Length 11km x 2 (500 GeV and 250GeV ILC)

    • Number of cavities 16000 (500GeV), 8000(250GeV)

    • Cost 2/3 of total ILC cost (include tunnel)• Acc. Gradient as received (vertical test )

    • Acc. Gradient 35MV/m ⇒ 40MV/m• Operation gradient

    • Acc. Gradient 31.5MV/m ⇒ 35MV/m

    N-infusion:The mechanism is still not clear

    【Effect】Gradient:10% improve

    ⇒ # of cavities and modules will be reducedQuality factor :200% improve

    ⇒ cryogenic cost will be reduced

    Low

    loss

    High gradient

    S. Aderhold / A. Grassellino (TTC@Saclay)Target is 10% cost reduction

  • ILC superconducting cavity

    4

    1.3GHz single cell cavity

    • ILC cavity is 1.3 GHz 9 cell.• We can use single cell cavity for researching surface treatment

    beamRF Input

  • Cavity RF parameters

    5

    • ILC cavity is standing wave cavity.• Surface Electric peak located on Iris. Surface Magnetic peak located on Equator.

    cell IrisEquator

    1.3GHz 9cell cavity (EUV cavity)

    0

    20

    40

    60

    80

    100

    120

    -600 -400 -200 0 200 400 600

    Cavity Shape

    Z (mm)

    -2

    -1

    0

    1

    2

    0

    1000

    2000

    3000

    0

    5 105

    1 106

    1.5 106

    2 106

    2.5 106

    Axis Elec.

    Shape

    Surf. Magn.

    Surf. Elec.

    Parameter Value

    Frequency 1.3 GHz

    Transit time factor 0.73

    R/Q 1009 Ohm

    Ep/Eacc 2.03

    Hp/Eacc 4.23 mT/(MV/m)

  • BCS and residual resistance

    6

    1

    10

    100

    1000

    0.2 0.3 0.4 0.5 0.6 0.7 0.8

    Meas.R

    BCS

    Rres

    Rs

    (nO

    hm

    )

    1/T (1/K)

    The RF loss of superconducting cavities is determined by top surface (100 nm). RF loss can be described as follows:

    𝑅𝑆 = 𝑅𝐵𝐶𝑆 + 𝑅𝑟𝑒𝑠

    𝑅𝐵𝐶𝑆 𝑇, 𝐸𝑎𝑐𝑐 = 𝐴(𝐸𝑎𝑐𝑐)𝜔2

    𝑇𝑒𝑥𝑝 −

    ∆(𝐸𝑎𝑐𝑐)

    𝑘𝑇𝑐・

    𝑇𝐶

    𝑇

    RBCS (BCS resistance)• Exponentially dependent on temperatureRres (Residual resistance)• magnetic flux pinned in cavity• thermal conductivity (plate thickness) of material• large dust and defects on the surface• Field Emission is also included.

    • Niobium superconducting cavities show characteristic changes in surface resistance around 2K.• It can be divided into BCS resistance which appears due to superconductivity and residual resistance

    which does not depend on temperature.

  • Vertical high gradient test

    7

    • Various sensors (temperature, DC magnetic, X-ray) are mounted around the cavity to detect the quench phenomena.• Heater and solenoid coil are installed to control the external magnetic field during the superconducting transition.

    Heater

    Flux gate sensor

    X-ray sensor

    temperature sensor

    Solenoid Coil

  • Flux trapping

    January 29, 2020 IJAS2020 8

    𝑅res =2𝑃𝑣𝐻RF

    ∝ 𝑁trap

    Residual resistance

    Normal conducting supercondcuting

  • Residual resistance (Flux trapping)

    January 29, 2020 IJAS2020 9

    0

    20

    40

    60

    80

    100

    0 0.5 1 1.5 2 2.5 3 3.5

    750 oC (R8a_1st)

    900 oC (R8b_1st)

    800 oC (R8c_1st)

    Ex

    pu

    lsio

    n (

    %)

    delta Temperature (K)

    10-9

    10-8

    10-7

    10-6

    0.2 0.3 0.4 0.5 0.6 0.7 0.8

    750 oC (R8_1st)

    900 oC (R8b_1st)

    800 oC (R8c_1st)

    Rs

    (Oh

    m)

    1/T (1/K)

    • Increasing the annealing temperature makes it easier to expel magnetic field.• Outer solenoid coil add the DC magnetic field.• the magnetic field was positively expelled by temperature gradient in the cavity by

    the heater on beam pipe.⇒Various measurements are possible without significant difference in residual resistance.

