ssd series

47
SSD Series ESWITCHING HIGH SUPPLIES

Upload: phamkiet

Post on 03-Jan-2017

247 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: SSD Series

SSD Series ESWITCHING HIGH PERFORM~~~ER SUPPLIES

Page 2: SSD Series

SORENSEN POWER SUPPLIES

instruction manual

for ~~[p) ~~rm~~~

-,. - ~

MODULAR DC POWER SUPPLIES

INCLUDES THE FOLLOWING SSD MODELS:

MODULE III

2-30 5-30 9-20

12-15 15-12

18-10.5 24-8.5 28-7 36-5 48-4

MODULE IliA

2-45 5-45 9-30

12-22 15-18

18-16 24-13 28-11 36-8 48-6

N SORENSEN COMPANY ~R~ES _______ · ____________________ ___

A RAYTHEON COMPANY 676 ISLAND POND ROAD MANCHESTER, NEW HAMPSHIRE 03103

167462 (11/77)

Page 3: SSD Series

FIVE-YEAR WARRANTY

Sorensen Company warrants all parts of equipment of its manufacture. except special purpose tubes and semi-conductor devices which carry their own manufacturer's warranty. to be free from defects caused by faulty material or poor workmanship. Sorensen Company warrants its products to confonn to applicable commercial or military specifications when confirmed on the Order Acknowledgment form to be free from defects caused by faulty material or poor WOrkmanship. Sorensen Company's obligation is limited under the warranty to repair or replacement of products in kind. or at its option to issuance of a credit of original purchase price. Returns must be accompanied by a Soren­sen Company Return Material Authorization fonn and conform to standard conditions for adjustment. The aforesaid warranty shall expire five (5) years following the last day of the month of shipment from Sorensen Company's plant. The foregoing states the entire warranty extended by Sorensen Com­pany. No other warranty. expressed or implied. is made and. specifically. Sorensen Company makes no warranty of merchantability or fitness for any purpose. In no case shall Sorensen Company be liable for any special or consequential damages. Authorization must be obtained prior to return of defective items.

SORENSEN COMPANY

Page 4: SSD Series

Section

1 Introduction

1.1 Purpose ...................... 1-1 1.2 General Description .......... 1-1 1.3 Functional Description ....... 1-1 1.4 Accessories .................. 1-1

2 INSTALLATION

2.1 General ...................... 2-1 2.2 Inspection ................... 2-1 2.3 Input Connections ............ 2-1 2.4 Electrical Check ............. 2-1 2.5 Mounting .•.....•..........•.. 2-1

3 OPERATION

4

3.1 General ...................... 3-1 3.2 Controls ..................... 3-1 3.3 Pre-Operation Con-

siderations .................. 3-1 3.4 Local Sensing ................ 3-2 3.5 Remote Sens i ng ............... 3-2 3.6 Remote Programming ........... 3-2 3.7 Series Operation ............. 3-3 3.8 Parallel Operation ........... 3-3 3.9 Remote Shutdown Function ..... 3-3

THEORY OF OPERATION

4.1 4.2 4.3

4.4 4.5 4.6 4.7

Summary ...................... 4-1 Input Circuit ..........•..... 4-1 Preregulator/Bias Supply PCB AI ....................... 4-2 Chopper Control PCB A2 ....... 4-2 Base Driver PCB A3 .•.....•... 4-3 Output Circuit ............... 4-4 RFI Control .................. 4-4

5 SERVICE AND REPAIR

6

5.1 General ...................... 5-1 5.2 Periodic Servicing .....•..... 5-1 5.3 Test Equipment Requtred •..... 5-1 5.4 Troubleshooting .............. 5-1 5.5 Operational Checkout ......... 5-5 5.6 Hi-Pot Test ..........•.•..•.. 5-6

DRAIHNGS AND PARTS LISTS

6.1 Introduction •................ 6-1 6.2 Table Headings Defined ....... 6-1

iii

Figure No.

2-1

2-2

3-1 3-2

4-1 4-2

4-3

5-1 5-2 5-3

6-1 6-2

6-3

6-4

6-5

6-6

6-7

6-8

Table No.

l-1A I-1B l-1C

Title

Outline Drawing, SSD Modules III and IlIA .......................... 2-2 Knockout Dimensions, SSD Modules III and IlIA ...................... 2-3

Remote Sensing Connections ........ 3-2 SSD Direct Parallel Connections ... 3-3

SSD Simplified Block Diagram ...... 4-1 Al Comparator Duty Cycle Control .•.......................•. 4-2 A2 Comparator Duty Cyle Cont ro 1 ...................•.....•. 4-3

Test Equi pment Setup .............. 5-1 Drive Current Waveform ............ 5-5 Output Current Waveform ........... 5-5

SSD Component Layout. ............. 6-2 SSD Module III System Schematic Diagram ................. 6-3 SSD Module IlIA System Schematic Diagram .....•... , ....... 6-7 (AI) Preregulator Circuit Board Diagrams .................... 6-11 (A2) Chopper Control Circui t Board Diagrams .......••... 6-13 (A3) Base Driver Circuit Board Diagrams .................... 6-15 Rear Chassis Circuit Board Assembly .................... 6-17 Front Panel Circuit Board Assembly .................•.. 6-18

Title

Common Specifications .. , .......... 1-2 Unit Specifications Module 111 ..•• 1-3 Unit Specifications Module IIIA ... 1-3

5-1 Main Chassis Troubleshooting ...... 5-3

6-1

6-2

6-3

6-4

6-5

Replaceable Parts List, SSD Main Assembly Module III .......... 6-4 Replaceable Parts List, SSD Main Assembly Module IlIA ......... 6-7 Replaceable Parts List (AI) Circuit Board Assembly .•........•. 6-12 Replaceable Parts List (A2) Circuit Board Assembly ..•......... 6-14 Replaceable Parts List (A3) Circuit Board Assembly ............ 6-16

Page 5: SSD Series

~.

<

SSD ModuLar SWitahing Power SuppLies UPPER: ModuLe Size III (3.31 X 5.13 X 9.5") (84.2 X 130.2 X 241.3mm) LOWER: ModuLe Size IIIA (3.31 X 5.13 X 14") (84.2 X 130.2 X 355.6mm)

Page 6: SSD Series

1. INTRODUCTION

1.1 PURPOSE

This manual contains operation and maintenance instructions for the SSD series of high effi­ciency modular dc power supplies, manufactured by the Sorensen Company, Manchester, New Hamp­shire. The SSD models covered in this manual are similar in electrical design and physical appearance. They are grouped into two module sizes; III and IlIA, differing only in size and in power output ratings. {Refer to Table 1-1, Unit Specifications.}

1.2 GENERAL DESCRIPTION

The SSD series provides a variety of highly reg­ulated dc outputs designed for operation on 115/ 220 Vac or 300 Vdc. The line also offers ex­ceptionally high efficiency, high power density, and fast recovery times as well as characteris­tically low output impedances.

The supplies are designed with mounting holes on three planes: end, bottom or side. Four tap­ped mounting holes are provided on each face. Section 2 provides necessary installation data.

1.3 FUNCTIONAL DESCRIPTION

Operational features of the SSD series power supplies include remote sensing {regulation}, Voltage -and resistance remote programming, overload and short-circuit protection by auto­matic current-limiting, and overvoltage protec­tion through an integral electronic shutdown cirtuft.

1.3.1 Remote Sensing

For applications where variation in the load­lead voltage drop may adversely affect load reg­ulation, remote sensing may be used to establish the regulating point at the load rather than at the output terminals.

1.3.2 Remote Programmi ng

The SSD series power supply outputs may be al­tered from a remote location by either the re­sistance or the voltage programming methods.

1-1

For resistance programming, a calculated value of resistance at the ratio of 1000 ohms/volt is inserted in the programming network. For volt­age programming, a value of voltage at the ratio of 1:1 is inserted.

1.3.3 Series Operation

For applications requiring output voltages high­er than a single unit can provide, SSD units may be connected in series to a maximum total of 100 Vdc. Regulation in series operation is the sum of the regulations of all units.

1.3.4 Parallel Operation

Direct paralleling using the current-limit mode (Figure 3-2) is permitted.

1.3.5 Over-Current Protection

In the event of an excessive current condition such as short circuit, a current-limit circuit acts to limit the unit output current. This circuit is factory-sec to approximatelY 105% of the unit rated output current at 40°C {+104°F}.

1.3.6 Overvoltage Protection {OVP}

In the event of an overvoltage condition on the output, such as would be induced by an open sense lead, an overvoltage electronic sensing circuit is actuated. This OVP acts to quickly reduce the output voltage to zero and to disable the input dc circuit.

1.3.7 Remote Shutdown

An external transistor or logic switch connected across J1-1/Jl-2 at the rear of the unit may be used to shut down the supply. The unit output is restored when the shutdown signal is removed.

1.4 ACCESSORIES

Several universal rack-mount adaptors are avail­able for the SSD series. For specific informa­tion on these adaptors, contact your service representative, or the factory.

Page 7: SSD Series

Table 1-lA SSD Common Specifications

Input Rating: AC: 115/220 volt nominal (98-132/187-250 volts) @ 47-63Hz/360-440Hz* DC: 300 volts nominal (limits; 255-345 volts)

Maximum lnput Current: Nominal Input Modul e I II Module lIlA Voltage Am~eres Am~eres

115 Vac 4.2 5.5 208/220/230 Vac 2.3 3.0

300 Vdc 1.0 1.5

Recommended Fuse, @ Nominal Input Voltage: 5A 8A

Output Rati ngs:

Efficiency To 78% Voltage Regulation Line: 0.03% over full ac input range. Load: 0.03%, NL-FL Ripple, RMS $mV maximum (typically 5mV)20Hz-20MHz. Ripple, Pop 50mV maximum (typically 2OmV) 20Hz-20MHz Temp. Coefficient 0.008%/ °c Turn-ON/OFF overshoot None (output voltage) Transient Response 1.0ms for half-load change/return to 1% band Remote Programming 1000 ohms per volt (resistance) 1V:1V (signal) Output Impedance Consult factory.

Current Limit: Automatic, internally adjustable from 20 to 150% of rated full-load current. Factory set to approximately 105% of rated 400 C) current. (See individual unit specifi cati on. )

Overvoltage (OVP) Limit: Automatic, adjustable shorting action, self-contained. Factory set to 1.2V or 10% (whichever is greater above nominal output voltage. (See unit specifications.)

Reset requires cyciing input power. (Allow 10 seconds for discharge of input capacitors.)

Adjustable to within 1%. OVP action is delayed (typically) by approximately 100 micro-seconds to avoid nuisance tripping.

Accurate to within 2% (for 6 months). Resolution of OVP adjustment 0.1% of output voltage rating.

EMI (RFI): Meets most portion of MIL-STD 461A for narrow or broadband interference. Surpasses performance of conventional regulators.

Stabil ity: After one hour warm-up, 0.05% for 24 hours with all external effects held constant. I

Resolution: 0.05% of output voltage maximum.

Parallel Operation: May be directly paralleled without derating (in current-limit mode).

Series Operation: TO 100Vdc maximum.

Remote Sensing: The voltage drop per load lead is constrained only by the maximum rated unit output voltage. (For example, 5-volt nominal supplies have an Eo maximum of 6.5 volts. Thus, operating at an output of 5 volts, a 1.5-volt lead drop, or 0,75 volt per load lead.)

Ambient Rating: o to ?loC (32 to 1600F). (See current ratings in unit specifications.) Storage:-55 to +850C

Cooling: Natural convection.

Dimension: inches (mm) Module III Module IlIA

Height 3-5/16 (84) 3-5/16 (84) Width 5-1/8 (130) 5-1/8 (l30) Depth 9-1/2 (241) 14 (356)

---Weight: 1 bs. (kg) 5-1/2 (2.5) 7-1/2 (3.4)

Volume: cu. in. (cu. m. ) 160 (2.62) 238 (3.9) -

Input-Output Connections: All connections are made to a 9-terminal barrier strip using #5-40 screws.

~ Isolation: 2.1kVdc input-chassis. 500Vdc output-to-chassis.

Fall-out Characteristics: 40msec at full load current (115/220Voc or 300Vdc). Half output for 80 ms.

*Double rms ripple spec with 400-Hz input

1-2

Page 8: SSD Series

Table 1-lB SSD Unit Specifications Module III

Model No. 2-30 5-30 9-20 12-15 15-12 18-10.5 24-8.5 28-7 36-5 48-4

Output Rati.ngs (dc) :

Nominal Voltage (V) 2.0 5.0 9.0 12.0 15.0 18.0 24.0 28.0 36.0 48.0 Voltage Range (V) 1.8-3.0 4.7-6.5 6.5-9.5 9.5-13.0 13.0-17.0 16.0-21. 0 20.0-26.0 25.0-33.0 32.0-43.0 42.0-56.0 Regulation (mV)* 1. 25 2.5 4.5 6.0 7.5 9.0 12.0 14.0 18.0 24.0 Current (A);

@ 40°C 30.0 30.0 20.0 15.0 12.0 10.5 8.5 7.0 5.0 4.0 @ 50°C 27.0 27.0 18.0 13.5 10.8 9.4 7.6 6.3 4.5 3.6 @ 60°C 22.5 22.5 15.0 11. 2 9.0 7.8 6.3 5.2 3.7 3.0 @ 71°C 15.0 15.0 10.0 7.5 6.0 5.2 4.2 3.5 2.5 2.0

'Current Limit (Adc) Factory set to; 31. 5 31. 5 21.0 15.8 12.6 11. 0 9.0 7.4 5.3 4.2'

Overvoltage Limit (Vdc) Factory set to; 3.2 '6.2 10.2 13.2 16.5 19.8 26.4 30.8 39.6 52.8

Input Ratings (Typ.)** Efficiency (%) 60 68 , 71 75 70 73 75 75 77 78 I

Output Adjust Resolution I (mV) 1.5 3.25 4.75 6:5 8.5 10.5 13.0 16.5 21.5 28.0

i

Table 1-1C SSD Unit Specifications Module IlIA

Model No. 2-45 5-45 9-30 12-22 15-18 18-16 24-13 28-11 36-8 48-6

Output Ratings (dc) :

Nominal Voltage (V) 2.0 5.0 9.0 12.0 15.0 18.0 24.0 28.0 36.0 48.0 Voltage Range (V) 1.8-3.0 4.7-6.5 6.5-9.5 9.5-13.0 13.0-17.0 16.0-21.0 20.0-26.0 25.0-33.0 32.0-43.0 42.0-56.0 Regulation (mV) * 1. 25 2.5 4.5 6.0 7.5 9.0 '12.0 14.0 18.0 24.0 Current (A);

11.0 8.0 6.0 @ 40°C 45.0 45.0 30.0 22.0 18.0 16.0 13.0 @ 50°C 40.5 40.5 27.0 19.8 16.2 14.4 11.7 9.9 7.5 5.4 @ 60°C 32.8 32.8 22.5 16.5 13.5 12.0 9.8 8.3 6.0 4.5 @ 71 °C 22.5 22.5 15.0 11. 0 9.0 8.0 6.5 5.5 4.0 3.0

Current Limit (Adc) Factory set to; 47.5 47.5 31. 5 23.1 19.0 16. 8 13.7 11.6 8.4 6.3

Overvoltage Limit (Vdc) 3.2 6.2 10.2 Factory set to; 13.2 16.5 19.8 26.4 30.8 39.6 52.8

Input Ratings (Typ.) ** Efficiency (%) 60 68 71 75 70 73 75 75 77 78

Output Adjust Resolution (mV) 1.5 3.25 4.75 6.5 8.5 10.5 13.0 16.5 21. 5 28.0

*Combined line and load. **At nominal line, nominal adjust, full load (40°C).

