stability of spatial interpolation functions in finite element one dimensional kinematic wave...

9

Click here to load reader

Upload: endless-love

Post on 03-Sep-2015

5 views

Category:

Documents


3 download

DESCRIPTION

Stability of Spatial Interpolation Functions in Finite Element One Dimensional Kinematic Wave Rainfall Runoff Models

TRANSCRIPT

  • VNUJournalofScience,EarthSciences24(2008)5765

    57

    Stabilityofspatialinterpolationfunctionsinfiniteelementonedimensionalkinematicwaverainfallrunoffmodels

    LuongTuanAnh1,*,RolfLarsson2

    1ResearchCenterforHydrologyandWaterResources,InstituteofHydrometeorologicalandEnvironmentalSciences

    2WaterResourcesEngineeringDepartment,LundUniversity,Box118,S22100Lund,Sweden

    Received27May2008;receivedinrevisedform5July2008

    Abstract. This paper analyzes the stability of linear, lumped, quadratic, and cubic spatialinterpolationfunctionsinfiniteelementonedimensionalkinematicwaveschemesforsimulationofrainfallrunoff processes. Galerkins residual method transforms the kinematic wave partialdifferentialequationsintoasystemofordinarydifferentialequations.Thestabilityofthissystemisanalyzedusingthedefinitionofthenormofvectorsandmatrices.Thestabilityindex,orsingularityofthesystem,iscomputedbytheSingularValueDecompositionalgorithm.Theoscillationofthesolution of the finite element onedimensional kinematic wave schemes results both from thesources,andfromthemultiplicationoperatorofoscillation.Theresultsofcomputationexperimentand analysis show the advantage and disadvantage of different types of spatial interpolationfunctionswhenFEMisappliedforrainfallrunoffmodelingbykinematicwaveequations.

    Keywords:Rainfallrunoff;Kinematicwave;Spatialinterpolationfunctions;Singularvaluedecomposition;Stabilityindex.

    1.Introduction1

    Theneed for toolswhichhave capabilityofsimulatinginfluenceofspatialdistributionof rainfall and land use change on runoffprocesses initiated the development ofhydrodynamic rainfallrunoff models [1, 8].Oneofthebasicassumptionsforsuchmodelsregardstheexistenceofacontinuouslayerofwatermovingover thewhole surfaceof thecatchments.Althoughobservationsshowthatsuchconditionsarerare, theassumptioncan

    _______ *Correspondingauthor.Tel.:844917357025.Email:[email protected]

    berelaxedbyconsideringthetotalflowtobethe resultof the flow frommanysmallplotsdrainingintoafinenetworkofsmallchannels.

    Theactualphysicalflowprocessesmaybequitecomplicated,but forpracticalpurposesthere is nothing to be gained fromintroducingcomplexityintothemodels.Asacommonway of getting optimal results, theonedimensional kinematicwavemodels [2,5, 8, 11] are often selected. These can besolvedbydifferentmethods,oneofwhich isthe finite element method (FEM) which isanalyzedinthispaper.

    TheFEMmodelsarenormallyderivedbythe weighted residuals method, which is

  • LuongTuanAnh,RolfLarsson/VNUJournalofScience,EarthSciences24(2008)576558

    based on the principle that the solutionresiduals should be orthogonal to a set ofweightingfunctions[7]:

    0 = i)W

    f)h(( ,

    where: f(h) = :partialdifferentialequationofh;

    i iNiah :estimatedsolution;

    Wi:setofweightingfunctions;Ni:functionsofspatialordinate; ia :functionsoftime.According to Peyret and Taylor [9], the

    weighted residualmethod is a general andeffective technique for transforming partialdifferential equations (PDE) into systems ofordinarydifferentialequations (ODE).When

    ii ah , and iN are functions defined on aspatialinterval(element)themethodiscalledFEM.Thespecialcaseofweightingfunctions

    ii NW = iscalledGalerkinsresidualFEMandit is often used for solving onedimensionalkinematicwaverainfallrunoffmodels.

    The numerical solutions of the finiteelement schemes for overland flow andgroundwater flow in one dimensionalkinematic wave rainfallrunoff models mayoften run into problems with stability andaccuracy due to oscillation of the solution.The schememay be considered stablewhensmalldisturbancearenotallowedtogrowinthe numerical procedure. The reasons foroscillationof theGalerkinsFEMmethod forkinematic wave equations have beendiscussedbyJaberandMohtar[5].