  • High gradient test

    10

    109

    1010

    1011

    1012

    0 5 10 15 20 25 30 35 40

    1.5K1.6K1.8K2.0K

    Qo

    Eacc [MV/m]

    Quench

    No Field Emission

    R2 14th VT (standard recipe)

    0

    5

    10

    15

    20

    0 5 10 15 20 25 30 35 40

    Surface Resistance

    RBCS

    @2K

    Rres

    Rre

    s, R

    bcs

    (n

    Oh

    m)

    Eacc (MV/m)

    • It is possible to divide into BCS resistance and residual resistance by measuring temperature dependence.• Temperature can be controlled by liquid helium pressure.

  • Sensitivity to magnetic flux

    11

    • Nitrogen treatment is more sensitive to DC magnetic flux than standard recipe.

  • Effect of Nitrogen treatment

    12A. Grassellino et al., Supercondutor Science and Technology Vol.30Num.9 (2017)

    ILC Standard recipe

    standard N-dope N-infusion

    Fabrication

    Anneal (800℃)

    Electric polishing (100um)

    Final electric polishing (10~20um)

    Vertical test

    Assembly in cleanroom

    baking(120℃)

    N-process (N2@800℃) N-process(N2@120℃)

    Surface treatment

  • 13

    KEK activities

  • Vacuum furnace

    14

    KEK small furnace

    • Diffusion pump 1unitULVAC PFL-22 10000L/sec

    • Mechanical booster pump 1unitULVAC PMB024CM 33300L/min

    • Rotary pump unitULVAC PKS-070 7000L/min

    • Diffusion pump with LN2 trap 1unit• Mechanical booster pump 1unit• Roots pump 1unint

    Osaka Vac. RD600 500m3/h

    KEK large furnace

    • Turbo pump 3unintsSIMADZU TMP3202M 3000L/sec

    • Scroll pump 3unintsANEST IWATA ISP500 500L/min

    • Cryopump 1unint

    ANELVA CAP220 10000L/sec

    J-PARC furnace

    14

    • CRYO pump 1unintULVAC CRYO U20H 10000L/s

    • Roots pump 1unint

    ULVAC CR300B 5000L/min

    COI furnace

    2015-2016

    2018-Present2016-2018

    2015-2016

  • Standard recipe

    15

  • 10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    0

    200

    400

    600

    800

    1000

    0 5 10 15 20 25 30

    KEK small

    Vac.

    Temp.

    Va

    cuu

    m (

    Pa

    )

    Tem

    p(o

    C)

    Time (hour)

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    0

    200

    400

    600

    800

    1000

    0 5 10 15 20 25 30

    KEK Large

    Vac.

    Temp.

    Va

    cuu

    m (

    Pa

    )

    Tem

    p(o

    C)

    Time (hour)

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    0

    200

    400

    600

    800

    1000

    0 5 10 15 20 25 30

    J-PARC

    Vac.

    Temp.

    Va

    cuu

    m (

    Pa

    )

    Tem

    p(o

    C)

    Time (hour)

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    0

    200

    400

    600

    800

    1000

    0 5 10 15 20 25 30

    COI

    Vac.

    Temp.

    Vacu

    um

    (P

    a)

    Tem

    p(o

    C)

    Time (hour)

    Performance of each furnace

    16

    Diffusion pump (10000L/sec)Diffusion pump with LN2 trap

    Turbo pump (3000 L/sec x3)Cryopump (10000 L/sec)

    Cryopump (10000 L/sec)

    Oil free furnace can reach 1order lower

  • Residual Gas analysis

    17

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    0 5 10 15 20 25

    2 H218 H2O28 N232 O244 CO2

    Total preussure

    Ion

    cu

    rren

    t (A

    )

    Tota

    l pressu

    re (Pa)

    Time (hour)

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    0 5 10 15 20 25

    2 H218 H2O28 N232 O244 CO2

    Total pressure

    Ion

    cu

    rre

    nt

    (A)

    To

    tal (P

    a)

    Time (hour)

    J-PARC (800oC x 3h)

    KEK Large (750oC x 3h)

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    0 20 40 60 80 100

    after 800x3hafter cooling

    Ion

    cu

    rre

    nt

    (A)

    Mass

    H2

    H2O N

    2CO

    2

    hydrocarbon

    Butyl (57)

    • Residual gas doesn’t show the big difference between Oil furnace and Oil free furnace.