Typically 2-4% higher at high adjust, full load.

1-3

Page 9: SSD Series
Page 10: SSD Series

2. INSTALLATION

2.1 GENERAL

After unpacking, general inspection and prelim­inary check-out procedures should be performed to assure that the unit is in proper workinq order. If it is determined that the unit has been damaged, the carrier should be notified immediately. Repair problems may be directed to the nearest Sorensen representative, or to the Service Department, Sorensen Company, 676 Island Pond Road, Manchester, New Hampshire 03103.

2.2 INSPECTION

Check for damage incurred during shipment as follows:

1. Inspect enclosures for dents, chips and other obvious signs of damage.

2. Check condition of external terminal board TBI. Make certain that all terminal screws are in place and that links are fitted over the barrier strips between TBI terminal$ -1 and -2, TBl-3 and -4, and TBI-8 and -9 (115 Vac operation only).

3. Inspect fuse holder for evidence of damage.

4. If internal damage is suspected:

a. Remove all flat-head retaining screws from around the perimeters of the case assembly.

b. Inspect the components and printed­circuit boards for damage.

5. Check that the circuit boards and power transistors are firmly plugged into their sockets. These are read­ily removable for servicing.

2.3 INPUT CONNECTIONS

SSD units are shipped ready for use with 115 Vac.

Fop 220 Vac OP 300 vdc opepation, REMOVE LINK FROM TEl-8ITEl-9. Fop 115 ,~c, this link pemains in place.

Fop eithep connection, fuse Fl is in sepies with the input line connected to TEl pin? Maximum cipcuit protection is ppovided when the high side of the input line (the black wipe in standapd a-c connections) is connected to this pin.

2-1

2,4 ELECTRICAL CHECK

NOTE

Eefope applying powep to the unit, it is impoptant that i~putloutput isolation be cheeked. This may be done using a VOM set to the xlOK scale. Assupe maximum pesistance fpom input at TEl-6 and -? to ease (gpound), and positive output tePmi nal to case. It is pecommended that this measupement be pepfoPmed each time the unit case is pemoved and'peplaced.

To perform' an initial electrical check, proceed as follows:

2.5

L Make certain that unit is located in I an area where passage of air is unre­

stricted. Connect input leads to ter­minals TBI-6 and -7 (IN). Use termi­nal 5 (G) for input system chassis ground.

2. Connect a dc voltmeter across termi­nals TBl-1 and -4 (OUTPUT SENSING). Select a voltage range compatible with rated output.

3. Apply nominal rated input power.

4. Rotate VOLT control sufficiently to swing the dc voltmeter from minimum rated voltage to nominal output volt­age per Table 1-1. (If overvoltage (OVP) circuit should trip, reset per paragraph 3.3.50n page 3-2).

5. Set output voltage at its nominal value and remove input power.

NOTE If unit dieZectpic capabilities must be detePmined. pefep to page 5-6, Hi-Pot Test.

MOUNTING

SSD units may be mounted in a variety of positions and locations, plus rack mounting.

NOTES

1) Mounting scpews should be No, 8-32 and just long enough to penetpate thPough the mounting sUPface, 114" into the unit using lock and flat washeps.

(cont'd)

Page 11: SSD Series

NOTES (cont'd)

2) Fabricate knockout panels as shown in Figure 2-2. Figure 2-1 is an overall outline drawing of the SSD modules. (Consult factory for specific mounting data. )

2. For flat mounting from a horizontal surface (where vertical airflow is restricted):

End mounting - Not recommended.

Side mounting - Module III units, see knockout per Figure 2-2. Module IlIA units may be mounted directly with no knockout required.

1. For cantilever-type mounting from a vertical panel or wall (where verti­cal airflow is unrestricted):

End mounting - Use knockout per Figure 2-2. This knockout clears the terminal block and fuses.

Bottom mounting - Use knockout per Figure 2-2.

Vertical panel mounting per paragraph 1 preceding is preferred since maximum airflow is assured. Horizontal surface mounting per paragraph 2 pre­ceding, using bottom mounting with proper knockout is the second preference.

Side or bottom mounting - No knockout is needed. Use the four mounting holes shown in Figure 2-2.

NOTE:

During inst"llation, if two or more suppl ies are to be rack-mounted or otherwise stacked, the operating ambient of the uppef units wi I I be affected (not to exceed 71°C/ 160 oFl. Output current must b~ derated according to specifications for ambients above 40°C/104°F, typically measured midway between adjacent surfaces.

0--------0--------0 I" / ---~--- ! .', // o::::=-: ____ =====d

i ~,/ !O : /"" ! I ' , I

/' ',-- 0-------0

D ______ ~o --=~:~-d

1l1.i./)IN~NSI"'N" IN INCH#S, ;tlh~"A-Y'" ("1"')

~.\..~:f~~:~-_-~-_-:'~ -~ -~(~:T~.-)_-:'~-~-~ -~ -_ ~= -_ -_ --<.-1l..., :r~ .~---------------------.

'~l.~================~.J Figure 2-1

Outline Drawing, SSD Modules III and IIIA

2-2

Page 12: SSD Series

N I

W

I 8 ~ ® (_2.....:;19:....:;}___ I 11-·-----7g@-"'Cc=O""'OL-)-----.. lr ~TYP (geS)

-0 0l 4~ (108)

4

END MOv/t/TINc!G K....vocKOur s-rr NOrr / -r-L--B-~-T-TO-N1-M-'O-U-N-T-I-N-9-~-/Vi-~-K.-O-{/-T--'-~ ~ OIA(4) /lOl ES

32

I'" 85@q (5.6)

7 (5.6) 8 j20/A ~ !-' __ ------72 (219) _,

(4-IHO£FS __ I 4- (197)

- ttl-l

2 I~ (65")

-0- L ------------------'-ttl ~ --1 L:z TtP (11.1) I

/6

SIDE: MOUNrlA/~ KNOCKour (Nor ~~-QV/RtO ;C"o,t? MtJ£/VLEEA)

SE'c /11'0 TE .&?

Figure 2-2 Knockout Dimension, SSD MODULES III AND III A

/V!ODUL E .zo. A

A B c 1378 (333) 12% (3/4) 13f/g~~3)

NOTES:

1. Mounting holes are provided at both ends of Module IIIA for additional support when required.

2. For Module IIIA, mount directly. No knockout required.

3. Dimensions in inches and (mm).

Page 13: SSD Series
Page 14: SSD Series

3. OPERATION

3.1 GENERAL

This section contains instructions on how to a­dapt the unit to and operate it in varied appli­cations. These include remote sensing, remote programming, series operation, and remote shut­down.

The sensing and po~e~ ai~auits foPm a a"losed "loop. Opening this "loop, e'ithe~ by ~emoving a te~mina"l board ?ink 01' dis­oonneoting a sensing 01' programming "lead ~i"l"l resu"lt in a high unit output and ~i"l"l oause the OVP oircuit to operate.

3.2 CONTROLS

SSD units are equipped with two controls; the output voltage, and the overvoltage adjustment (OVP) potentiometers accessible at the terminal­board (TBl) end of the supply. The output VOLT control (R26) varies the output voltage while the OVP control (R24) sets the OVP trip point. Both are factory-set to nominal values (see Table 1-1).

3.3 PRE-OPERATION CONSIDERATIONS

3.3.1 Current Limit Setting

The'current limiting point is factory-set to ap­proximately 105% of rated 40°C current. If the unit is to be operated in other ambients, the output current is derated per Table 1-1. To assure full warranty protection, THE CURRENT­LH1IT ~~UST BE RESET TO 105% OF THE DERATED CURRENT VALUE.

3.3.2 . Current Limit Reset

To reset the current limit proceed as follows:

1. Rotate limit adjust control RIO on circuit board A2 approximately 2/3 clockwise. Do not operate unit with RIO fully clockwise. (Control is accessible through an opening in the top of the uni t. )

2. Connect a voltmeter across output terminals TBI-2 (+) and -3 (-). Apply nominal input power and adjust output VOLT control R26 for the unit's rated nominal value.

3-1

3. nemove input power and connect an am­meter and variable load resistor in series across the output terminals.

4. Reapply input power and adjust load so that the test ammeter indicates current 1 imit determi ned in paragraph 3.3.1.

5. Rotate limit control A2RI0 slowly counterclockwise (CCW) until. both output voltage and current begi~ to drop.

6. Remove input power, disconnect test instruments and load.

3.3.3 Overvoltage (OVP) Trip Point

The OVP trip point is factory-set to 1.2V or 10% (whichever is greater) higher than the rated nominal output voltage (Table 1-1). However, if the output voltage will be operated in remote sensing, it may be desired to raise the trip point. When setting the OVP limit, load-lead drop must be taken into consideration.

3.3.4 OVP Trip Point Reset

To reset the OVP, proceed as follows:

1. Rotate OVP panel control R24 fully CWo

2. Rotate output VOLT control R26 on panel until the output ~oltage is equal to the desired trip point.

3. Rotate OVP control R24'slowly CCW un­til the output voltage suddenly drops to zero. This indicates that the OVP circuit has been triggered.

4. Remove the input power. Rotate VOLT control several turns CCW. Allow approximately 10 seconds for unit to discharge.

5. Apply input power. Reset output to desired operating voltage.

NOTE

The OVP oirouit ino"ludes a time-de "lay net­~ork suoh that the oVe1'Vo"ltage oondition must exist for approximate"ly 100 mioro. seoonds before the OVP fires. This de"lay prevents short-duration OV pu"lses from triggering the oirouit.

Page 15: SSD Series

3.3.5 Reset After OVP Fires

If the OVP fires, proceed to reset the circuit as follows:

1. Remove input power and disconnect load (in case OV condition is externally induced). Allow approximately 10 sec­onds for unit to discharge.

2. Rotate VOLT adjust R26 fully CCl~ (minimum voltage).

3. Apply input power and raise output voltage to desired value.

NOTE

If the OVP again t~ipB, internal failure is indicated, or the output is set too close to operating voltage (see 3.3.4 preceding) •

3.4 LOCAL SENSING

The unit is shipped ready for use in the local~ sensing mode. In this mode, regulation is at the output terminals, not at the load. If variations in load-line voltage drops are expected to be prohibitive, refer to paragraph 3.5, remote sen­sing.

To operate the unit, proceed as follows:

1. Connect a voltmeter across output sense termi na 1 s TBl-l (+) and TBl- 4 (- ) .

2. Attach the input leads to terminals TBI-6 and -7. Use terminal 5 (G) to ground input system.

3. Apply nominal input power.

4. Rotate output adjust until desired output voltage is indicated on volt­meter.

5. Remove input power. Disconnect volt­meter and connect load leads to (+) and (-) output terminals. Do not re­move or loosen any of the intercon­necting links. Apply nominal input. Unit supplies highly regulated power to load.

3-2

3,5 REMOTE SENSING

To sense (regulate) unit output at the load rath­er than at output terminals, remove the links be­tween terminals TBl-l and -2, and TBI-3 and -4. Run a sensing lead from terminal TBl-l to the positive side of load; connect the other lead from terminal TBI-4 to the negative side of load (Figure 3-1) .. Use a shielded, twisted pair of wires for sense leads. Set unit in operation per paragraph 3.4, and assure that the voltage at the out ut terminals does not exceed the maximum-­rating per Tables I-IB/C). A decoupling capa­citor across the load will minimize the effects of high transients on the control circuitry.

TB1 1 + 1 2 3 4 5 6 7 8 9

AC COM -} Input Power

2

Closed for 115 Vac Op~n for 220 Vac/300 Vdc

Figure 3-1 Remote Sensing Connections

3.6 REMOTE PROGRAMMING

The unit may be programmed to supply pre-determined output voltages by inserting a calculated resis­tance into the voltage-sensing circuit. Program­ming sensitivity is approximately 1000-ohms-per volt; that is 1000 ohms are required for each volt difference between the desired output and the mini­mum value of the unit's specified range. The pro­gramming resistor should be a l/8-watt (or larger) precision film resistor with a 25 PPMloC coefficient (equal to MIL style RN55E). The programming current is approximately 1 milliampere. However, a 1.0 uF capacitor in parallel with the inserted programming resistor is recommended to prevent the unit from os­cillating, as shown in Figure 3-l.

To adapt the unit for remote programming, proceed as follows:

1. With normal local sensing (paragraph 3.4), set power to ON and adjust output to specified rated minimum output voltage (see Table 1-1 for particular model). For example, for a 12V module, set the output to 9.5 volts.

Page 16: SSD Series

2. At this point, any value within rated output range (Table 1-1) can be ob­tained by inserting 1000 ohms-per­volt difference between the desired voltage and the minimum voltage. For example, to obtain 12.0-vo1t output in the preceding example, the differ­ence is 12.0 (-) 9.5 or 2.5 volts. The program resistor should be 2.5 x 1000 or 2.SK ohms.

3. Set power to OFF. Remove the link from TBl-3 and -4 and connect pro­gramming resistor in its place. Ei­ther local or remote sensing may be used.

4. Parallel the program resistor with a 1.0uF capacitor.

5. Apply input power and verify load voltage across the (+) and (-) out­put terminals as the desired value (using local sense).

3.7 SERIES OPERATION

Series operation is utilized for the purpose of obtaining a higher output voltage than available from a single model. Two supplies may be con­nected in series to form a dual polarity (+) and (-) output system such as (±) 12V with a common

Driver

Figure 3-2

return. Any amount of bri dgi ng load may be to 1-erated. Series operation of SSD units to a max­imum of 100 Vdc is permissible.

3.8 PARALLEL OPERATION

Two or more SSD power supplies (with identical voltage ratings) may be directly paralleled without derating. Figure 3-2 illustrates the interconnections for two such units in parallel. Typically, the unit with the higher output will supply the total system current up to its limit setting. The second unit then supplies the bal­ance of the system current requirements.

For equal current sharing, the current limit of each unit should be set to half of the desired system current level.

3.9 REMOTE SHUTDOWN FUNCTION

SSD supplies may be shut down externally by con­necting 100 ohms (or less) across pins J1-1 (+) to Jl-2 (-) at the rear of the unit. The shut­down circuitry, (S-volt bias voltage) is com­pletely isolated, allowing for several methods of activation. Thus a remote relay, transistor, or logic switch can be used to reduce the supply output. The unit output is restored when the signal is removed.

Auxiliary

TBI

SSD DirectParaZZeZ Connections

3-3

Page 17: SSD Series
Page 18: SSD Series

4. THEORY OF OPERA nON

4.1 SUMMARY (Refer to Figure 4-1, Block Diagram)

SSD circuitry uses 20-kHz switching techniques to provide high efficiency and exceptional power den­sity (high power output from a physically small package) .