    Oneimportantfactorwhichinfluencesthestability characteristics of themethod is thechoiceofspatial interpolation function. Jaberand Mohtar [5] used linear, lumped andupwind schemes for spatial approximationand the enhanced explicit scheme fortemporal discretization. They analyzed thestabilityofdifferentschemesthroughFourier

    analysis and concluded that the lumpedscheme is themost suitable for solution ofkinematicwaveequations.

    Blandford et al [2] investigated linear,quadratic, and cubic interpolation functionsfor simulation of onedimensional kinematicwave by FEM and found that quadraticelementsproducedthemostaccuratesolutionwhen the implicit interactionprocedurewasusedfortemporaldiscretization.

    The results of these researches and themathematical implication ofGalerkins FEMshow that the stability and accuracy of thefiniteelementschemesdoesnotonlydependonthetypeofspatialinterpolationfunctions,but also on the temporal integration of thesystem of ODE occurring when FEM isapplied for overland flow kinematic waveandgroundwaterBoussinesqequations.

    In theworks cited above, the numericalschemes have been based on equidistantspatialelements.Inpracticalapplications,itisoften necessary to use elements of differentsize, where the discretization reflects thevariationofphysicalpropertiesofthechannelor the catchments beingmodeled.Themainpurposeofthispaperistoanalyzetheeffectsof varying size of spatial elements on thestability of the solution. Furthermore, theoriginofinstabilitywillbediscussed.

    In theanalysis, thenumerical stabilityofthe various schemes will be evaluated byinvestigating associated matrices using theSingular Value Decomposition (SVD)algorithm. The following types of spatialinterpolation functions are investigated:linear,lumped,quadratic,andcubic.

    2. Finite element schemes for onedimensionalkinematicwaveequations

    The onedimensional kinematic wave

  • LuongTuanAnh,RolfLarsson/VNUJournalofScience,EarthSciences24(2008)5765 59

    equations have been used for simulation ofthe rainfallrunoff process in small andaverage size river basinswith steep slopes.Theyhavebeenappliedinnumerousstudiesforhydrologicaldesign,floodforecastingetc.[2, 3, 6, 8, 11, 12]. The onedimensionalkinematic wave equations are normallywrittenintheformofthecontinuityequation:

    t)r(x,xq

    th

    =

    + , (1)

    and the equation of motion for (quasi)uniformflow:

    hq = , (2)

    where:h:flowdepth(m); q :unitwidthflow(m2/s); ),( txr :effectiverainfallorlateralflow(m/s); nSo /

    2/1= ; 5/3; = n : Manning

    roughnesscoefficient( /sm1/3 ); oS :thesurfaceorbottomslopethatequalstofrictionslopeinthecaseofkinematicwaveapproximation; x :spatialcoordinate(m);and t :time(s).

    Equations(1)and(2)arepartialdifferentialequations which have no general analyticalsolution.However,withgiveninitialconditionh(t=0)andboundaryconditionh(x=0),numericalsolutions canbe found.Thekinematicwaveresultsfromthechangesinflowandsinceitisunidirectional(fromupstreamtodownstream),onlyoneboundaryconditionisrequired.

    Principlesofspatialdiscretization for theonedimensional kinematic wave modelusing theFEMmethodhavebeenpresentedbyRossetal[11].Thesurfaceareaoftheriverbasin is divided in the crossflow directioninto strips. Each strip is then divided intocomputational elements based on thecharacteristics(e.g.slope)ofthebasinsothateachelementisapproximatelyhomogeneous.

    For each computational element, thevariablesh(x,t)andq(x,t)areapproximatedintheform:

    =

    =

    =

    =

    n

    1i(t)i(x)qiNqt)q(x,

    n

    1i(t)i(x)hiNht)h(x,

    ;

    (3)

    where: )(xNi : space interpolation function(shapefunctionorweightingfunction).

    Itisnotedthattheexpressions(3)shouldsatisfy not only Equation (1) but also theinitialconditionandtheboundarycondition.

    The Galerkins residual methodnormalizes the approximated error withshapefunctionoverthesolutiondomain:

    =

    =

    +

    M

    1i0dxiNirx

    iNiqiNdt

    idh .(4)

    Theapproximation(3)combinedwiththeintegral (4) transforms thepartialdifferentialEquation (1) into a system of ordinarydifferentialequations,whichforeachelement(4)takestheform:

    0(e)fq(e)Bdtdh(e)A =+ . (5)

    For the linear scheme, the spatialinterpolationfunctionscanbedefinedas:

    y(x)N =11 ,and y(x)N2 = ,where lxy /= ; l isthelengthoftheelement.

