stable channel hydraulics prof. aminuddin ab. ghani

49
EAH 422 ADVANCED WATER RESOURCES ENGINEERING Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

Upload: others

Post on 25-Apr-2022

9 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

EAH 422 ADVANCED WATER RESOURCES ENGINEERING

Stable Channel HydraulicsProf. Aminuddin Ab. Ghani

Page 2: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dReferences

Howard H. Chang (1988)

Page 3: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dSediment Transport 

Welcome to the Book Companion Site forNalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples, 6th Editionby Martin Marriott

http://www.wiley.com//legacy/wileychi/marriott/

978‐1‐118‐91563‐9Paperback472 pagesApril 2016, Wiley‐Blackwell

Page 4: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dConstructed Meandering River

Compound Channel with Meandering Main Channel

Page 5: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dRiver with Floodplains

Flood PlainFlood Plain

Main Channel

Page 6: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dCrossing

Page 7: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dMain Channel with Dry Floodplain

Page 8: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dInundated Floodplain

Page 9: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dRebuilding Meanders

• Analysis of river behavior has found that stable channelsgenerally follow a meander pattern.

• Where channels have been straightened, such as in a drainagechannel, over time the flow can often be observed to rebuildthe meander pattern. Sediment is deposited in the lowvelocity zone in the inner meander and eroded from theopposite bank as flow accelerates around the outer bend.

Page 10: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Schematic channel pattern and profile

Many rivers follow a naturally undulating profile

Page 11: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Schematic meandering channel pattern

Page 12: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Rebuilding Menders from Straight Channel

Page 13: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dRiver with Floodplains

Flood Plain

Flood Plain

Main Channel

Bund

2 April 2015

Page 14: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dRiver with Floodplains

Riffle & Pool 

Riffle

Pool

Page 15: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

B = 5.04 m

Channel Cross Section 1

Page 16: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dBenefits of Pools and Riffles

• Riffles, snags and other channel controls are important to the stability andecology of stream systems.

• The pool‐riffle sequence provides a variety of riverine habitats that areable to support a greater diversity of species than sections that haveuniform characteristics.

• Riffles and meanders create variable water speeds and depths andmaintain river pools that are important in providing warm weather refugesand breeding areas. The pools also provide resting zones for migratingaquatic fauna after tackling higher velocity flows.

Page 17: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

• Pool‐riffle sequences contribute to channel stability by controlling thevelocity of flow and reducing the downstream movement of sedimentsinto the river.

• Stabilized bed material is important for the establishment of instreamvegetation and habitat for aquatic fauna. Sediment accumulates behindthe riffle and vegetation can be established on the flanks, stabilizing thebanks.

• By locking the sediment and reducing flow velocities, nutrients in thewater column can be removed through biological processes or remainbound in the bed material.

Benefits of Pools and Riffles

Page 18: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

• Water quality is also improved as the riffle creates turbulence that aeratesthe water, which in turn supports microbial activity that breaks downorganic matter and assimilates nutrients.

• A riffle structure can be designed to provide a livestock watering orcrossing point.

• The pool created by the riffle can be used for livestock watering or tosupply, via a pump, an off‐stream tank or trough.

Benefits of Pools and Riffles

Page 19: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Stable Channel Design Methods• Available Methods:

• Tractive Force Method

– Based on shear stress

– No sediment transport occurs

• Permissible Velocity Method

– Based on allowable velocity

– No sediment transport occurs

• Regime equations

– Based on relationships for depth, width and slope

– Common relationships: Lacey, Blench

– *       Sediment transport occurs

• Rational Method

– Based on sediment transport equations

– Sediment transport occurs

Page 20: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Stable Channel Design with No Sediment Transport

• Stable channel criteria

‐ Shear stress

‐ Permissible velocity

0 < c 

V0 < Vc

Page 21: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Critical Bed Shear Stress: Shields Diagram 

Page 22: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

© USM_REDAC_2009

Critical Bed Shear Stress (cb): Shields Diagram

(d50 = 4mm)

Page 23: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Critical Shear Stress at banks

Page 24: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Flow Shear Stress Distributions

Page 25: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dFlow Shear Stress Distributions

Page 26: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dPermissible Velocity

Page 27: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dPermissible Velocity

Page 28: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Allowable velocity and shear stress for selected lining materials

Page 29: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Reinforced Erosion Control Product Applications

Installation of TRM for Kulim HiTech Project

Page 30: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dStable Channel Assessment

Page 31: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dStable Channel Assessment

Page 32: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dChannel Cross Section 2

Page 33: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dShear Stress Design Method

Page 34: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dPermissible Velocity Design Method

Page 35: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Stable Channel Design with Sediment Transport

• Blench Regime Method

Page 36: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

• Sediment Transport Method

Stable Channel Design with Sediment Transport

Page 37: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Observed and stable channel configurations 

Page 38: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Observed and stable channel configurations 

Page 39: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Observed and stable channel configurations 

Page 40: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a dChannel Stability Modeling

Major Steps ofComputation forFLUVIAL‐12 Model

Page 41: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Case Study: Sediment Transport in Kulim River

Page 42: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Case Study: Sediment Transport in Kulim River

Page 43: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Case Study: Sediment Transport in Kulim River

Page 44: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Case Study: Sediment Transport in Kulim River

Page 45: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Case Study: Sediment Transport in Kulim River

Page 46: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Case Study: Sediment Transport in Kulim River

2003 Flood

100‐yr Flood

Page 47: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Modeled Profile Changes before and after October 2003 Flood

Case Study: Sediment Transport in Kulim River

Page 48: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Case Study: Sediment Transport in Kulim River

Modeled Cross Section Changes before and after October 2003 Flood

Page 49: Stable Channel Hydraulics Prof. Aminuddin Ab. Ghani

W e l e a d

Case Study: Sediment Transport in Kulim River

Modeled Profile Changes up to 2016