The proper input (115/220 Vac or 300 Vdc) is applied through input rectifiers/RFI filters and/or voltage doubler (115 Vac) where, at 300 Vdc unregulated, it is applied to a stepdown power chopper. The chopper is pulse-width modu­lated to produce a controlled d-c level which supplies an inverter circuit. Secondary windings on the inverter power transformer are connected to the full-wave output rectifier and output fil­ter to produce a regulated d-c output.

The output is "sensed", and compared with a·ref­erence voltage. Any difference, or error voltage, is amplified and fed back to the chopper to con­trol the duty cycle. Thus a closed loop is achieved, resulting in excellent line/load regu­lation.

Control portions of the circuitry consist of:

a. Preregulator printed-circuit board (PCB) AI; switching regulator which generates the reference f~~g~~~cy and system bi as voltages and tri gger pulses.

b. Duty-cycle control PCB A2; pulse width modulator which maintains the desired level of power-supply output, and;

4.2

c. Base Driver PCB A3; driv~r for power inverter, generates bi"as current for duty-cycle control.

INPUT CIRCUIT

NOTE

For identification of components called out in the following text, refer to Fig­ures 6-2/-3, system schematic diagram, or Figures 6-4 thru 6-6 (circuit boards A1 thru A3) when specified.

The input is applied through input RFI choke L1 and bridge rectifier CR1: full-wave rectifying mode for dc/220 Vac (TB1-8/-9 link open), or half-wave rectifying, voltage-doubler mode for 115 Vac, (1 ink TBl-8/ -9 closed). Input capaci­tors C2/C3 are in series in the full-wave mode and in parallel in the doubler mode. The input appears as an unregulated 300 Vdc at step­down chopper Q1/Q2 through soft-start RTl/RT2 and RFI chokes L2/L3. The chopper establishes the required duty cycle, whose pulse width is controlled by inputs from the A2 chopper control circuit board. Variations in power supply out­put are fed back as error signals to the A2 PCB, where they are processed and applied to the chopper to vary the duty-cycle pulse width. The power filter section, consisting primarily of L4 and L5, averages the duty cycle into a controlled d-c level of 120-200 volts, depending on the out­put load requirements.

INPUT RECT CR I Unreg. l Step-Down IN I SOFT START I RFI/li~PUT FILTER Power FII ter I Contro I led dc Pwr. Chopper

98-132 Vae I RTI, RT2 I L1, L2, L3 300 Vdc I QI, Q2 L4, L5, CIO, R41

187-250 Vac Doub I er C2, C3

255-345 Vdc

1- - -- - - - -, Current Sens i ng Inverter

I 1 13ase Drive

ON/OFF Logic I A2 PCB (Figure 6-5)

I Error Signa I 1 DUTY CYCLE CONTROL

ON/OFF LOGIC I 4V Peak ac 1 CURRENT LIMIT 1- - - "-1 - - - 1 I 1

~ ±6.5 Vd'Zt-PI6V---

1 S~/ITCHING PRE-REG. I I I I AI PCB (Figure 6-4) 1

I B I AS VOLTAGE' I 1 - - - - - - - - -, C L 1 1 hopper T +150 Vdc! A3 PCB (Figure 6-6) ~ase Driver

+5.1 Vdc' BIAS CURRENT SOURCE PWR. INV. BASE DRIVE 1

+16V: BALANCE CONTROL I 1 OVP SHUTDOWN

, , I L _________ ...l

Figure 4-1 SSD Simplified Block Diagram

4-1

(90% dc)

190 Vdc Max.

POWER I NVERTER I TRANSISTORS Q3, Q4 TRANSFORMER TI

+ OUTPUT RECT.

CRI2 RFI FILTER L6, [7, C14, CI5

• OUTPUT VOLTAGE .~ I and OVP SENS J NG

ouT

SENSE

Page 19: SSD Series

4.3 PREREGULATOR/BIAS SUPPLY PCB Al (Figure 6-4)

The preregulator provides a regulated 150 Vdc to the bias inverter, and is the source of bias volt­ages required by the SSD system. The unregulated dc input is processed into a controlled duty­cycle pulse which establishes and maintains pro­per bias voltages through s~cgndaries A-E of AlTI.

4.3.1 Input/Start-Up Circuit

The unregulated 300 Vdc at input capacitors C2/C3 (main assembly) is applied through AlFl into the preregulator. Chopper AlQ2, under con­trol of timer AlU2, processes the dc into a con­trolled duty cycle at the primary of bias trans­former AlTl.

During system turn-on, "start-up circuit (AI) Ql/ VRI/CI provides starting bias for circuit opera­tion until the proper d-c level of bias for pre­regulator control is established at AITI. At that point, the start-up circuit AIQl is cut off.

4.3.2 Comparator (AlU2)/Chopper(AlQ2) Control

Reference clock AlUl generates a series of 40-'kHz negative pulses to trigger comparator .AlU2 at pin 2. The output of the comparator at pin 3 deter­mines the duty-cycle for step-down chopper AlQ2. The comparator operates as follows (refer to Fig­ure 4-2):

The instantaneous voltage at AIU2-6 is a function of the (AI) R7/C5 time constant. After being triggered by the ·input at pin 2, this voltage in­creases until it reaches the d-c level at pin 5 (error signal, paragraph 4.3.3). The rise-time represents the ON period of the duty-cycle at AlQ2, and thus the AITI primary voltage. The voltage at pin 6 decays until a subsequent trig­gerat pin 2 repeats the process. The error volt­age at pin 5 determines the ON time of the duty­cycle, as seen in Figure 4-2.

v

Voltage U2-5

~--t--~Vollag e U2-6

v ~------------------~----~----I" 25us -----~

Figur'e 4-2 (Al) CompaT'ator . Duty CyoZe ControZ

4-2

4.3,3 Error Amplifier (AIU3) and Bias Control

Secondary winding "A" of transformer AlTl is actually connected to the primary winding, and serves two purposes:

a. provides bias for overall preregulator circuit operation, and

b. establishes the voltage at AIU3 which controls the error signal at AIU2-5.

The voltage across secondary AlTl-A senses any variation across the winding "A". This regula­tion effectively maintains the voltage across AIC15 (whi ch functi ons partly as an LC fil ter with the AlTl primary) at a constant 150 Vdc assuring accurate bias levels at the remaining AITI secondaries "B"-"E".

Potentiometer AIRl5 is adjusted to set secondary winding "B" to precisely 5.1 volts. The remain­ing bias levels (+16V, ±6.5V, +150V) are depen­dent on the 5-volt bias level setting.

4.4 CHOPPER CONTROL PCB A2(Figure 6-5)

This board contains the circuitry which controls the duty-cycle input to the power filte.r, thus regulating the system output level. Three pri­mary circuit functions contribute to this con­trol:

a. Voltage error amplifier (A2) U4/U5

b. Low voltage sensing (A2) UI-A/UI-E and logic shutdown A2U6 .

c. Current-limiting error amplifier A2U3.

The output of each of these circuits appears as a dc error input to OR gate (A2) CR3/4/6. The OR gate passes the larger of the three inputs into constant-current comparator circuit (A2) U2-A through -E. Here it is compared to the relative­ly constant 40-kHz ramp signal (developed by the trigger from preregulator board AI) appearing across A2C9. The comparator outputs at (A2) U2-D/-E are in the fOrm of square-wave pulses, posi­tive at A2Ql for ON time control, and complement­ary negative-going turn-off pulses at A2UI-B. The resultant output at A2QI-C is applied simul­taneously to bias drivers (A2) Q2/Q3 at a 40-kHz repetition rate,

Only one of base drivers A2Q2/Q3 will be acti­vated, as their emitters are tied across a 20-kHz, 4,5-volt secondary of bias transformer TI on the A3 base driver circuit board (Figure 6-6). Thus, while one driver is ON, controlling its respec­tive chopper transistor on the main assembly, the other is OFF. Since the transformer waveform is at 20-kHz,synchronized with the comparator (40-kHz), only alternate outputs are fed to choppers Ql/Q2 on the main assembly (Figure 6-2/-3).

Page 20: SSD Series

~.4.1 Remote Logic Shutdown

~ logic ON/OFF bias generated in the A3 circuit )oard may be externally switched to momentarily shut down the output voltage. Shorting terminals Jl-l to JI-2 at the rear of the supply connects the bias to A2JI-5/-6 to control optical isolator A2U6. When activated, the d-c OR gate level at A2CR3 increases to a level above the ramp (Fig­ure 4-3), cutting off the duty cycle of the com­parator.

4.4.2 Typical Chopper Control Operation

In a typical operating situation, any tendency of the supply output to increase is sensed through error amplifier A2U4. The A2U4 output activates optical isolator A2U5, and A2CR3, increasing the OR gate level to the comparator and thus narrow­ing the width of the duty-cycle pulse which con­trols the ON time of chopper Ql/Q2 on the main assembly. '

The duty-cycle control function is illustrated in the following diagram.

Ramp Input to Comparator

4>ldYl" t- - -l,.L, - - V-:- - - {; .. "7 1 : i l Fixed Voltage

jl u' ul

l' c~.:::: '",p", to Switch Drivers

Figure 4-3 (A2) Comparator Duty CyaZe ControZ Funation

In the current mode, the voltage at A2CR6 is the' ~ontrolling voltage from amplifier A2U3. A fixed voltage at A2CR4, determined by the ratio of (A2) Rll/R14 establishes a maximum pulse width (minimum OR output) allowable, to prevent chopper transistors Ql and Q2 from overlapping, and dam­aging transistors Ql and Q2 by switching ~oth ON at the same time.

Portions A and E of A2Ul (Figure 6-5) provide for cutting off the duty cycle in the event of a low bias-voltage condition. When the input bias drops below a predetermined level, A2UI-E turns ON re­sulting in a d-c level at CR4 greater than the ramp level. The duty-cycle output of the compara­tor is cut ~ff completely, disabling power ch~ppers Q1/Q2.

4-3

4.5 BASE DRIVER PCB A3 (Figure 6-6)

Circuit board A3 provides: base drive to the power switching transistors Q3/Q4 on the main (A4) assembly, bi as current for~ the chopper base driver (A2), overvoltage sensing shut-off capa­bility, and logic ON/OFF bias.

4.5.1 Start-Up Circuit

Components (A3) Ql/VRI act as a "start-up" cir­cuit to provide a 5-volt operating potential for (A3) UI-A/-B, and start-up voltages for (A3) U2, U3, and associated circuitry. When the voltage at A3J3-5 reaches its (+) 5-volt level (from the Al preregulator circuit board) A3CRl becomes re­verse~biased shutting off A3QI.

4.5.2 Clock Generator Balance Control Compara-tor/Error Amplifier

The trigger input from the Al control board at A3J3-6 is used to synchronize reference clock A3U2 through A3Q2. During start-up, the reference clock free-runs until the bias voltage comes up. At this point, A3U2 synchronizes with the Al pre­regulator trigger. A narrow 40-kHz clock pulse is generated at A3U2-3 which triggers flip-flop A3UI. The outputs of A3UI at ~12/-13 change state with each subsequent clock pulse, estab­lishing the base drive for bias inverter A3Q3/Q4.

The 40-kHz clock from A3U2 is also applied to balance control comparator A3U3 at pin 2. The output duty cycle at A3U3-3 is inverted through balance error amplifier A3Q6, and applied to the bases of (A3) Q7/Q8 switch drivers. With 20kHz applied to these drivers through A3Tl, and the 40-kHz pulses applied at each base, only alter­nate clock outputs appear as driver outputs to the main switching transistors Q3/Q4 in the power inverter.

The pulse width at A3U3-3 determines the power inverter OFF time, and establishes the proper Q3/Q4 current balance. The pulse width (typical­ly 2.5 microseconds), and thus the OFF time, is governed by error amplifier A3Q5, which feeds back error signals to U3-5. The greater the error, the wider the pulse generated by A3U3. The proper current balance for the power in­verter is therefore maintained.

4.5.3 Bias Transformer/Inverte~

Transformer A3TI is the bias current source for the following functions:

Logic ON/OFF bias

Base drive to chopper control transistors in theA2 circuit board

Base drive for the power inverter switch­ing transistors on the main assembly

Page 21: SSD Series

Primary drive for A3Tl occurs through bias in­verter transistors A3Q3/Q4. controlled by base drive inputs from flip-flop multivibrator A3UI. A3UI is synchronized with the 40~kHz clock from A3U2 discussed earlier.' A3U1-B provides a 20-kHz push-pull output for bias inverter base drive.

4.5.4 Qvervoltage (OV) Circuit

Under normal supply output conditions, pin A3UI-9 remains high; which maintains a high at "Q') outputs to the bias inverter. In the event of an'overvoltage condition at the supply output, ov. error amplifier A3U5 reacts through output sense lines at TBI-2/-3. Optical isolator A3U4 is activated, applying a low to A3Ul pin 6 (CLEAR). The output at pins 9 and 2 go low, re­moving the clock at A3U1-1. stopping the flip­flop action. Base drive to the bias inverter is removed, shutting down the supply. The in­put power must then be recycled to continue op-eration. '

4.5;5 Logi cON/OFF Bi as Remote Shut-down

A separate secondary on A3Tl generates the bias voltage at A3J4-1/-2 which is used to cut off the supply output as detailed in paragraph 4.4.1.

4.6 OUTPUT CIRCUIT (Figures 6-2/-3)

The controlled 120-200 volts from the input

4-4

power "CTrO"ppers "[paragraph 4.2'} establl shes ,the operating voltage for power inverter Q3/Q4/Tl. Swi tchesQ3/Q4 in the push:-pull mode provi de a nearly constant (90%) duty cyCle to power trans­former Tl (with small adjustment for current balance) •

At the secondary, ,rectification takes place, through CR12. The resultant 40-kHz signal is then filtered by L6/C14, and L7/C15, and appears as the supply output voltage. The integration function of the filtering reduces the 40-kHz component of the output tol ess than 3 mill i-volts (typically). .

4.7 RADIO FREQUENCY INTERFERENCE (RFI) CONTROL .

The switching action of this type of supply might be expected to create a source of RFI. The de­sign of the SSD series has minimized this inter­ference, using the limits specified in MIL·STD 46lA as a reference.

Conducted interference on the input lines is con­siderably reduced by Ll/L2/L3 together with C4/C5 on the main chassis. Conducted interference at the output load and sense leads is minimized by RFI chokes L8, L9, and LlO and· caps CI6, C17 and C18. Radiated interference is effectively mini­mized by the metal enclosure of the SSD series power.supplies.

Page 22: SSD Series

5. SERVICE AND REPAIR

5.1 GENERAL

This section provides unit troubleshooting data, and calibration and performance-testing proce­dures. The troubleshooting data should be used in conjunction with the schematic diagrams and parts location drawings in section 61(Drawings and Parts List), plus section 4 which out-lines the theory of operation. Questions per­taining to repair should be directed to the nearest Sorensen service representative or to the Service Dept., Sorensen Company, 676 Island Pond Road, Manchester, N. H. 03103. Include the model and serial numbers in any correspond­ence. Should it be necessary to return a unit to the factory for repair, authorization from the Sorensen service department must first be obtained. Sorensen Company will not assume re­sponsibility for units returned without prior authorization.

Unit troubleshooting hints are provided in Ta­ble 5-1 in the form of SYMPTOM/PROBABLE CAUSE/ REMEDY. Where practicable, step-by-step proce­dures are used to facilitate isolation of a problem area.