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    0 20 40 60 80 100

    after 750 x 3hafter cooling

    Ion

    cu

    rre

    nt

    (A)

    Mass

    H2

    H2O

    N2

    CO2 hydrocarbon

    Butyl (57)

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    0 5 10 15 20 25

    2 H218 H2O28 N232 O244 CO2

    Total pressure

    Ion

    cu

    rren

    t (A

    )

    To

    tal P

    ressu

    re (Pa

    )

    Time (hour)

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    0 20 40 60 80 100

    after 800x3hafter cooling

    Ion

    cu

    rren

    t (A

    )

    Mass

    COI (800oC x 3h)

  • Vertical test result

    18

    • The cavity performance with oil free furnance can reach same performance as standard without final EP.

    109

    1010

    1011

    0 10 20 30 40 50

    2K VT w/ and w/o EP

    R8_1st 2KR8b_1st 2K_1stR8c_1st 2KR9b_1st 2KR6 4th(J-PARC)R9a_1st (KEKS)

    Qo

    Eacc(MV/m)

    w/ Final EP

  • XPS (X-ray photoemission spectroscopy) mea

    19

    280285290295

    0

    1000

    2000

    3000

    4000

    5000

    02270040_1a.PRO

    Binding Energy (eV)

    c/s

    200205210215

    0

    2

    4

    6

    8

    10

    12

    14

    x 104 02270040_1a.PRO

    Binding Energy (eV)

    c/s

    C1s

    Nb3d

    before annealing

    280285290295

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    02270042_1a.PRO

    Binding Energy (eV)

    c/s

    200205210215

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    x 104 02270042_1a.PRO

    Binding Energy (eV)

    c/s

    KEK large 750oC

    280285290295

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    5000

    02270046_1a.PRO

    Binding Energy (eV)

    c/s

    200205210215

    0

    5

    10

    15x 104 02270046_1a.PRO

    Binding Energy (eV)

    c/s

    KEK small 900oC

    280285290295

    0

    1000

    2000

    3000

    4000

    5000

    02270052_1a.PRO

    Binding Energy (eV)

    c/s

    200205210215

    0

    2

    4

    6

    8

    10

    12

    14

    x 104 02270052_1a.PRO

    Binding Energy (eV)

    c/s

    J-PARC 800oC

    • Top layer coved with carbon and oxygen.• After stripping the top surface layer (9.1 nm), clean surface less than XPS sensitivity appears.

    • KEK large furnaces are contaminated with carbon more than 45 nm.

    Analyzer: Versa Probe XPSX-ray source: Al K-alpha(1486.6eV), f200 um, 45 W Spattering condition: 2kV , 2mmx2mm(Spattering rate: 9.1nm/min measured by SiO2 reference sample )

    0nm

    9.1nm

    18.2nm

    27.3nm

    36.4nm

    45.5nm

    CーNb bond

    C-N bond

    Nb2O5

    Nb

    測定:ULVAC(株)

  • Nitrogen dope

    20

  • Nitrogen injection system

    21

    • Turbo pump 3unints: SIMADZU TMP3202M (3000L/sec x3)

    • Scroll pump 3unints:ANEST IWATA ISP500 (500L/min x3)

    • Cryopump 1unint:

    ANELVA CAP220 (10000L/sec)

    • Same system is used in all furnace.• N2 Flow is controlled by variable valve.

    Portable TMP unit

    Argon

    bottle

    Scroll Pump

    Variable

    Leak valveFilter

    Nitrogen bottle

    Scroll Pump

    Pirani gauge

    Turbo PumpCapacitance gauge

    CCG

    Turbo Pump

    Pirani gauge

    BA gauge

    J-PARC Furnace

    Nitrogen inlet line

    cryopump

    3 Turbo pump

    3 Scroll pump

    Main pumps

    Portable pump unit

    QMS

    Leak detector

  • • Cavity is cleaned in clean room by using high pressure rinsing.• All components are transfer in clean pack.• All cavity ports are covered with niobium foil to protect inner surface from Ti contamination

    because flanges are made of NbTi or Ti.

    Transfer cavity

    22

  • Nitrogen injection

    23

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    0

    200

    400

    600

    800

    1000

    1200

    1400

    0 5 10 15 20 25 30 35

    J-PARC N-Dope

    Vac.