    In this case, thematrices ofEquation (5)arewrittenas:

    ( ) ; 1111

    21

    =eB

    ;

    36

    63)(

    = ll

    lleA ),(

    2

    2)( txrl

    le

    =f

    The lumped scheme [5] is based on thespatial interpolation functions expressed intheforms:

    = 2

    lsH1* 1jN ;

    =

    2lsH*jN

    TheheavysidefunctionH(x)isdefinedas:H(x) = 0ifx < 0;H(x) = 1ifx 0;s:distancefromnodej1.

  • LuongTuanAnh,RolfLarsson/VNUJournalofScience,EarthSciences24(2008)576560

    Thematrices for the lumped scheme ofEquation(5)canbeestimatedintheform:

    0

    021)(

    =

    lleA

    Thematrix )(eB and vector )(ef remainthesameaslinearscheme.

    In the case of quadratic scheme [2], thespatialinterpolationfunctionsare:

    .2

    ;44

    ;231

    23

    22

    21

    yyN

    yyN

    yyN

    +=

    =

    +=

    Thematrices foroneelementaredefinedasfollowing:

    ;

    152

    1530

    15158

    15

    3015152

    )(

    =

    lll

    lll

    lll

    eA

    ;

    21

    32

    61

    320

    32

    61

    32

    21

    )(

    =eB ),(

    6

    326

    )( txr

    l

    l

    l

    e

    =f

    For cubic scheme (one element, fournodes),spatial interpolation functionscanbeexpressedintheforms: 321 5.495.51 yyyN += 322 5.135.229 yyyN += 323 5.13185.4 yyyN += 324 5.45.4 yyyN +=

    The matrices for one element areintegratedandarepresentedas:

    ;

    1058

    56033

    1403

    168019

    56033

    7027

    56027

    1403

    1403

    56027

    7027

    56033

    168019

    1403

    56033

    1058

    )(

    =

    llll

    llll

    llll

    llll

    eA

    ;

    21

    8057

    103

    807

    80570

    8081

    103

    103

    80810

    8057

    807

    103

    8057

    21

    )(

    =eB

    ),(

    8

    83838

    )( txr

    l

    l

    l

    l

    e

    =f

    For the whole domain containing theelements,Equation(5)hastheform:

    0=+ fBqhAdtd (6)

    In the case of using lumped scheme,matrices A; B and vector f for the domain(strip)containingnelementscanbepresentedintheforms:

    .

    2000..0000

    022

    00..0000

    0022

    00..000..........

    0..022

    00000

    0..0022

    0000

    0..00022

    000

    00..00022

    00

    00..000022

    0

    00...00002

    1

    12

    65

    54

    43

    32

    2

    1

    +

    +

    +

    +

    +

    +

    +

    =

    n

    nn

    nn

    l

    l

    ll

    ll

    ll

    ll

    ll

    ll

    ll

    l

    A

    =

    21

    21000...00

    210

    2100...00

    0210

    2100..00

    ..........

    ..........

    0..0210

    21000

    0..00210

    2100

    00..00210

    210

    00...00210

    21

    00...00021

    21

    B

    Crf =

    +

    +

    +

    =

    2

    22

    22

    22

    2

    11

    3322

    2211

    11

    nn

    nnnn

    rl

    rlrl

    rlrl

    rlrl

    rl

  • LuongTuanAnh,RolfLarsson/VNUJournalofScience,EarthSciences24(2008)5765 61

    Foroverlandflow,thesystemofordinarydifferential equations (6), can be written intheform:

    0=+ CrBqhAdtd , (7)

    where:C:sparsematrixcontainingthesizeofelements;r:vectorofeffectiverainfall.

    The solution of Equation (7) can beobtainedbyvariousnumericalmethods,oneofwhichisthestandardRungeKuttamethodand Successive Linear Interpolation forsolutionofODEwithboundaries[4,10].

    Inorder toanalyzehow thestabilityandaccuracyofthesolutionschemesdependsonthe choice of spatial interpolation functions,equation (7) has been transformed into asystemoflinearalgebraicequations:

    yAx = , (8)

    where: xh =t

    :unknownvector;

    BqCry = :givenvectorforexplicittemporal differential scheme and estimatedvectorforimplicitinteractiveschemeforeachtimestep.