Care should be taken when replacing any compo­nent, even if it appears obviously defective. A failed component is generally the result of a malfunction elsewhere in the system. It is the purpose of this troubleshooting procedure to help isolate both the failed component and the cause of its failure.

5.2 PERIODIC SERVICING

The SSD models require no periodic servlclng. However, when a unit is taken off line it is recommended that the enclosure be inspected and cleaned of any accumulations of dust or other debris which could impede the free flow of air through the unit.

5.3 TEST EQUIPMENT REQUIRED

Use the test equipment listed (or an equivalent)

1. Oscilloscope, dual trace, 20-200MHz bandwidth, isolated from ground (Tektronix 454 or 475 with lOX voltage probe for channel A)"

2. Current probe (Tektronix P6042)

3. Digital voltmeter (Fluke 8400)

4. Differential voltage probe (Tektronix P6046)

5-1

5.4

5. True RMS voltmeter (Hewlett Packard HP-3403C) or Fluke 8400-09

6. VOM (Simpson 260)

1. During testing, use an isolation transforme~ whenever possible. If impractical to use an isolation trans­former, DO NOT GROUND TEST EQUIPMENT.

2. Each time the unit is opened, re­check for input and output isola­tion to case ground before turn-on.

~ TB2o±dTI

Remove for 220 Vae

Vde

TB I

OIFF VM

L11J

SCOPE

Figure 5-1 Test Equipment Setup

TROUBLESHOOTING

5.4.1 General Considerations

Before attempting repairs, the SSD unit should be carefully inspected for apparent defects, such as broken or damaged components/connectors or PCB, or for obvious heat damage or loose pin connections.

After replacing an electrical component, the Hi­pot test procedure as outlined in paragraph 5-6, and the simulated turn-on procedure outlined in paragraph 5.5.1 should be performed before plac­ing the unit in service.

The physical size and shape of a replacement part can have an effect on the performance of the power supply. The part should therefore be a direct replacement whenever possible. Section 6 of this manual contains all schematics and component location drawings, plus replaceable parts along with the Sorensen and manufacturer part numbers as applicable.

Page 23: SSD Series

5.4.2 Switching Transistors 91-94

The aasiYl{Js of these transistors are "live" dur­iYl{J operation.

1. Set input power to OFF, and. remove the transistor connector.

2. With a VOM set to the R X 1 scale, measure an open circuit from the collector (+) to the emitter (-) of each power transi stor. If a resistance of 15 ohms, or less is en­countered, remove the transistor from the circuit and repeat the resistance te~t. A lo~ reading indicates a faulty translstor.

NOTE

If a transistor requires replaaement, the aause

5-2

of failure should be determined before're-apply­iYl{J input power.

5.4.3 Overvoltage Protection (OVP) Circuit

If OVP function occurs repeatedly, check for proper setting of OVP adjustment potentiometer R24 on the front panel. If necess.ary, reset per paragraph 3.3.4 in section 3 of this manual. Assure that the sensing links at the output con­nector are intact across terminals TB1-l and -2, and TBl-3 and -4.

Continued malfunction of the OVP may indicate problems in the A3 Base Drive circuit bc>ard.

Whenever a aomoonent is replaaed in the SSD sy­stem, perform Hi-Pot test (para 5.6) and Sim­ulated TUrn-on Procedure (para 5.5.1) before plaaiYl{J tne unit in serviae.

Page 24: SSD Series

Table 5~l Main Chassis Troubleshooting

SYMPTOM PROBABLE CAUSE REMEDY

1. No Output: A. Remote shutdown function Remove short across Jl-l/~1~2 at rear of Input Fuse (Fl) operational. unit. intact.

B. Overvoltage protection 1) Reapply input voltage after approxi-circuit tripped. mately 10 seconds.

2) Verify proper setting of OVP trip point (R24, accessible on front panel). CW adjustment increases the output volt-age trip point. If this adjustment re-solves the problem, reset R24 per para-graph 3.3.4 in section 3 of this manual.

3) If OVP tripping recurs with normal out-put loading, or with no output, refer to OVP troubleshooting procedure (paragraph 5.4.,1) .

C. Current limit improper- If, during unit calibration or repair, po-ly adjusted. tentiometer RIO on PCB A2 has been left in

the fully CCW position, no output will appear. Refer to final calibration proce-dure (paragraph 5.5.2).

D. Output circuit shorted. Check individual output circuit components.

E. l15-volt input with Insert link. TBl-8/-9 link open.

. F. Internal fuse (F2) on 1) Remove supply case, check commutation main circuit board (A4) diode CR5. open.

2) Check power transistor Ql, as outlined in switching transistor troubleshooting in paragraph 5.4.2.

G. A1Fl (fuse on Alci r- 1) Check power transistors Q1 thru Q4 per cuit board) open (in- paragraph 5.4.2. ternal F2 intact).

2) Check bias inverter transistors (A3) Q3/ Q4 on base drive board A3.

2. No Output: A. Power inverter tran- Check Q3/Q4 per paragraph 5.4.2. Al I Fuses ~istor(s) failure. intact.

B. Output short (unit in Check individual output components. current-limiting mode),

C. A3 board start-up cir- Check (A3) Ql/VR1. cuit malfunction.

3. No Output: A. Input rectifier filter. Check/replace. Input Fuse (Fl) open. B. 220-volt input with Remove link (used only with 115-volt input).

TBl-8/-9 link intact. Check for possible damage to input capaci. tors C2/C3, and internal fuse F2. Also check fuse AlF1 on preregulator circuit board, (if open, refer to SYMPTOM 1.G.

C. Input pin TBl-6 or TBl- Isolate input lines from chassis. 7 shorted to ground.

5-3

Page 25: SSD Series

Table 5-1 Main Chassis Troubleshooting (cont'd)

SYMPTOM PROBABLE CAUSE REMEDY

3. No Output: D. Power transistor Check transistors per paragraph 5.4.2. Input Fuse fail ure. (Fl) open (cont'd). E. Input circuit failure. Proceed to simulated turn-on procedure in

paragraph 5.5.1.

4. High butput: Improper setting of VOLT adjust (R26) or OVP ad-

Reset R26 and/or R24 per paragraph 5.5.2.

just (R24), accessible a t front pane 1 . -

5. Low Output: Current limit (A2RI0) or Readjust per calibration procedure (para-VOLT control (R26) im- graph 5.5.2). properly adjusted.

6. Excessive A. Low line input. Monitor input line voltage. ripple on output: B. Measuring instrument Ground instrument.

improperly grounded.

C. RFI L6/L7/LB defective. Visually inspect for signs of deterioration or damage.

D. CIS malfunctioning or 1 ) Check for proper tightening of CIS hold-defective. down screws.

2) Check CIS for short/open.

7. Poor regu- A. Measuring across load Regulation must be measured across sensing lation; terminals. terminals.

B. Unit overload. Load not to exceed maximum rated current specification.

C. Current limit improp- Refer to adjustment procedure in paragraph er1y adjusted. 5.5.2.

8. Output Os- A. Output fi lter. Check filter capacitors for damage or loose cillates: hold-down screws.

B. 40-kHz frequency im- Check frequency. Adjust AIR9 as required properly adjusted for 40 tl.5kHz.* (oscillation with no load) .

C. Output of voltage With nominal input (115 Vac) and maximum sense amplifier A2U4 output at full load, check for 4,0 Vdc at improperly adjusted. test points (+) and (-) adjacent to poten-

tiometer A2R44 on A2 circuit board. 'Adjust A2R44 if necessary.

*NOTE

*The 40-kHz clock pulse adjustment is critical. This adjustment should be made using a frequency counter to assure in-tolerance setting.

5-4

Page 26: SSD Series

5.5 OPERATIONAL CHECKOUT

Whenever a component is repaired and/or replac­ed, the appropriate operational check procedure should be performed prior to placing the unit in service:

1. Hi-Pot test (Paragraph 5.6) 2. Output failure; final calibration

cedure (paragraph 5.5.2). 3. Input or circuit board failure; sim­

ulated turn-on procedure paragraph 5.5.1 (internal fuse F2 removed to isolate power drive components) fol­lowed by final calibration.

5.5.1 Simulated Turn-on Procedure

Use the test equipment listed in paragraph 5.3 as required in the following procedures.

1. Set unit power to OFF and remove cover. REMOVE INTERNAL FUSE F2. Connect voltmeter, set to the 250-volt range, across A1C15 (C15 on reg­ulator board AI).

2. Set current-limit control A2R10 to its approximate mid-position.

3. Connect current probe to green common­emitter wire of Q3/Q4 power transis­tors.

4. Set input power to ON. A1C15 voltage should be approximately 150 Vdc. (If zero volts, check A1F1; if consider­ably higher than 150 Vdc, a faulty A3 circuit board is indicated).

5. Q3/Q4 drive current should be approx­imately 30OmA. Current pulse OFF time should be from 3.5 to 5.0 usec (see Figure 5-2).

~25us --l J Ur----L

--13.5-'---~15us ,-

Figure 5;..2 Drive Current Waveform

6. Connect current probe to green common­emitter wire of drivers Q1/Q2. This level should also be approximately 300mA, with a current pulse OFF time of 2 to 4 usec.

7. Momentarily short J1-1 to Jl-2 at the rear of the supply to check the shut­down function. Q1/Q2 drive current should be cut off.

8. Set unit power to OFF, and replace internal fuse F2. Set current limit control A2RI0 fully counterclockwise.

9. Apply input power. Unit will be in deep current limiting mode (zero out­put voltage.). Turn A2R1G- slowly clockwise. Output will gradually in­crease toa preset level. Reset cur­rent limit as described in paragraph 5.5.2.

5.5.2 Final Calibration

If the switching transistors and/or drive cir­cuit components have been changed, perform tests per previous paragraph 5.5.1 before continuing.

5-5

1. Remove input power and connect cur­rent probe to (green) common-emitter wire of Q3/Q4 output transistors.

2. Connect the digital voltmeter and rms voltmeter across the output sensing termi na 1 s (TBl-land -4).

3. On front panel, set the output volt­age control (R26) to its approximate mid-range, and the OVP control R24 fully clockwise.

4. Remove load from output.

5. Set current limit adjust A2RIO fully counterclockwise.

6. Apply nominal input power and turn A2RI0 slowly clockwise. The output voltage should increase and the cur­rent waveform on oscilloscope should appear as in pattern of Figure 5-3.

7. Set output voltage to desired level.

8. Reset current limit control A2R10 to 105% of rated 40°C current, and reset OVP to the greater of 1.2 volts or 10% above rated output voltage. Both procedures are outlined in section 3, Operation.

1--25 us .-J

Figure 5-3 Output Current Waveform

Page 27: SSD Series

5.6 HI-POT TEST PROCEDURE

It is recommended that this test be per­formed only if a component has been re­paired or replaced which could affect the dielectric capability of the unit.

Note: If unit has been in service for an extended period, it should first be cleaned of dust or any other acawrru lations.

A. Test Limits:

Input - 2100 Vdc Output - 500 Vdc

B. Test Equipment Required:

C.

Hi-Pot Tester - Electrospace Model 650 "Megpot" or equivalent.

Jumpers/Clip Leads as required.

Equipment Set-up:

1. Isolate unit input line cord from power source and chassis.

2. Connect input terminals TBl-6, -7, -8 and -9 together.

3. Connect all output terminals together.

4. Set hi-pot tester switch to ON.

D. Input Test:

1. Connect the unit output term­inals to chassis ground.

2. Set the trip current control on the hi-pot tester to 100 micro­amperes, and voltage control to O.

3. Connect the hi-pot tester from the input terminals to chassis ground.

4. Gradually increase the hi-pot voltage from 0 volts to input test limit (paragraph A. pre­ceding).

5. Hold maximum specified level for at least five seconds. No break­down shall occur during test.

6. Decrease hi-pot voltage to 0 volts.

5-6

Charged capacitors must not be shorted to ground to remove the charge. This voltage must be discharged sZowly thru a 47K, 2W resistor. Failure to follow this instruction can result in damage to semiconduators resulting in immediate or subsequent unit failure.

7. Disconnect hi-pot leads from power supply input terminals.

8. Remove output terminal ground.

E. Output Test:

1. Connect the unit input terminals to chassis ground.

2. Set the trip current control on the hi-pot tester to 100 microamperes, and output voltage control to 0 volts.

3. Connect the hi-pot tester from the output terminals to chassis ground.

4. Gradually increase the hi-pot voltage from 0 volts to output test limit (paragraph A. preceding).

5. Hold maximum specified level for at least five seconds. No break­down shall occur during test.

6. Decrease hi-pot voltage to 0 volts.

Charged capacitors must not be shorted to ground to remove the charge. This voltage must be dis­charged slowly thru a 47K, 2W resistor. Failure to follow this instruction aan result in damage to semiconductors resulting in immediate or subsequent unit failure.

7. Disconnect hi-pot leads from power supply output.

8. Remove input terminal ground.

9. Remove input and output terminal jumpers.

Page 28: SSD Series

6 DRAWINGS AND PARTS LISTS

6.1 INTRODUCTION

This section contains system and sub-system schematic diagrams, component location dia­grams and coded "replaceable parts list" tables, keyed to Figures 6-1 through 6-8. Following Figures 6-2 through 6-6 are the part numbers of all identified components. Table 6-1 covers all components in the module III group (Figure 6-2) and Table 6-2 covers all components in the module IlIA group (Figure 6-3).

Figures 6-4 through 6-6 depict plug-in printed­circuit boards common to all models in the module III and IlIA series.

6.2 TABLE HEADINGS DEFINED

6.2.1 Circuit Symbol

This is an alpha-numeric identification of the component as called out on the unit drawings.

6.2.2 Sorensen PIN

This number should be used when ordering parts direct from:

Sorensen Company Replacement Parts Dept. 676 Island Pond Road Manchester, N. H. 03103

6.2.3 Mfr., Type

This i5 the basic group or series under which the part 15 listed by a manufacturer. The coded identification of representative manufacturers is summarized below, listed alphabetically.

Mfr. Code

AB AC AER BNS BUS CD CG CL CTS ELA EMC GE GI IND IR ITT KEM KC LF MA MAL

Manufacturer

Allen Bradley Co. Acushnet Capacitor Co. Aerovox Corp.

MANUFACTURER CODES

Mfr,

MG

Manufacturer

Magnetics, Inc. National Semiconductor RAM Ele.:tronics

Bourns, Incorporated Bussman Mfg./Div. McGraw-Edison Cornell-Dublier Corp. Corning Glass Works Clarostat Corp. CTS Corporation Electra/Midland Electromotive Mfg. Co. General Electric Co. General Illuminating Co. Industrial Devices International Rectifier International Telephone Kemet Div. Union Carbide Corp. Keystone Carbon Littelfuse Corporation Motorola P. R. Mallory Co.