    Temp.

    Vacu

    um

    (P

    a) Tem

    p (o

    C)

    Time(hour)

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    0

    200

    400

    600

    800

    1000

    1200

    1400

    9 9.5 10 10.5 11

    J-PARC N-Dope

    Vac.

    Temp.

    Vacu

    um

    (P

    a) T

    emp

    (oC

    )

    Time(hour)

    20 min.

    Zoom

    • 800℃ , N2 pressure ~3Pa、injection time several minutes. • After heat process, apply EP (5um ~10um ) to remove N2

    rich layer.

  • VT results N-dope

    24

    109

    1010

    1011

    0 10 20 30 40 50

    R6 single cell

    N-Dope @ J-PARCReference (ILC recipe)

    Qo

    Eacc(MV/m)

    No F.E.

    Limited by Quench

    Without N-dope↓ Without N-dope

    KEK Large KEK Small

    3.3Pa N-dope, 2min

    J PARC(N-Dope 1st trial )

    2.7Pa N-dope, 20min

    ↑Without N-dope

    2.7Pa N-dope, 20min

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    0

    200

    400

    600

    800

    1000

    1200

    1400

    0 5 10 15 20 25 30 35

    J-PARC N-Dope

    Vac.

    Temp.

    Va

    cuu

    m (

    Pa

    ) Tem

    p (o

    C)

    Time(hour)

    Although many surface treatments in KEK furnaces did not work, we easily succeeded by using oil free furnace.

  • N density measured by GD-OES

    25

    • Density profile of nitrogen was not changed ⇒Impurities (carbon, oxygen,… ) degrader the cavity performance

    10-5

    10-4

    10-3

    10-2

    10-1

    0 10 20 30 40 50 60

    KEK Large Nitorogen

    #1_NoHeating_N#12_KEKL_750anneal_N#2_KEKL_Ndope_N

    den

    sity

    (a

    .u.)

    depth (um)

    10-4

    10-3

    10-2

    10-1

    0 10 20 30 40 50 60

    JPARC Nitrogen

    #20_JPARC_800anneal_N#3_JPARC_Ndope_N

    den

    sity

    (a

    .u.)

    depth (um)

    Rem

    ove b

    y EP

    Rem

    ove b

    y EP

  • Nitrogen infusion

    26

  • COI furnace

    27

    • We have been studying nitrogen infusion using J-PARC vacuum furnace and COI vacuum furnace.• For nitrogen infusion, the quality of the degree of vacuum is important because the heat treatment in a

    vacuum furnace becomes the final surface of RF.• The COI furnace is set up so that it can analyze the introduced gas.

    RGA

    TMP

    RGA

    TMPfurnace

    Furnace RGA

    Variable valve

    Angle valve

    Variable valve

    N2 flow (0.53 SLM)

    N2 line RGA

    N2injection panel

  • N2 Purity monitor

    28

    • Purity was monitored using RGA while injecting nitrogen gas so as to keep the vacuum furnace at 3.3 Pa.• The N2 cylinder is guaranteed 6N purity.• Other gas is the background level of RGA.

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    0 0.2 0.4 0.6 0.8 1

    21828324044

    Ion

    cu

    rren

    t (A

    )

    Time (hour)

    N2 line RGA

    0

    200

    400

    600

    800

    1000

    1200

    10-7

    10-5

    10-3

    10-1

    101

    103

    105

    0 100 200 300 400 500 600 700 800

    20190421_tempandvac_v2Temp. (Left back)

    Pressure (Pa)

    Tem

    per

    atu

    re (

    oC

    )

    Pressu

    re (P

    a)

    Time (hour)

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    0 100 200 300 400 500 600 700 800

    20190421 furnace RGA dataMass 2Mass 18Mass 28Mass 32Mass 40Mass 44

    Ion

    curr

    ent

    (A)

    Time (hour)

  • Purity monitor

    29

    • Even after open to the atmosphere, it is sufficiently low except for hydrogen (~5N).• After heating (1100 ° C x 3h), the purity is initially poor.