    3.Stabilityanderroranalysis

    In order to evaluate the stability ofvarious finite element schemes, the SingularValueDecomposition(SVD)algorithmwillbeapplied. Itwill be introduced anddescribedbelow together with the definition of someessentialvectorandmatrixconcepts:

    (i)AccordingtotheSVDalgorithm[4.10],thematrixA (mm) can be expressed in theform:

    TVUA = , (9)where U, V: square orthogonal matrices(mm), :diagonalmatrixwith 0ii calledsingularvaluesofmatrixA.

    (ii)Thenormofthevectorxisdefinedas:2/1)( xxx = T (10)

    (iii)Thenormof thematrixA isdefinedas themaximumcoefficientofextensionandcanbeexpressedas:

    max===TT VUVUA (11)

    ThephysicalimplicationofEquation(8)isthatonevector,x,inlinearspaceistransformedby A into another vector, y. Thistransformation takes three different forms:extension,compression,andturning.

    The stability index, or singularity of thematrix A, can be defined as the ratio ofmaximumextensioncapacityovertheminimumcompressioncapacity,expressedas[4]:

    min

    max

    min

    max

    min

    max)(

    =

    ==

    x

    xTVU

    x

    xTVU

    xAxx

    Ax

    A

    x

    x

    x

    xCond ,(12)

    where max , min : maximum and minimumsingularvaluesofArespectively.

    Now,inordertostudythestabilityofthesolution scheme, a disturbance (oscillation)y is introduced. This results in acorrespondingdisturbance (oscillation)x inthe solution. The system of linear algebraicequations (8) with and without oscillationbecomes:

    yAx = xxAy max= (13)

    yyxxA +=+ )( xy min ,where: yx, : oscillation vector of solutionandoscillationvectoroferrorsrespectively.

    Thismeansthat:

    yy

    Axx

    )(Cond (14)

    The relationship (14) shows that thestabilityofthesolutionofsystem(8)dependson thestability indexof thematrixAwithahigh value of the index indicating lowerstability.Therelationship(14)alsomeansthatthe stability index (or singularity ofA)maybe considered as the multiplication ofoscillationy:

  • LuongTuanAnh,RolfLarsson/VNUJournalofScience,EarthSciences24(2008)576562

    qBrCy = . (15)Theupper limitofoscillation (15)canbe

    estimated by applying the definition of thenormofvectorsandmatrices:

    qrqBrC

    qBrCy

    ++

    =BCmaxmax

    (16)

    where: Bmax : maximum singular value of

    matrix B; Cmax :maximum singular value ofmatrixC.

    Expression (16) shows that the source ofoscillation include oscillation in the sourcetermr(effectiverainfall)aswellasoscillationintheadvectiontermaccumulatedduringthecomputation process. The upper limits ofthese oscillations depend on the chosenspatial interpolation function, and they arerelatedwith the structure of thematrices Band C respectively. These values will becomputed and the resultswill be discussedbelow for the selected typesof interpolationfunctions.

    The solution of the system (8) normallyrequires to inversematrixA [5, 12].We canshow that the singularity of the (square)matrixAhasthesamevalueasthesingularityoftheinversematrixA1byusingEquation(9):

    TUVA 11 = . (17)ApplicationofSingularValueDecomposition

    ofA-1gives:T'''1 VUA = . (18)

    The decompositions (9) and (18) arealmostunique [10]. Itmeans that '1 = ,and:

    )1/()1(

    )()(

    maxmin

    1

    min

    max

    =

    === AA CondCond (19)

    Therelationships (14)and (19)show thatthe stability and accuracy of solution ofsystem (8) are directly related with thesingularityofthehardmatrixA.

    4.Numericalexperiments

    Inordertoverifythemethodology,somebasic investigations are made for differenttypesof interpolationschemes insection4.1.Insection4.2, theeffectofusingelementsofvarious lengths is investigated. Finally, insection4.3,theinfluenceofdifferentdisturbancesourcesisanalyzed.

    4.1.Stabilityindexofmatrix Afordifferenttypesofspatialinterpolationfunctions

    Nowweassume that thestudiedstripofsurface area is divided into elements of(equal)unit length.The index of stability ofmatrix A has been computed for variousnumbers of elements for each type ofinterpolation function. The results of thecomputationsarepresentedinFig.1.

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    1 2 3 4 5 6 7Elements

    Cond

    (A)

    LinearQuadraticCubicLumped

    Fig.1.ThechangeofstabilityindexofmatrixA.