NS RAM RCA RCL RDM SAN SE SEM SIG SP SR ST STM TEL TRW UC WH WL

RCA Corporation RCL Electronics Radio Material Co./Div. P.R. Mallory Sangamo El ectri c Seacor, Incorporated Semtech Corpordtion Signetics C(),'p. Sprague Electric Sorensen Company Solitron Devices STM Corporation Teledyne Semiconductor Division TRW Union Carbide Westinghouse Semiconductor Division Ward Leonard

Page 29: SSD Series

L8

L1

Fl

TBl

Cl

L8 1 L71 L6 TOP-TO­BOTTOM

L1

Fl

FRotH CHASSIS

CR12B POWER

J1 J4 PI6 L2 L3

TYPICAL - MODULE SIZE IIIA

PCB Al

R20 CRI2 TI-POWER A3- A2RIO DRIVERS:

X FMR CUR. LIM. ADJ.

POWER

J4 PI5

TYPICAL - MODULE SIZE III

Figure 6-1 SSD Component Location Drawings

6-2

R28

A1R9 40-kHz

ADJ.

A2 TP

1 R1S

ADJ.

F2

R2B

2

Page 30: SSD Series

JI-I

~F· lot"------'

I oJ_t.. E3 '4

L ____________________ _ DWG. :Jlb7..36S' R.FV. M (SPEC/ilL)

R, EO. E7

cs

~

91/(IJe ORIV~ CURRENT (PcREMOVEO)

~E""'S AT GRN V.lIFtf;-9Ie/~e]

3 OUT ~)

4t..:;- -SENSE

E8

.'0

Figuzoe 6-2 SSD ModuZe III System Sahematia Diagram

6-3/6-4

Page 31: SSD Series

SSD MODEL CIRCUI SYMBOL

C1 x x x x x x x x C2 x x x x x x x x C3 x x x x x x x x C4 x x x x x x x x C5 x x x x x x x x C6 x x x x x x x x C7 x x x x x x x x C8 x x x x x x x x C9 x x x x x x x x ClO x x x x x x x x Cl1 x x x x x x x x C12 x x x x x x x x C13 x x x x

x x x x C14 x x

x x x x x

x

C15 x x x

x x x

x x

C16 x. x x x x x x x C17 x x x x x x x x C18 x x

x x x x x x C19 x x x x x x x x C20 x x x x x x x x C21 x x x x x x x x C22 x x x x

x x x x

C23 x x x x x x x x C24 x x x x x x x x C25 x x

x x x x

x x

C26 x x

x x x x x

x C27 x x x x x x x x C28 x x x x x x x x

DESCRIPTION

Caeacitors (uF exceet as noted

x x 0.01, 500V x x 1,000, 200V x x l,OOO,200V x x 4,700, 2kV x x 4,700, 2kV x x 0.001, lkV x x 0.001, 1kV x x 330pF, SOOV x x 1. 0, 500V x x SO, 300V x x 390pF, 500V x x 0.22, 2S0V

0.001, 1kV x x Not used

220, lOV 100, 20V 47, 3SV 18, 50V

x x 10, 7SV 13,000,lOV 7,600, 15V 6,400, 20V 4,700, 25V 4,100, 30V 3,000, 40V

x 2,200, SOV x 1,200, 75V

x x 0.1, 500V x x 0.1, 500V

0.1, SOOV x x Not used x x 0.001, 1kV x x 0.22, 100V x x 0.001, 1kV x x 0.22,100V

0.1, 100V O.lS 100V

x x 0.22, 100V x x 0.22, 100V

220, 10V 100, 20V 47, 35V 18, 50V

x x 10, 75V 0.1, 100V 0.033, 100V

x x 0.068, 250V 0.047, ,250V Not used

x x 220pF, 500V x x 0.22, 100V

SORENSEN PART NUMBER

235-7207P41 586052-1 586052-1 235-7207P24 235-7207P24 235-7421P14 235-7421P14 235-7053P306 24-2037-19 167816-1 235-7053P314 24-2015-17 235-7421P14

586057-10 586385-10 586058-27 585071-44 586386-8 167817-1 167817-2 167817-3 167817-4 167817-5 167817-6 167817-7 167817-8 235 .. 7207P41 235-7207P41 235~ 7207P41

235-7421P14 24,.2037-11 235",7421P14 24.,2037-11 24,.2037-7 24-2037-9 24-2037-11 24-2037-11 586057-10 586385-10 586058-27 585071 .. 44 586386-8 24-2037-7 24-2037-1 24-2015-11 24-2015-9

235-7053P286 587626-3

TABLE 6~1 REPLACEABLE PARTS LIST

SSD MODULE III, MAIN ASSEMBLY*

MANUFACTURER, TYPE

SP, Y5V STM, 91C STM, 91C SP, Y5U_ SP, Y5U RDM, JF RDM, JF SAN, 015 SE, MMK SR SAN, 015 SE, MMK RDM, JF

UC, MIL UC, T110 UC, MIL UC, MIL UC, MIL MG MG MG MG MG MG MG MG SP, Y5V SP, Y5V SP, Y5V

RDM, JF SE, MMK RDM, JF SE, MMK SE, MMK SE, MMK SE, MMK SE, MMK UC, MIL UC, THO UC, MIL UC, MIL UC, MlL SE, MMK SE, MMK SE, MMK SE, MMK

SAN, 015 SE, 105

--*Includes components on the A4 (Rear Chassis), and the A5 (Front Panel) circuit boards (Figures 6-7/6-8)

CIRCUI SYMBOL

CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 CR9 CRIO CRll CR12

CR12 A/B

F1 F2

L1 L2/3/4 L5 L6/7/8

L9 LIO

Q1 Q2 Q3 Q4

SSD MODEI£

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x t!.

x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x

x x

x x

x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

DESCRIPTION

Diodes

Bri dge Rect. 600V, 1A 600V, 1A 600V, 1A 400V, 6A Not used 200V, 1A 600V, 1A 600V, 1A 600V, 1A 600V, 1A NiI~ J 200V

SD51 Not used

Fuses

5A, 2S0V 3A, 250V

Inductors

Input RFI Choke . Non-Saturating Choke Ass'y Saturating Choke Ass'y Output Choke Stack

Choke Choke

Transistors

2N6545 (TO-3) 2N6545 (TO-3) 2N6545 (TO-3) 2N6545 (TO-3)

SORENSEN PART NUMBER

980893-3 586379-8 586379-8 586379-8 165360-5

586379-4 586379-8 586379-8 586379-8 586379-8 110 If) 1<?Cr,-/ 586462-3

165196-1

226-7176P57 226-7176P68

167350-1 166745-1 1682266-1 167338-1 167338 .. 2 167338-3 167338-4 167338-5 167338-6 167338-7 167338-8 167338-9 586471-1 586471-1