    • N2 flow seems to carry impurity gas covered the heater or inner surface of furnace

    After 1100℃ annealing

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    130 135 140 145 150 155 160 165 170

    Mass 2

    Mass 18

    Mass 28

    Mass 32

    Mass 40

    Mass 44

    Ion

    curr

    ent

    (A)

    Time (hour)

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    0 0.2 0.4 0.6 0.8 1

    Mass 2Mass 18Mass 28Mass 32Mass 40Mass 44

    Ion

    curr

    ent

    (A)

    Time (hour)

    After open to airN2 flow N2 flowN2 flow

  • N2 infusion @COI

    30

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    100 120 140 160 180 200 220

    20190128 AES018

    Mass 2Mass 18Mass 28Mass 32Mass 40Mass 44

    Inte

    nsi

    ty (

    a.u

    .)

    Time (hour)

    0

    200

    400

    600

    800

    1000

    1200

    1400

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    100 120 140 160 180 200 220

    20190125 AES018

    Temp.

    Vac.

    Tem

    per

    atu

    re (

    Pa

    )

    Pressu

    re (Pa

    )

    Time (hour)

    Monitored with variable valveN2:3.3Pa x48h

  • Result of N-infusion @COI

    31

    Unfortunately, FE masked high gradient performance, but the Q value was improved at low gradient. A big difference couldn’t seen in BCS resistance. Residual resistance become lower

    108

    109

    1010

    1011

    1012

    10-1

    100

    101

    102

    103

    0 5 10 15 20 25 30 35 40

    Standard_QoNinf_Qo

    Standard_XrayNinf_Xray

    Qo

    Xra

    y (u

    Sv/h

    )Eacc (MV/m)

    0

    5

    10

    15

    20

    0 5 10 15 20 25 30 35 40

    Standard_RresNinf_Rres

    Standard_RbcsNinf_Rbcs

    0

    5

    10

    15

    20

    RB

    CS &

    Rre

    s (n

    Oh

    m)

    Eacc (MV/m)

  • Surface analysis of N infusion

    32

    10-1

    100

    101

    102

    103

    0 5 10 15 20 25

    typical

    C_N307_20190110_800Canneal_R6C_N301_20181120_Ninf120C_R8C_N302_20181218_Ninf160C_R9bC_N207_20181015_Ninf200C_sampleonly

    Inte

    nsi

    ty (

    norm

    ali

    zed

    by

    Nb

    )

    Depth (nm)

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    0 5 10 15 20 25

    typical

    Nb2+O5_N307_20190110_800Canneal_R6Nb2+O5_N301_20181120_Ninf120C_R8Nb2+O5_N302_20181218_Ninf160C_R9bNb2O5_N207_20181015_Ninf200C_sampleonly

    Inte

    nsi

    ty (

    no

    rma

    lize

    d b

    y N

    b)

    Depth (nm)

    10-1

    100

    101

    102

    0 5 10 15 20 25

    typical

    Nb+O_N307_20190110_800Canneal_R6Nb+O_N301_20181120_Ninf120C_R8Nb+O_N302_20181218_Ninf160C_R9bNbO_N207_20181015_Ninf200C_sampleonly

    Inte

    nsi

    ty (

    no

    rma

    lize

    d b

    y N

    b)

    Depth (nm)

    10-3

    10-2

    10-1

    100

    0 5 10 15 20 25

    typical

    Nb+N_N307_20190110_800Canneal_R6Nb+N_N301_20181120_Ninf120C_R8Nb+N_N302_20181218_Ninf160C_R9bNbN_N207_20181015_Ninf200C_sampleonly

    Inte

    nsi

    ty (

    no

    rma

    lized

    by

    Nb

    )

    Depth (nm)

    • Holding temperature during the nitrogen injection was changed.

    • The nitrogen loading appears to increase with temperature.

    0

    200

    400

    600

    800

    1000

    10-8

    10-6

    10-4

    10-2

    100

    102

    380 400 420 440 460 480 500

    20181015 200 oC N-infusion

    Temp.

    Vac.

    Tem

    per

    atu

    re (

    oC

    )

    Vacu

    um

    (Pa

    )

    Time (hour)

    Example: 200℃ N-infusion

    Changed this temperature

  • Summary

    33

    • FNAL has developed nitrogen doping that greatly improves the Q value and nitrogen infusion that improves the Q value and RF critical magnetic field.• Nitrogen dope contains nitrogen to a depth of ~ 30um,• Nitrogen infusion has the difference that nitrogen enters up to ~ 10 nm.

    • Nitrogen doping has also been succeeded at KEK.

    • Vacuum furnace cleanliness is more important for N-infusion. • Sample measurement requires top surface analysis, which is difficult to analyze.