    Thenumericalexperimentsshowthattheindexofstabilityisvirtuallyconstantforeachtype of interpolation scheme when thenumberofelementsistwoorhigher.Itisalsoclearthatthelumpedschemegivesthelowestvalue of stability index, while linear,quadraticandcubic schemesgive2,3and4times higher values respectively. Inconclusion, the lumped scheme has the

  • LuongTuanAnh,RolfLarsson/VNUJournalofScience,EarthSciences24(2008)5765 63

    highest order of stability among the fourstudiednumericalschemes.

    The results of numerical experimentspresentedaboveagreewellwiththeresultsofanalytical Fourier stability analysis forconsistent (linear) and lumped schemes thathavebeenpresentedintheworkbyJaberandMohtar[5].

    4.2.Theimpactoffiniteelementapproximations

    Numerical experiments have beenconducted in order to assess the effect ofelement size on stability of the four finiteelement schemes: linear, lumped, quadraticand cubic.The calculationshavebeenmadeforastripof1000m length,whichhasbeenapproximated by two elements. The lengthsof the two elements have been chosenaccording to three different options, withmoreor lessasymmetricproportions:option1withproportions1:1,option2withproportions1:9,andoption3withproportions1:99.

    The stability index ofmatrix A and themaximum extension capacity of errors ofmatrices B andC have been computed andare shown inTable 1.The results show thatthe stability of the finite element onedimensional kinematic wave schemes doesnot only depend on the type of spatialinterpolationfunction,butalsoonthespatialdiscretizationof thesurfacestripconsidered.Forall four interpolation schemes, the lowerthestabilityis,themoredisproportionatetheelements are.At the same time for all threeoptions, each with different geometricproportions,thestabilityishigherforlumpedand linear schemes than that for quadraticandcubicschemes.

    Another conclusion is that there are twomain causes for oscillation of the solution.One is the oscillation sources, and the otherone is the multiplication operator.

    Furthermore,itshouldbepointedoutthattheefficiency of the algorithm is an importantaspect with regards to the choice ofinterpolationschemeforpracticalapplications.The linear and lumped schemes require n+1equations,whilequadraticandcubicschemesrequire2n+1and3n+1equationsrespectivelyforsolvingaproblemwithnelements.

    Table1.StabilityindexofmatrixAandmaximumcoefficientofoscillation

    Casesofstudy

    LinearLumped

    Quadratic

    Cubic

    Bmax 0.866 0.866 1.29 1.67Cmax 404.5 404.5 334.2 198.7

    Option1

    Cond(A) 3.73 2.00 5.83 8.13Bmax 0.866 0.866 1.29 1.67Cmax 452.8 452.8 618.5 355.8

    Option2

    Cond(A) 14.6 10.0 41.2 63.1Bmax 0.866 0.866 1.29 1.67Cmax 495.0 495.0 680.3 391.3

    Option3

    Cond(A) 149.6 100.0 448.8 688.6

    4.3. The upper limit of oscillation sources fordifferenttypesofspatialinterpolationfunctions

    Iftheoscillationoccurringatagiventimestep are supposed to be equal for differenttypes of spatial functions, then the upperlimit of source of oscillationwill be relatedwith the maximum singular values ofmatrices B and C. The structure of thesematrices is depended on the type ofinterpolation functions. The maximumsingularvaluesofBandC forunitelementsofequal lengthhavebeencomputedandarepresentedinTable2.

    The results show that for advectionoscillation, both the linear and the lumpedschemes give values that are nearlyindependent of the number of elements,whilethequadraticandcubicschemesexhibit

  • LuongTuanAnh,RolfLarsson/VNUJournalofScience,EarthSciences24(2008)576564

    increasing values for increasing number ofelements (see Fig. 2). The experiment alsoshows that linearand lumped schemeshavethesamesourceofoscillation.Theycanalsocontrol the advection oscillation better thanquadratic and cubic ones. However, theoscillation of effective rainfall component isbetter controlled by quadratic and cubicschemesthanbylumpedandlinearones.