167372-4 167372-4 167372-4 167372-4

MANUFACTURER, TYPE

VARO, VK647 SEM,S1F6 SEM, SlF6 SEM, SlF6 MA, IN3883

SEM, SlF2 SEM, SlF6 SEM, SlF6 SEM, SlF6 SEM, SlF6 .1£ SEM, SCPA2F

TRW, SD51

BUS, MTH BUS, AGC

SR SR SR SR SR SR SR SR SR SR SR SR SR SR

IR IR IR IR

Page 32: SSD Series

CIRCUI SYMBOL

R1 R2 R3 R4 R5 R6 R7 R8 R9 RIO RllA-C R12 R13 R14 R15 R16 R17 RI8 R19 R20

R 21

R22

R 23

R 24

R25

R26

R27

SSD MODEL

TABLE 6-1 REPLACEABLE PARTS LIST

SSD MODULE III, MAIN ASSEMBLY *

~~~ DESCR I PTION

Res~to~~ms)

x x x x x x x x x x 220K, 1/2W, 2% x x x x x x x x x x 220K, 1/2W, 2% x x x x x x x x x x 220K, 1/2W, 2% x x x x x x x x x x 220K, 1/2W, 2% x x x x x x x x )( x 10K, 5~I, 5% x x x x x x x x x x 68, 1/2W, 10% x x x x x x x x x x 150, 1/2W, 2% x x x x x x X X,X X 150, 1/2W, 2% X X X X X X X X X X 0.33, 3W, 10% X X X X X X X X X x 680, 1W, 2% X X X X X X X X X X 10, 1W, 2% X X X X X X X X X X 27, lW, 5~£ X X X X X X X X X X 0.56, 3W, 10% X X X X X X X X X X 150, 1/2W, 2% X X X X X X X X X x 150, 1/2W, 2% X X X X X X X X X X 680, 5W, 5% X X X X X X X X X X 56K, 2W, 10% X X X X X X X X X X 30K, 2W, 2% X X X X X X X X X X 30K, 2W, 2% X X X X 10, 1/2W, 10%

X X X X X X Not used X X 0.1, 3W, 10%

X X 0.18, 3W, 10% X X X 0.33, 3W, 10%

X 1.0, 3W, 5% X X 2.2, 3W, 5%

X x x X x X X Not used X 1. 2K, 2W, 10%

x X Not used X 2.2K, 1/4W, 2%

X 3.3K, 1/4W, 2% x 6.8K, 1/4W, 2%

x X 10K, 1/4W, 2%

I X 15K, 1/4W, 2%

X 20K, 1/4W, 2% X 27K, 1/ 4W, 1%

I X 30K, 1/4W, 1%

X 43K, 1/4W, 1% x X X )( 5K, 3/4W, 10%(VAR)

X X X X 10K, 3/4W, 10%(VAR) X X 20K, 3/4W, 10%(VAR)

)( 1. 54K, 1/8W, 1% X 4.42K, 1/8W, 1%

X 6.19K, 1/8W, 1% X X 9.09K, 1/8W, 1%

X 14.7K, 1/8W, 1% x X 18.7K, 1/8W, 1%

X 28.7K, 1/8W, 1% X 40.2K, 1/8W, 1%

X X X X 5K, 3/4W, 10%(VAR) X X X 10K, 3/4W, 10% (VAR)

X X X 20K, 3/4W, 10% (VAR) X I 1.2, lOW, 5%

x '1 5.6, lOW, 5% X 12, lOW, 5%

X. ,,?1 , ... 10W._5%~"' X 40, lOW, 5%

X 60, lOW, 5%

SORENSEN MANUFACTURER, PART NUMBER TYPE

- f---

585326-227 CG, C5 585,326-227 CG, C5 585326-227 CG, C5 585326-227 CG, C5 586054-61 RCL, T5 280-1145P32 AB, EB 585326-75 CG, C5 585326-75 CG, C5 27-397-13 WL, 3X 167059-108 CG, C6 167059-19 CG, C6 280-1180P16 CG, C6 27-397-19 WL, 3X 585326-75 CG, C5 585326-75 CG, C5 586054-47 RCL, T5 280-1l47P137 AB, HB 585109-56 CG, C42S 585109-56 CG, C42S 280-1l45P2 AB, CB

27-397-1 WL, 3X 27-297-7 WL, 3X 27-397-13 WL, 3X 27-397-25 Wl, 3X 27-397-33 WL, 3X

585109-48 CG. C42S

585108-27 CG, C4 585108-35 CG, C4 585108-51 CG, C4 585108-59 CG, C4 585108-109 CG, C4 585108-115 CG, C4 585108-121 CG, C4 585108-123 CG, C4 585108-131 CG, C4 586371-6 BNS, 3006P 586371-7 BNS, 3006P 586371-8 BNS, 3006P 586055-83 ELA, MF4 586055-105 ELA, MF4 586055-112 ELA, MF4 586055-120 ELA, MF4 586055-130 ELA, MF4 586055-135 ELA, MF4 586055-144 ELA, MF4 586055-151 ELA, MF4 586371-6 BNS, 3006P 586371-7 BNS, 3006P 586371-8 BNS, 3006P 167828-1 WL,12/10F 167828-2 WL, 12/l0F 280-7226P9 SP, 10E 167828-3 WL, 12/l0F 280-7226P15 SP, 10E 167828-4 WL, 12110F

*Includes components on the A4 (Rear Chassis), and the A5 (Front Panel) Circuit boards (Figures 6-7/6-8)

6-5

Page 33: SSD Series

CIRCUI SYMBOL

R27 (cont'd

R28 R29

RTl RT2

Tl

Al A2 A3 A4 A5

TB1

SSD MODEL

TABLE 6~1 REPLACEABLE PARTS LIST

SSD MODULE In, MAIN ASSEMBLY *

~;k~4~ DESCRIPTION

Res i s tors (ohms) (cont' d)

x 90, lOW, 5% x 135, lOW, 5%

x 250, lOW, 5% x 400, lOW, 5%

x x x x x x x x x x 100, 1W, 2% x x x x x x x x x x 220, 1/4W, 2%

x x x x x x x x x x Thermistor x x x x x x x x x x Thermi stor

x Transformer x

x x

x x

x x

x x

Miscellaneous

x x x x x x x x x x Preregulator PCB Ass'y x x x x x x x x x x Chopper Control PCB Ass'y x x x x x x x x x x Base Drive PCB Ass'y x x x x x x x x x x Rear Chassis PCB Ass'y x Front Panel PCB Ass'y

x x

x x

x x

x x

x

x x x x x x x x x x Terminal Strip

....

SORENSEN MANUFACTURER, PART NUMBER TYPE

167828-5 WL, 12/10F 167828-6 WL, 12/l0F 280-7226P23 SP, 10E 280-7226P26 SP, 10E 167059-67 CG, C6 585108-71 CG, C4

167060-1 RODAN, 5DA5RO 167060-1 RODAN, 5DA5RO

167349-1 SR 167349-2 SR 167349-3 SR 167349-4 SR 167349-5 SR 167349-6 SR 167349-7 SR 167349-8 SR 167349-9 SR 167349-10 SR

167033~1 5R 167035-1 SR 167037-1 SR 166720 .. 1 SR 166718,.1 SR 166718-2 SR 166718-3 SR 166718-4 SR 166718-5 SR 166718~6 SR 166718-7 SR 166718~8 SR 166718.,.9 SR 166718.,,10 SR

587423.,9 Kul ka, 1599

*Includes components on the A4 (Rear Chassis), and the A5 (Front Panel) Circuit boards (Figures 6-7/6-8)

6-6

Page 34: SSD Series

AC C

LINK. FOR 115V f-C

______ f:JrIl...,..".,r-~-I

I: !k.!...{1<;(P~'~-'~======i~~=-----------~'.:..' -- '"!;4j T I

i ~;,:.::~:_~-:~======~+\~R~:2,Gv~G';R~==========~P~'o~-.~.):~n __ n' __ ~ I Q3/94 FbWER TI?ANS/S7~ I

I ~,C··· .... w. ". ,,,,,,- ""'-' ' ,~~"-. -

I ~:~ ______ :::::!C;;0i!M;:~=~=====;:===~P~'O~-4~)~J3~4 IloNe;) LQoIIb- Fe I<

" ,_' " _.. __ -_. ",,"L

1---I ----

I i-----------~

r--;:;,-~------------, I

I : , ... _ ~.",.. .. ..... [ ""--i'~<r P_'Z~-~' _____ C:tR~Sl ___ ~ __ --j~=--..,.._____ 1~"-~!ie/Q1eJ I I

I i ".:1!Yi£':, i -c::= ." ..... i : r-__ ...:;::..~,,-,r, r:l .J i 11

I I ~1~'(P~Z::-t2~~==:=;+~'~.~V~L========d==;~Pi'o~-~, ,~ , -- : Q3 ~J I L ' , - ... , ,,+ .• ,. "" "" "'" --~

I ' " ,_ .". w. .., '-. .. .. ' ""\b?/ R 0 I CR" I ' _, '1',00' .~' R":' I p r-, : m"" .... ,.". ~, ,., .'" , ,;,;;1 I

I ' ' r . _______ . ____ , : ""-'~".. ,,,.' "., '" I •• ::rv;;;eu":;;owq-....... ++-!:.;;!!~ __ ~Ell."Iv-~:;:; I ~(P3-1 1'E..5V "" I " I I '-1r ...... --::-r-----r-----

L8 ~

I _·1

. I C24

.,;Z-+

027 C25

I' .. ' "., ,,,,,,- ~ •• ' , '" ' : ;'.5:;~: ~.:::: "',,,,,- ",'-' :;:',';. ::::;.!!; ~),<-p~,.~-~.~+~ .... --"p",."'-.~:~@. "_~4~rr.--.,l ,C\I i "7 P"-3 I J<~~'JZ ;!}' I' I + ;~& --~--- ~C16

I ~~.4.)P"4 :~~_3.j,~ CCOHONTP"PEORL. ~-=-_;U- 45V'C >=-=- B~SE ...... It'" 1 I ':+B"': +,--'" 6 " ----.' o. _... __ c . ~.' _ ,,_,,_ ,," ,,' -t1. lit 1=<20 . (.14 ... ...,..,

I ~ ~"-N'-' "ov )r, S~~E:;'~$'ic. ~'<-_-+ ___ ~PO!'''-22 ,~~ !",-c .. 3• p.~:..e,c' • ,: "4 "'" - PI4-' J4-' I :: G ; I ~R2t Le

-"

______ C~_S_~! I

\I) PS-I ,,~_ 0-167356,' ~ ~ _, -~: I, 8LuE~ lJ L i CRI2e: E ~ -- --' , . _.'°0

.... "" >~, ' "., m" "" . .~ - ____ -,----..r=~:..:"-'::::..... ,_+_~I?_' ___ -~:;:L~7~ • m ___ , _______ J k .,., 'F'"- ......... H) r r .~ ~ _, .'~ : ~ m uJ '"" ~u ~ f' f'" rIJ~'-~' ____ -l~ _______ .:h_'K_V __ .-"2:h:i ~:<-P~5'-'-'4__: ~ P~'2~-~3_r __ .':C"R""..jl_~~~~~:;;::-__ J ___ l_J· I 1

m

...... _______ -l._--l ___ J E211 I ••.• \..... "'-i-= : ~ ••.• '''''',"' r----------'..J I I!~~:~:: __ t __ ,--____ L_--_--J-~~~t~l~~'1~:l~fE~~-~-! l~rt--j~~ :::,i,'h, 1''' .. ~ ~g .. J-----------r--...f.p!!.::."-·~)IIII~ "i:!!-s'----____ -"" Lao

-v +OUT

,,0

-u-OUT

L ____ , 1 I -';;'..--: ----'-,;~;} , I I ·,,·.I'rJ=·--4~-~_____ ~-----...!'.P(!.".:i-''1J>,J~':!-L.----~r-_l_~ ,

1 rYC." + ! RT' _L2 ~ CR2 1 U'~mLn- " Ii 1'" .0 ~""I " ... j~. ~,;;, ~ ... Ct 2. 4 1 JI-I ,".' _,_ •• '" .:'" I" ,~ : ~ '" 1 .. ··I'iJS~~· rc.. I IRa, ~5E.N:SE

1-u PI-I :; J1'-' R2rrS ~CO~77.1 J2.~ :~ PI~1io R'9 I \.,.4 _L_'_ "25 Ra.. 2 tul-:;:'OUT ,fr---------JL.l-~--J I RI + C2 CR' -r 1'5 'G F,7 .e II I~~ OUTPUT P17.' I I J6'"

I R_3 C4 1 ,I CUJ;o:Re;Nr 1 ~ C22 cw I AOJ 1 3

T $ENSE -----,,4~:.....- > I ________ L'U--.-tr-:::,°UT

Tel

y\- " 1~\9---

OM "G

It> '

[ .,..8

GNO

~J:s-"J-----------1------'!".:i-2"<~:!:P!;'~"'-.L------LJ--1 b p'-2LiJ_2_-· __ Ct_g_~ __ q.,_2 __ Ii, ~ "'''. ,.. ".. II - ',,' '"' I .:0'~~ I j"-S IIL------......... --------- "RONT p'"'''', .... - I

02 _R_' (5 _L... _____ ..:~'. ~_."RI\-e,,---.l.-~lcR,< ~3f--- ". I ___________ :::..~~ __ ...J

~~2!~=.3 + C3 ' •

_t __ .~~~~e:.~~~~1~~~~~M~~~:~~==:~~~::~5~-'-'~~~~]7~mI_·c·~cm~[~~2~~f~:J I

DWG. 0/6791/ R4V. r (~pec/AL) ______ REI>.R C,","SSIS ~'~ I ______ _ ________ MOTHER. P.C. s. (,A..4 3w±5% I .. , ."",. _________ ~_J

SSD Module Figure 6-3 lIlA System Snh t . vema 1<(J DiagPaIn

6-7/6-8

Page 35: SSD Series

SSD MODEL CIRCUI SORENSEN

L{~~ DESCRIPTION PART NUMBER SYMBOL \)t~~~~~~/, , 'V' <,:f O{ ",,'1.; ""~ ""CO * ""CO ",fO <:;;.CO

Diodes

CR1 x x x x x x x x x x Bridge, Rect. 98089J~3 CR2 x x x x x x x x x x 600 V, 1A 586379~8 CR3 x x x x x x x x x x 60a V, 1A 586379~8 CR4 x x x x x x x x x x 600V. 1A 586379~8 CR5 x x x x x x x x x x 400V, 6A 165360~5 CRG x x x x x x x x x x Not used CR7 x x x x x x x x x x 200V, 1A 586378~1 CR8 x x x x x x x x x x 600V, 1A 586379-8 CR9 x x x x x x x x x x 600V, 1A 586379-8 CR10 x x x x x x x x x x 600V, 1A 586379-8 CR11 x x x x x x x x x x 600V,lA 586379-8 CR12 x x x x Not used

x x x x x x 200V 586462-3 CR12A/

B x x x x SD51 1651~6-1 x x x x xx Not used

CR13 x x x x Not used x x x 200V 586462-3

x x x Not used CR14 x x x x x x x x x x 600V, 1A 586379-8 CR15 x x x x x x x x x x 600V, 1A 586379-8 CR16 x x x x x x x x x x SEN-R-42 586378-4

Fuses

Fl x x x x x x x x x x 8A, 250V 42~430 F2 x x x x x x x x x x 4A, 250V 226~7176P56

Inductors

U x x x x x x x x x x Input RfI Choke 168217.,.1 L2 x x x x x x x x x x RFI Choke 167944.,.1 L3 x x x x x x x x x x RFI Choke 167944-1 L4 x x x x x x x x x x Input FflteY' 167942-1 L5 x x x x x x x x x x Input Filter 167941-1 L6 x x Output Filter 16795h1

x 167952.,.1 x 167953-1

x 167954-1 x 167955~1

x 167956-1 x 167957-1

x 167958-1 x 167959-1

L7 x x Output Filer 167962-1 x x 167219.1

x x x 167963.1 x 167964-1

x x 167965-1 L8 x x Output RFI 167968-1

x x 167968-2 x x x x x x 167968-3

L9 x x x x x x x x x x Choke 586471-1 UO x x x x x x x x x x Choke 586471-1

6-8

TABLE 6~2 REPLACEABLE PARTS LIST

SSD MODULE IlIA, MAIN ASSEMBLY*

MANUFACTURER, TYPE

VARO, VK647 SEM, SlF6 SEll, SlF6 SEM, SlF6 MA, 1N3883

SEM, 3SFl SEM, SlF6 SEM, SlF6 SEM, SlF6 SEM, SlF6

SEM, SCPA2F

TRW, SD51

SEM, SCPA2F

SEM, SlF6 SEM, SlF6 SEM, 3SFl

BUS, ABC BUS, MTH

SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR

CIRCUI SYMBOL

C1 C2 C3 C4 C5 C6 C7 C8 C9 ClO Cll C12 C13

C14

C15A/B

C16 C17 C18

C19 C20 C21 C22 C23 C24 C25

C26

C27 C28 C29 C30 C31

c:c:n Ml"lnr:1

L{~~~ 'V' <,:f o{ ,,~ ,,<y< , r-r r6" ",fO ~CO

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x

x x x x x

x x x

x x x

x x x

x x

x x

x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x x x

x x x x

x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

SORENSEN MANUFACTURER, DESCRIPTION PART NUMBER TYPE

Capacitors noted}

(uF except as

0.10, 500V 235-7207P41 SP, Y5V 1,000, 200V 586052-1 STM, 91C 1,000, 200V 586052-1 STM, 91C 0.01, 1.6KV 235-7207P30 SP, Y5U 0.01, 1.6KV 235-7207P30 SP, Y5U 0.001, 1KV 235-7421P14 RDM, JF 0.001, 1kV 235-7421P14 RDM, JF 470pF, 300V 235-7053P156 SAN. 015 1. 0, 100V 24-2037-19 SE, MMK 75. 300V 167816-2 SAN, 066 390pF, 500V 235-7053P314 SAN, 015 0.22, 250V 24-2015-17 SE, MMK 0.001, 1kV 235-7421P14 RDM, JF Not used 220, 10V 586057-10 UC, MIL 100,20V 586385-10 UC, T110 47, 35V 586058-27 UC, MIL 18, 50V 585071-44 UC, MIL 10, 75V 586386-8 UC, MIL 13,000, lOV 167817-1 MG 7,600, 15V 167817-2 MG 6,400, 20V 167817-3 MG 4,700, 25V 167817-4 MG 4,100, 30V 167817-5 MG 3,000, 40V 167817-6 MG 2,200, 50V 167817-7 MG 1,200, 75V 167817-8 MG 0.1, 500V 235-7207P41 SP, Y5V 0.1, 500V 235-7207P41 SP, Y5V 0.1, 500V 235-7207 P41 SP; Y5V Not used 0.001, 1kV 235-7421P14 RDM, JF 0.22, 100V 24-2037-11 SE, MMK 0.001, 1kV 235-7421P14 RDM, JF 0.22, 100V 24-2037-11 SE, MMK 0.22, 100V 24-2037.11 SE, MMK 0.22, 100V 24-2037-11 SE, MMK 220, 10V 586057-10 UC, MIL 100, 20V 586385-10 UC, T110 47, 35V 586058-27 UC, MIL 18, 50V 585071-44 UC, MIL 10, 75V 586386-8 UC, MIL Not used ,068, 250V 24-2015-11 SE, MMK 0.033, 200V 24-2015-7 SE, MMK 220pF, 500V 235-7053P286 SAN, 015 Not used 0.01, 200V 24-2409-7 AC, V146XR 0.56, 100V 587626-6 SE, 105 0.47, 250V 24-2015-21 SE, MMK

*Includes components on rear chassis (A4) and front panel (A5) circuit boards (Figures 6-7/6-8)

Page 36: SSD Series

CIRCUI SYMBOL

L11

01 02 03 04

R1 R2 R3 R4 R5 R6 R7 R8 R9 RIO Rll R12 R13 R14 R15 R16 R17 R18 RI9 R20

R21

R22 R23

R24

R25

SSD MODEL

TABLE 6-2 REPLACEABLE PARTS LIST

SSD MODULE IlIA, MAIN ASSEMBLY*

l!~~ "\,' <0 o{ ,,'1,: ,,~ "CO ~ ",to ~CO DESCRIPTION

i i Inductors (cont'd)

x x x x x x x x x x Ferrite Core Transistors

x x x x x x x x x x 2N6545 (TO-3) x x x x x x x x

I~ x 2N6545 (TO-3)

x x x x x x x x x 2N6545 (TO-3) x x x x x x x x x 2N6545 (T0-3 )

Resistors (ohms)

x x x X I X X X X X x 220K, 1/2W, 2% x x x x x x x x x x 220K, 1/2W, 2% x x x x x x x x x x 220K, 1/2W, 2% x x x x x x x x x x 220K, 1/2W, 2% x x x x x x x x x x 10K, 5W, 5% x x x x x x x x x x 68, 1/2W, 10% x x x x x x x x x x 150, 1/2W, 2% x x x x x x x x x x 150, 1/2W, 2% x x x x x x x x x x 0.22, 3W, 10% x x x x x x x x x x 470, 2W, 10% x x x x x x x x x x 2.2, 5W, 5% x x x x x x x x x x 6.8, 5W, 5% x x x x x x x x x x 0.22, 3W, 10% x x x x x x x x x x 150, 1/2W, 2% x x x x x x x x x x 150, 1/2W, 2% x x x x x x x x x x 680, 5W, 5% x x x x x x x x x x 56K, 2\~, 10% x x x x x x x x IX x 5.6K, 12.5W, 5% x x x x x x x x x x 30K, 2W, 2% x x x x 10, 1/2W, 10%

x x x x x x Not used x x 0.1, 3W, 10%

x x I

0.18, 3W, 10% x x X

I 0.33, 3W, 10%

x ' 1. 0, 3W, 5%

Ix

Ix x 2.2, 3W, 5% x x x x x x

x Ix x Not used

x 2.2K, 1/4W, 2% x I 3.3K, 1/4W, 2%

x I I 6.8K, 1/4W, 2% x x 10K, 1/4W, 2%

x 15K, 1/4W, 2% x 20K, 1/ 4W, 2%

x 27K, 1/4W, 2% x 30K, 1/4W, 2%

x 43K, 1/4W, 2% x x x x 5K, 3/4W, 10% (VAR)

x x x x 10K, 3/4W, 10% (VAR) " x x 20K, 3/4W, 10% (VAR)

x 1.54, 1/8W, 1% x 4.42K, 1/8W, 1%

x I 6.19K, 1/8W, 1% x x I 9.09K, 1/8W, 1%

x 14.7K, 1/8W, 1%

Ix x 18.7K, 1/8W, 1%

x 28.7K, 1/8W, 1%

SORENSEN MANUFACTURER, PART NUMBER TYPE

169514-1 SR

, 167372-4 IR 167372-4 IR 167372-4 IR 167372-4 IR

585326-227 CG, C5 585326-227 CG, C5 585326-227 CG, C5 585326-227 CG, C5 586054-61 RCL, T5 280-1145P32 AB, EB 585326-75 CG, C5 585326-75 CG, C5 27-397-9 WL, 3X 280-1147P62 AB, HB 586054-17 RCL, T5 586054-23 RCL, T5 27-397-9 WL, 3X 585326-75 CG, C5 585326-75 CG, C5 586054-47 RCL, T5 280-1147P137 AB, HB 27-591-16 WL, 12,5X 585109-56 CG, C42S 280-1145P2 AB, CB

27-397-1 WL, 3X 27-397-7 WL, 3X 27-397-13 WL, 3X 27-397-25 WL, 3X 27-397-33 WL, 3X

585108-27 CG, C4 585108-35 CG, C4 585108-51 CG, C4 585108-59 CG, C4 585108-109 CG. C4 585108-115 CG, C4 585108-121 CG, C4 585108-123 CG, C4 585108-131 CG, C4 586371-6 BNS, 3006P 586371-7 BNS, 3006P 586371-8 BNS, 3006P 586055-83 ELA, t~F4

586055-105 ELA, MF4 586055-112 ELA, MF4 586055-120 ELA, MF4 586055-130 ELA, MF4 586055-135 ELA, MF4 586055-144 ELA, MF4

*Includes components on rear chassis tA4) and front panel (A5) circuit boards (Figures 6-7/6-8)

6-9

Page 37: SSD Series

CIRCUI SYMBOL

R25

SSD MODEL

TABLE 6-2 REPLACEABLE PARTS LIST

SSD MODULE IlIA, MAIN ASSEMBLY*

/«~ '1.:'" <0 O{"3 ",,'1.: ",,<0 ",,'tf *' '10/ ",'<f ~ DESCRIPTION

Resistors (ohms) cont'd) (cont'e)

x 40.2K, 1/8W, 1% R26 x x x x 5K, 3/4W, 10% (VAR)

x x x 10K, 3/4W, 10% (VAR) x x x 20K, 3/4W, 10% (VAR)

R27 x 1. 2, lOW, 5% x 5.6, lOW, 5%

I x 12, lOW, 5% , x 22, lOW, 5% x 40, lOW, 5%

x 60, lOW, 5% x 90, lOW, 5%

x 135, lOW. 5% x 250. lOW, 5%

x 400, lOW, 5% R28 x x x x x x x x x x 100, 1W, 2% R29 x x x x x x x x x x 220, 1/4W, 2% R36 x A x X X X ! X X ,x x 100, 101'1 1 5%

I

I!I

I ,

!

i ji ! ,

RTl x x x x x x x x x x Thermistors, 5 ohms RT2 x x x x x x x x x x Thermistors, 5 ohms

I

Tl x I Transformer x Transformer

x Transformer x Transformer

x Transformer x Transformer

x Transformer x Transformer

I x Transformer x Transformer

Miscellaneous

Al x x x x x x x x x x Preregulator PCB Ass'y A2 x x x x x x x x x x Chopper Control PCB Ass'y A3 x x I x x x x x x x x Base Drive PCB Ass'y A4 x x I X X X X X X X x Rear Chassis PCB Ass'y A5 x Front Panel PCB Ass'y

x x

x x

x x

x x

x TB1 x x x x x x x x x x Terminal Strip TB2 x x x x x x x x x x Termina 1 Strip

SORENSEN MANUFACTURER, PART NUMBER TYPE

586055-151 ELA, MF4 586371-6 BNS, 3006P 586371-7 BNS, 3006P 586371-8 BNS, 3006P 167828-1 WL, 12/10F 167828-2 WL, 12/l0F 280-7226P9 SP, IDE 167828-3 WL, 12/10F 280-72 26P 15 SP, IDE 167828-4 WL, 12/l0F 167828-5 WL, 12/l0F 167828-6 WL. 12/l0F 280-7226P23 SP. IDE 280-7226P26 SP, IDE 167059-67 CG, C6 585108-71 CG, C4 280,,7226PI8 SP, IDE

167060-1 RODAN, 5DA5RO 167060-1 RODAN, 5DA5RO

167940-1 SR 167940-2 SR 167940-3 SR 167940-4 SR 167940-5 SR 167940-6 SR 167940-7 SR 167940-8 SR 167940-9 SR 167940-10 SR

167033-1 SR 167035-1 SR 167037-1 SR 167927-1 SR

167949-1 SR 167949-2 SR 167949-3 SR 167949-4 SR 167949-5 SR 167949-6 Sf(

167949-7 SR 167949-8 SR 167949-9 SR 167949-10 SR 587423-9 Kul ka, 1599 587878-13 Ku 1 ka, 1599

*Includes components on rear chassis (A4) and front panel (A5) circuit boards (Figure 6-7/6-8)

6-10

Page 38: SSD Series

+300V J3-6

FI

RI

START-UP

+6.2V

VRI

+ CI

FLO"'TINu RET

IT VR2

IN825

l C2

I

UI

f<EF;

CLOCI< 6

2

SET FREQ40KHz

R9

R3

R4

To

C3

40KHz. OSC:

R-5

CRI ~ CONTROL PVLS£

C4-

IKV

R7

4 8 R8 3 7

U2.

2 6

P,W.M. DRIVER

Q2

C7

RII

CON,ROL A.MP

~WliC\-\ING TRI\o.WSISTOR

R6

CRS

RIO

C9 +12V

~ TI

C0"lrlltlu. OUry·cyeJ TO ,J. PIt IMllly

~

CRE>

CRI2 + CIS

CR7

+ JI-2.

+ BIAS POR (A3)U~-E" CI4 16V

DVP &RROR AMPL.

COM JI-I CRB

+ JI-3

D" CI3 BIAS FOR (A2.)LJ4

16V ERROR AMPL.

C.OM JI-4

J2-2. (TRIGGER) TO 02.) eR9 CHo'-;-IA COh"~04

+ J2-1

+ CI2 6.SV

COM BIAS TO (A 2)

J2-3 CHfJP,o£/f CONTROL

ell 6.SV

J2-4

J3-1 (TRIGGE.R) TO(A.3) 1iM~£ OR/""'~

+ J3-2

+ CIO 5.1 V I.3I..9S To ""3

COM n-3 J 3-5

150V ;e"aR (A.v <5/-"5 CVRR,!:;VT-sO~~C8' n9,t9/J1SrOR/'"I1F1f>

COM J3-4 COM J3-4~~--------------------------------------------------------------------------------------------------------~~--~~----------------~~__<

DW G. D I" 7 3S 7 /i'EV D (.,0,..<=.1,<11£)

FiguPe 8-4 Ol.l) Proeregu 'lator Ci,rauit Board Di,rt.gram

Modu'le III and IIIA

Page 39: SSD Series

Table 6-3 Replaceable Parts List

(Al) Circuit Board Assembly 167033-1 A 11 SSD I·lode 1 s

Ci rcuit Sorensen Mfr. , Symbol Description ~ ~

00 Capacitors'(uF unless noted)

U C1 22, 15V 235-7395P40 UC C2 0.01, 25V 235-7426P1 RDM, M25 C3 4700pF, 200V 167058-3 AER, CK06 C4 1000pF, lkV 235-7421P14 RDM, JF C5 4700pF, 200V 167058-3 AER, CK06 C6 O.Ol,25V 235-7426P1 RDM, M25 C7 0.068, 250V 24-2015-11 EMC, DM15 C8 0.1, 100V 24-2037-7 EMC, DM15 C9 22, 15V 235-7395P40 UC CIO 22, 15V 235-7395P40 UC C11 22, 15V 235-7395P40 UC C12 22, 15V 235-7395P40 UC C13 6.8, 25V 235-7395P64 SP, 196D C14 6.8, 25V 235-7395P64 SP, 196D C15 1. 0, 350V 166706-6 SR C16 0.01, 25V 235-7426P1 RDM, M25

Diodes

CR1 IN4148 322-7220Pl ITT CR2 Not Used CR3 Not Used CR4 Not Used CR5 IN4148 322-7220P1 ITT CR6 1N4606 585155-1 ITT CR7 1N4148 322-7220P1 ITT CR8 IN4148 322-7220P1 ITT CR9 1N4148 322-7220Pl ITT

Component Side CR10 1N4148 322-7220P1 ITT CRll 1N4606 585155-1 ITT CR12 Rect/Diode, S1F6 586379-8 SEM

Fl Fuse, O.IA, 250V 226-7176P8 BUS, AGX

Jl Conn PC Card 586288-4 SR J2 Conn PC Card 586288-4 SR J3 Conn PC Card 586288-5 SR

Q1 Transistor, SJE2300 982992-1 MA Q2 Transistor, SJE2300 982992-1 MA

Resistors (ohms, 1/4 watt, ±2% unless noted)

Rl 150.K, 1/2W 585326-219 CG, C5 R2 15K, lW 167059-171 CG, C6 R3 3.3K 585108-35 CG, C4 R4 150 585108-63 CG, C4 R5 680 585108-95 CG, C4 R6 680 585108-95 CG, C4 R7 3.3K 585108-35 CG, C4 R8 2.2K 585108-27 CG, C4 R9 5K, 1/2W, Variable 586370-6 BNS, 3389H RIO 390 585108-83 CG, C4 Rll lK 585108-11 CG, C4 R12 lK 585108-11 CG, C4 R13 5.1K 585108-45 CG, C4 R14 5,6K 585108-47 CG, C4 R15 1K, 1/2W, Variable 586370-4 BNS, 3389H R16 33K 585108-125 CG, C4 R17 15K 585108-109 CG, C4

Tl Pre-Regulator Transformer 167360-1 SR

U1 IC555 587995-1 SIG, NE555V LJ2 IC555 587995-1 SIG. NE555V U3 Ie, U1741CN 586372-1 NS, LM741CN

"'i"-' Circuit Side VR1 Diode, Zener 1N5234B 588101-9 MA

VR2 Diode, IN825 588105-3 MA

Page 40: SSD Series

JI-I +tC16 +

IGV

JI-2 COM

-5ENSE JI-4 J.C20

+5ENSE JI-3 f RI3

JI-5 A

JC! -I +".SV

~RI

-i; CI •

R43 tVR2 +J.CI7 ~i"

. & & 'V

R3 ~ R59

<,.1'1.41- ~ <,. 13 ,-

.--..-_~'4..:.;-!( U I-E \

.( RIC!

,~ , CRI

IS

el9 R45 .A,!~O

'vy

R46 02 r--.... 7 - lA4

R48

3 vv +/ 4

Ufo

-r-' ;.

,--I _----'f '~17 RI4

> ...-_-+_ 1.7V VO~;T"'GE C~3 --< MODE COHi~

C6 1'1.9

1'1.32.

CIO

~,­

CR'3 ]

J4-1 4.SVAC 20KHZ

J3-3 J 3-2

4,5V 4.5 'lAC flCCOM 20KI-I'Z.

R37 CRI9

CRI! ( RS8

4.'VR' R6

> 'V 1

~ CI2 ,~I L--_______ +-___ e----=5~' ?UI-B

----1"j .. - 3 7t? B,,",SE DRIVE

CHOP TRPo.NS 9/~A J~:.s-t"> 1<7

....... ..----,------Jvv. A\r-_-+--~C r--.... '7 RI03 r Tt R~ U 3 >=6::.-+ ________ __

W c.w & 3 I

CURREN' 'v + V 4 C~~~~~T UI16 UC1-'6 CI4 _/ CRIO ,.

6.5V L~J "'tJ\'P 1- T 2~ R2'7 CRI' , +1 ell

J2-4r-~~~~~~~~--t_---t_-------~--~--~---4-~1~-------'~-------~-~ DWG D1673S' (';P['C/Al)

+ C2

U2-'"

R31 '--- 3 1'1.28

AA

-, , I

~R2

-v IC'· 15 14 13 12 \I 10 9

2345678

, -4 '-------+-..

PULSE WIDTH G .... ,E. DRIVE

R39

> ~R40

> "CRI8 ClA.NlP

CURREN. SEN5E'-; J 3 _ I

(A2) Figure 6-5

Chopper Cont!'ol Circuit Board Diagram Madule8 III and IIIA

6-13/6-14

Page 41: SSD Series

Component Side

Circuit Side

Table 6-4 Replaceable Parts List

(A2) Circuit Board Assembly 167035· 1/-2*

Circuit Symbol

Capacitors

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

C13

C14 C15 C16 C17 C18 C19 C20 C21 C22

CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 CR9 CR10 CR11 CR12 CR13 CR14 GR15 CR16 CR17 CR18 CR19 CR20

C onne.ctors

J1 J2 J3 J4

Q1 Q2 Q3

Description

(uF unless noted)

22, 15V 22, 15V 10,. 10V 0.01. 25V 6.8, 25V 0.01, 25V Not Used Not Used 0.01, 250V 680pf, 300V 10. 10V 330pf, 300V (Module III) Not Used (Module IlIA) Not Used (Module III) 0.001, 100V (Module IlIA) 0.01, 25V Not Used 6.8, 25V 10, 10V Not Used 0.015, 250V 0.01, 25V 6.8, 25V Not Used (Module III) 1000pF (Module IlIA)

1N4148 1N4148 1N4148 1N4148 1N4148 1N4148 Not Used 1N4148 1N4148 1N4148 1N4148 1N4I48 1N4148 Not Used Rect/Diode, SlF2 Rect/Diode, S1F2 Not Used Rect/Diode, S1F2 Rect/Diode, S1F2 1N4148

Conn PC Card Conn PC Card Conn PC Card Conn PC Card A2 PC Card Extender

Transistor, 2N2219A Transistor, 2N2905A Transistor, 2N2905A

So r'en sen" P/N

235.,7395P40 235-739SP40 235-7395P23 235-7426P1 235-7395P64 235-7426Pl

24-2015-1 235-7053P326 235-7395P23 235-7053P140

235-7355P259. 235-7426P1

235-7395P64 235-7395P23

24-2015-3 235-7426PI 235-7395P64

235-7355P259