    Table2.Maximumcoefficientsofsourceofoscillation

    Numberofelements

    Parameters

    LinearLumped

    Quadratic

    Cubic

    Bmax 1.0 1.0 1.16 1.551Cmax 0.500 0.500 0.667 0.375B

    max 0.866 0.866 1.29 1.672Cmax 0.809 0.809 0.689 0.398B

    max 1.0 1.0 1.33 1.713Cmax 0.901 0.901 0.689 0.398B

    max 0.951 0.951 1.34 1.734 C

    max 0.940 0.940 0.689 0.398B

    max 1.0 1.0 1.35 1.745Cmax 0.960 0.960 0.689 0.398B

    max 0.975 0.975 1.35 1.756Cmax 0.971 0.971 0.689 0.398B

    max 1.0 1.0 1.35 1.757Cmax 0.978 0.978 0.689 0.398

    0.0

    0.5

    1.0

    1.5

    2.0

    1 2 3 4 5 6 7Elements

    Max

    . ext

    ensi

    on c

    apac

    ity

    Lumped/Linear

    Quadratic

    Cubic

    Fig.2.Thechangeofmaximumextensioncapacity

    ofmatrixB.

    5.Conclusions

    This paper analyses the sources andcauses of oscillation of solutions for finiteelement one dimensional rainfallrunoffmodels when different types of spatialinterpolation functions is applied foroverland flowkinematicwave simulation. Itdoessobyapplyingthedefinitionofnormofvectorsandmatricesand theSingularValueDecomposition(SVD)algorithm.

    ThestructureofmatrixA,whichcontainssizes of the finite elements, is related to thetypeofspatialinterpolationfunctionwhichisapplied. From the above presented resultsanddiscussions, itcanbeconcluded that thestability indexorsingularityofmatrixAcanbeconsideredasaneffectofmultiplicationofoscillation occurring during computationprocess. It will affect the stability andaccuracyofthesolutionoffiniteelementonedimensionalkinematicwaveschemes,and itis actually one of the main causes ofoscillationofsolutions.

    The results of computation experimentshow the advantage and disadvantage ofdifferent types of spatial interpolationfunctionswhen FEM is applied for rainfallrunoffkinematicwavemodels. If the reasonfor growing oscillation is seen as the mostimportant criterion for assessing stability ofnumerical schemes, the lumped and linearschemes have higher order of stability thanthe quadratic and cubic schemes.However,whenthelumpedschemeisused,thematrixA becomes a diagonalmatrix and then thealgorithmismoreefficientthanallotherthreetypesofschemes.

    The results also show that the finiteelement onedimensional kinematic waveschemes can be improved by choosing themost suitable spatial interpolation functionfordecreasingthesingularityofmatrixAand

  • LuongTuanAnh,RolfLarsson/VNUJournalofScience,EarthSciences24(2008)5765 65

    minimizethesourceofoscillation.Thespatialinterpolationfunctionsofhigherorderdonotalways give improved results when finiteelementmethod is used for kinematicwaverainfallrunoffmodels.

    References

    [1] M.B.Abbott, J.C.Bathurst, J.A.Cunge, P.E.OConnel,J.Rasmussen,Structureofaphysicallybaseddistributedmodelingsystem,J.Hydrol.87(1986)61.

    [2] G.E. Blandford,M.E.Meadows, Finite elementsimulation of nonlinear kinematic surfacerunoff.J.Hydrol.119(1990)335.

    [3] V.T.Chow,D.R.Maidment,L.W.Mays,Appliedhydrology,McGrawHillBookCompany,1998.

    [4] G.E. Forsythe, M.A. Malcolm, C.B. Moler,Computer method for mathematical computations,PrenticeHall,NewJersey,USA,1977.

    [5] F.H. Jaber,R.H.Mohtar,Stabilityandaccuracyof finite element schemes for the one

    dimensional kinematic wave solution, Adv.WaterResource25(2002)427.

    [6] R.S.Kurothe,N.K.Goel,B.S.Mathur,Derivationof a curve number and kinematicwave basedflood frequency distribution, Hydrol. Sci. J. 46(2001)571

    [7] C.G.Koutitas,Elementofcomputationalhydraulics,PentechPress,London:Plymouth,1983.

    [8] L.S. Kuchment, Mathematical modeling of riverflow formulation processes, Hydromet. Book,Russia,1980.

    [9] R.Peyret,T.D.Taylor,Computationalmethods forfluidflow,SpringerVerlag,USA,1983.

    [10] W. Press, S. Teukolsky, W. Vetterling, B.Flannery,NumericalrecipesinFortran,TheArtofScientific Computing, Second edition,CambridgeUniversityPress,1992.

    [11] B.B. Ross, D.N. Contractor, V.O. Shanholtz,Finite elementmodel of overland and channelflowforassessingthehydrologicimpactoflandusechange,J.Hydrol.41(1979)11.

    [12] Y. Yuyama, Regional drainage analysis bymathematicalmodel simulation,National ResearchInstituteofAgriculturalEngineering,Japan,1996.