322-7220~~ 322-7220Pl 322-7220Pl 322-7220Pl 322-7220P1 322·7220P1

322-7220P1 322-7220P1 322-7220P1 322-7220P1 322-7220P1 322-7220P1

586379-4 586379-4

586379-4 586379-4 322·7220P1

586288-5 586288-4 586288-3 586288-5 166769-1

386-7249P32 386-7249P40 386-7249P40

Resistors (ohms, f/4 watt, ±2% unless noted)

Rl R2 R3 R·4 R5 R6

470 470 10K 1. 8K 1. 5K 4.7K

*Module Size III/Module Size IlIA

585108-87 585108-87 585108-59 585108-23 585108-19 585108-43

Mfr. , In!.L

SP, 196D SP, 196D SP, 196D RDM, M25 SP, :96D RDM, M25

S E, MM K EMC, DM15 SP, 196D SAN, 015

Circuit Symbol

Resistors

R7 R8 R9 RIO

R12 -R13 R14 R15 RI6 RI7

RI9

EMC, DMI5 R2I RDM, M25

SP, 196D SP, 196D

SE, MMK RDM, M25 SP, 196D

R22

R23

R24 R25 R26

EMC, DM15 R27

ITT ITT ITT ITT ITT ITT

ITT ITT ITT ITT ITT ITT

SEM SEM

SEM SEM ITT

SR SR­SR SR SR

GE GE GE

CG, C4 CG, C4 CG, C4 CG, C4 CG, G4 CG, C4

R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38

R39 R40

R43 R44 R45 R46

R48

R50 R51

R55 R56 R57 R58 R59

U1 U2 U3 U4 U5 U6

VR1 VR2 VR3

Description Sorensen

PIN

(ohms, 1/4 watt, ±2% unless noted)(cont'd)

5.6K 5.6K 22K 1K, 1/2W, Variable

10K 150 4.7 K 1K 680 1K

4.7 K

1K (Module III) 10 (Module IlIA) 3.3K (Module III) 5.6K (Module IlIA) 5.6K (Module III) 2.2K (Module IlIA) 1K 1K 5.6K (Module III) 2.2K (Module lIlA) 1.0K (Module III) 10 (Module IlIA) 1K 330 1K 5.6K 10K 680 1K 2.2K 10 330 10, 1W (Module III) 8.2, 1W (Module IlIA) 330 10, 1W (Module III) 8.2, 1W (Module IlIA)

1. 5K 2K, 1/2W, Variable 619K, 1/8W, 1% 10 (Module III) 33 (Modul e IlIA)

2.2K

6.8K 10K

680 680 680 680 1K

IC, CA3096E IC, CA3096E IC, LM741CN IC, LM74ICN OPTO Isolator OPTO Isolator

Diode 1N825 Diode 1N825 Zener 1N5235B(Module III) Zener 1N5240B(Module IlIA)

585108-47 585108-47 585108-117 586370-4

585108-59 585108-63 585108-43 585108-11 585108-95 585108-11

585108-43

585108-11 585108-151 585108-35 585108-47 585108-47 585108-27 585108-11 585108-11 585108-47 585108-27 585108-11 585108·151 585108-11 585108-79 585108-11 585108-47 585108-59 585108-95 5&5108-1-585108-27 585108-151 585108-79 167059-19 167059-15 585108-79 167059-19 167059-15

585108-19 586370-5 586055-112 585108-151 585108-175

585108-27

585108-51 585i08-59

585108-95 585108-95 585108-95 585108-95 585108011

589182-1 5897J2-2 586372-1 586372-1 586463-3 586463-2

588105-3 588105-3 588101-10 588101-13

Mfr. , ~

CG, C4 CG, C 4 CG, C 4 BNS, 3389~

CG, C4 CG, C 4 CG, C4 CG, C4 CG, C4 CG, C4

CG, C4

CG, C4 CG, C4 CG, C 4 CG, C4 CG, C4 CG, C4 CG, C4 CG, C4 CG, C4 CG, C 4 CG, C4 CG, C4 CG, C4 CG, C4 CG, C4 CG, C4 CG, C 4 CG, C4 CG, C4 CG, C 4 CG, C 4 CG, C4 CG, C4 CG, C 4 CG, C4 CG, C 4 CG, C4

CG, C4 BNS, 3389H EMF, MF4 CG, C 4 CG, C4

CG, C4

CG, C4 CG, C4

CG, r.4 CG, SA CG, C4 cra, C4 CG, C4

RCA RCA r:; NS TI, Ll14 TI, ' .. 114

MA. I~P MA MA

Page 42: SSD Series

+1501/ J3-1

~) &;IJI J 3-2 F'1/'tW (lU) P"fF~GGoi.,fTdlP

R2

)rQ-I-+-I\I\I\r ...... J I

RI VRI

5TART-~P BLEED

C20

H~

CRI

R35

CLOCK

~J Q~ UI-S

OVP 5HIJT-OOWN

R:3

J3-5 ~

CRIO ~R7

U2 4 Nt555 RI3

~------~ REF. 6 ~ 2. CJ.oCI( r----< C 2 I

TI

ta

'0"1'

R::.e ----<J2-S

~-------------4(J2-1 :JI-2 I .1\."_

f -4.S't1- " .

ct. 111 4.5V?.S1S1 TO A.a:r+-/ evll'''"H'' 1-0-~-

~.3

j

L ;--------« J 2. - 2. BI'IS, .Pt'I'F 7~ (A~ fiJ2./~J

~ TI CRC!O 4.5V AC "LSlJ7""",z.;r3-a .---o-.-_t-----<.)"4-2

.l.. nil' "o·V·- T

,,"CIt: Pr, (JFP I ( E2 ... 1/ --------- (J2-3 6II\S 8/11$ 7t:J~~PC8

CVIU"'" T-

,)"/-4 I -4.:IV '-

Vi

~R15 eRe <'" ?

CR7 ~R14 >

ERROR

Q4~)

RliO

.AA .

Q3 \t-- ) -

SovRC6 f J"4-1 x 1"1'1" E3

• CRal I.:....~E.:>-I-.... r---'''''''IH e'IIAWS (Ii'{(~

swrr~H AfO,,,,iir

) ~

CVRR£/IT r

CRla ~

(f-)150!4:le ? HhQ7

CI4

~ 5

.;Y

.-------+---t-----11 E--(,.1 CLAMP ( CR~ ~ .... ----t-t---(JI-I

(( 4.SVA'- CRII ~12 J JI-2 BASE. DRIVE .... ~~~~~~+-~-~ SO/50 BIAS

INVERTE.R ).-..----t------+--+-----<JI- 5

R24

>­>­>-

4.SVAC CIS

-I L-J'<s ') .... -+_--+--.-1 t---

1 ~ RI 7 .~ R 2. 2. J CII .... ..j1!--JULll-?_' __ 'T_""_-C._--+-II--__ --. ..... C;R.I_4 .... _

C .. R ... I_S_ .... ___ -< JI _ 4 BA.Se. DRI\IE

4 8 RI8 • Q5: ~ R25 .::" ... SETS 'htlFArF" SOl50 7 -A./V\r CRC!S. .j\/\. OF1F, -rIM/E' .... ---_If----o(JI-3

U3 ~ 1 ~ R23 CI3 BAL. ,loa CLAMP 1-"6::.-_____ R <13 /'"? MIlOR T

AMPI.IPI4'~

'-r_T":"f->3-=i,=--"""'---H, ..... 9". V"".,.-4H--ic~:-:1:::-:~,,-:=-I..S-------I~I--.... ---4IJ--Q-6-t~-t N1P. '--___ ...J r CRI 8

~QZ. I 5 __ \ ,) (GtHlntOI.S 1<1-3 ,.,.,

..... ~=--\-----Ht-----+'=--.' OFF-71I1JfE) ;>Fl.26

\

" CRI9 '> ~ R6 C3 ::(4 R42. C8 ::r CIO < Rao ~

COM CR:3 > T T? , 1 ./ J3-3~--~--~~~--~--~------4-~~----~4_------~--~~~~------~~--------~~------------~--~------~--------------------------------------------<J3-4

L /2. +: CI ,

DWG" DU]3S"S" ) REV H (~PECI"'L AMP

TRIGGER OSCILLA,OR GAP DELA.Y \ BALANCe. CIRCV',.

Fif1U1'e 6-6 C$.3) Ease Driver Cirauit Board Diagram

Modules III and III A

6-15/15-16

Page 43: SSD Series

Table 6-5 Replaceable Parts List

(A3) Circuit Board Assembly 167037-2

Circuit Sorensen Mfr. , Circuit Sorensen Mfr. , Symbol Description PIN :!i.e~ SymbOl Oescri[!tion PIN ~ Capacitors (uF unless noted) Transistors (cont'd)

Cl 22, 15V 235-7395P40 UC 05 2N2907A 386-7249P58 GE C2 470pF, 300V 235-7053P157 SAN, 015 06 2N2219A 386-7249P32 GE C3 0.01, 25V 235-74?fiPl ROM, M25 07 2N2219A 386-7249P32 GE C4 0.0047, 200V 167058-3 AER, CK06 08 2N2219A 386-7249P32 GE C5 0.22, 100V 24-2037-11 SE, MMK 09 2N2907A 386-7249P58 GE C6 0.22, 100V 24-2037-11 SE, MM~. C7 0.0022 235-7193P2 I EC Resistors (ohms, 1/4 watt, ±2% unless noted) C8 0; 01, 25V 235-7426Pl ROM, M25 C9 0.01, 25V 235-7426P1 ROM, M25 R1 150K, 1/2W 585326-219 CG, C5 C10 0.001, 100V 235-7355P259 EMF, OM R2 10 585108-151 CG, C4 C11 0.01, 25V 235-7426Pl ROM, M25 R3 5.6K 585108-47 CG, C4 C12 0.001, 300V 235-7355P259 ROM, M25 R4 2.2K 585108~27 CG, C4 C13 0.22, 100V 24-2037-11 SE, MMK R5 680 585108-95 CG, C4 C14 0.001, lkV 235-7421P14 ROM, JF R6 lK 585108-11 CG, C4 C15 0.001, 1kV 235-7421P14 ROM, JF R7 5.6K 585108-47 CG, C4 C16 6.8, 25V 235-7395P64 SP, 1960 R8 Not Used C17 10, 10V 235-7395P23 SP. 1960 R9 330 585108-79 CG, C4 C18 0.01, 25V 235-7426Pl ROM, M25 RIO 330 585108-79 CG, C4

R11 Not Used C20 6.8, 25V 235-7395P64 SP, 1960 R12 6.2K 585108-49 CG, C4 C21 470pF, 300V 235-7053P157 SAN, 015 R13 150 585108-63 CG, C4

R14 680 585108-95 CG, C4 R15 680 585108-95 CG, C4 R16 4.7, 1/2W 585326-3 CG, C5 R17 5.6K 585108-47 CG, C4

Diodes R18 3.3K 585108-35 CG, C4 R19 Not Used

CR1 IN4148 322-7220Pl ITT R20 4.7K 585108..;43 CG, C4

Component Side R21 Not Used CR3 1N4148 322-7220P1 ITT R22 47K 585108-133 CG, C4

R23 lOOK 585108-149 CG, C4 CR5 1N4148 322-7220P1 ITT R24 2.2K 585108-27 CG, C4 CR6 1N4148 322-7220P1 ITT R25 10K 585108-;59 CG, C4 CR7 1N4148 322-7220P1 ITT R26 680 585108-95 CG, C4 CR8 1N4148 322-7220P1 ITT R27 iOO 585108-8 CG, C4 CR9 1N4606 585155-1 ITT R28 10, 1 W 167059-19 CG, C6 CR10 1N4148 322-7220P1 ITT R29 Not Used CR11 SlF2 586379-4 SEM R30 Not Used CR12 SlF2 586379-4 SEM R31 100 585108-8 CG, C4 CR13 SlF2 586379-4 SEM R32 10, 1W 167059-19 CG, C6 CR14 SlF2 586379-4 SEM R33 680 585108-95 CG, C4 CR15 SlF2 586379-4 SEM R34 1. 5K 585108-19 CG, C4 CR16 1N4606 585155-1 ITT R35 6.19K, 1/8W, 1% 586055-112 EMF, MF4

R36 1K 585108-11 CG, C4 CR18 SlF2 586379-4 SEM R37 1K 585108-11 eG, C4 CR19 1N4148 322-7220P1 ITT R38 680 585108-95 CG, C4 CR20 1N4148 322-7220P1 ITT R39 Not used CR21 1N4148 322-7220P1 ITT R40 2.2K 585108-27 CG, C4

R41 1K 585108-11 CG, C4 R42 2.2K 585108-27 CG, C4

CR25 1N4148 322-7220P1 ITT

T1 Bias Current Transformer 167354-1 SR

Connectors U1 IC, SN74LS73N 167825-1 TI U2 IC555 587995-1 SIG, NE555V

J1 Conn PC Card 586288-10 SR U3 IC555 587995-1 SIG, NE555V J2 Conn PC Card 586288-5 SR U4 opm Isolator 586463-2 TI, Ll14 J3 Conn PC Card 586288-5 SR U5 IC, LM741CN 586372-1 NS, LM741CN J4 Conn PC Card 586288-5 SR

VR1 Diode, 1N5234B 588101-9 MA VR2 Diode, lN825 588105-3 MA

Transistor~ VR3 Dtode, IN5230B 58810h6 MA

Q1 2N3440 386-7249P13 GE Q2 2N2222A 386-7249P57 GE 03 SJE2300 982992-1 MA 04 SJE2300 982992-1 MA

Cipcuit Side.

Page 44: SSD Series

Component Side (Module III)

Circuit Side (Module III)

Component Side (Module IIIA)

Circuit Side (Module IIIA)

F-tgure 6-7 {A4} Rear Chassis Circuit Board Assembly

(Parts Listed in TaMe 6-1/6-2)

6-17

Page 45: SSD Series

R24-

R2~

o

Component Side (Module III)

Circuit Side (Module III)

Component Side (Module IIIA)

Circuit Side (Module IIIA)

Figure 6-8 (A5) Front Panel Circuit Board Assembly "

(Parts Listed in Tables 6-1/6-2)

6-18

o

Page 46: SSD Series

SERVICE NOTES

Page 47: SSD Series

FIELD SERVICE REPRESENTATIVES-------.

WESTERN AREA

Ball Aerospace Systems Boulder Industrial Park Boulder, Colorado 80302 Tel: 303/441-4786

John Fluke Mfg. Company Northwest Technical Center 9028 Evergreen Way Everett, Washington 98024 Tel: 206/774-2238 or

774-2206

General Electric Instrumentation Service 3840 W. Clarendon Street Phoenix, Arizona 85017 Tel: 602/278-8515

General Electric Instrumentation Service 4690 South Park Avenue Tucson, Arizona 85714 Tel: 602/294-3139

lSI Fluke Western Technical Center 2020 North Lincoln Street Burbank, California 91504 Tel: 213/849-4641

lSI Fluke Western Technical Center 2359 De La Cruz Blvd. Santa Clara, California 95050 Tel: 408/985-1200

Missouri Research Labs Inc. 630 Haines Avenue N. W. Albuquerque, New Mexico 87102 Tel: 505/243-6772

Pivan Engineering Company 3535 W. Peterson Avenue Chicago, Illinois 60645 Tel: 312/539-4838

Certified Test Equipment Sales Inc. 601 Easy Street Garland, Texas 75042 Tel: 214/494-3446

Ampower Electronic Instrument Co., Inc. 500 Union Boulevard Totowa, New Jersey 07512 Tel: 201/790-6750

Ampower Electronic Instrument Co., Inc. 59 Central Avenue Unit 3 Farmingdale, New York 11735 Tel: 516/752-1078

Ampower Electronic Instrument Co., Inc. 1161 Brighton-Henrietta Town Line Road Rochester, New York 14623 Tel: 716/424-1220

Applied Metrology Inc. 10067 N. 2nd Street Laurel, Maryland 20810 Tel: 301/953-1010

BCS Associates, Inc. P. O. Box 6578 940 North Fern Creek Avenue Orlando, Florida 32803 Tel: 305/896-4881

BCS Associates, Inc. P. o. Box 9619 1210 Beaman Place Greensboro, North Carolina 27408 Tel: 919/273-1918

Comtel Standards Laboratory 21186 Bridge Street P. O. Box 5034 Southfield, Michigan 48037 Tel: 313/398-2100

Comtel Instrument Company 5827 Mayfield Road Cleveland, Ohio 45429 Tel: 216/442-8080

Valley Instrument Company 491 Clover Mill Road Exton, Pennsylvania 19341 Tel: 215/363-2650

NEW ENGLAND AREA

Sorensen Company 676 Island Pond Road Manchester, N. H. 03103 Tel: 603/668-4500

FOREIGN AREA

Associated Test Equipment Ltd. 3530 Pharmacy Avenue Scarborough, Ontario Canada MIW 2S7 Tel: 416/497-2208

ENGLAND

B~st Products Ltd. Electronic Division Ranelagh House Felixstowe, Suffolk England IP11 7HB Tel: Felixstowe (039-42) 3154

FRANCE

NAVALEC Compagnie de Diffusionde Materiel Electonique 7, Rue Lavoisier F-75008 Paris

SWITZERLAND

Sorensen AG Halbartenstrasse 54 CH 5430 Wettingen Switzerland

J5iiCIIirJE:I\I!5iIEi"'------__ ----1-e-I:--0_56 __ 26_51 __ 16 ____ -----5/-7-8~

POWER SUPPLIES