static-content.springer.com10.1007... · web viewelectronic supporting material on the microchimica...

11
Electronic Supporting Material on the Microchimica Acta publication Molybdenum Disulfide Quantum Dot Based Highly Sensitive Impedimetric Immunoassay for Prostate Specific Antigen Manil Kukkar 1,2# , Suman Singh 1,2# , Nishant Kumar 1 , Satish K. Tuteja 3 , Ki-Hyun Kim 4* , Akash Deep 1,2* 1 CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India 2 Academy of Scientific and Innovative Research (AcSIR-CSIO), Chandigarh 160030, India 3 BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada 4 Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea # Equal contribution for first authorship Correspondence: [email protected] , Tel.: +1-82-2-2220-2325; Fax: +82-2-2220-19451 [email protected] , Tel: +91-172-2672236, Fax: +91-172- 2657287 1

Upload: trinhkiet

Post on 15-Mar-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Electronic Supporting Material on the Microchimica Acta publication

Molybdenum Disulfide Quantum Dot Based Highly Sensitive Impedimetric

Immunoassay for Prostate Specific Antigen

Manil Kukkar1,2#, Suman Singh1,2#, Nishant Kumar1, Satish K. Tuteja3, Ki-Hyun Kim4*, Akash

Deep1,2*

1CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India2Academy of Scientific and Innovative Research (AcSIR-CSIO), Chandigarh 160030, India3BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G

2W1, Canada4Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-

Ro, Seoul 04763, Korea#Equal contribution for first authorship

Correspondence: [email protected], Tel.: +1-82-2-2220-2325; Fax: +82-2-2220-19451

[email protected], Tel: +91-172-2672236, Fax: +91-172-2657287

Figure S1: Schematic for the synthesis and bioconjugation of MoS2 QDs along with the development of immunoassay for PSA

1

Figure S2: 2 and 3-Dimensional AFM images of MoS2-QDs along with the line profile

analysis [Features of the AFM Tip used for the scanning of samples: (a) Make- ATEC-NC-

10, (b) Radius of curvature (R) of tip ≥ 10 nm, and (c) Achievable resolution of the tip ~ 2.82

nm (calculated by standard equation of Resolution = (0.8 R)^1/2)].

Measurement parameter Bare SPCE SPCE/MoS2 QDs

Contact angle (°) 73 80.05Surface free energy (mN/m) 31.77 ±0.00 28.98 ±0.17

2

Figure S3: Contact angle measurement of bare and MoS2 QD modified SPCE. An increased

contact angle suggests the improved hydrophobicity of the MoS2 QD modified SPCE.

Figure S4: (a) Raman spectrum of MoS2-QDs and bulk MoS2, (b) XRD spectra of bulk MoS2

& MoS2-QDs, (c) EDX analysis of MoS2-QDs, and (d) FE-SEM analysis of MoS2-QDs

3

Figure S5: (a) UV-visible spectra of MoS2 QDs and nanosheets and (b) Fluorescence

spectrum of MoS2 QDs

Figure S6: Current voltage response of Bare SPCE (left) and SPCE/MoS2QD modified (right).

Figure S7: Investigations on the reproducibility of the response of different SPCE/MoS2

QD/PSAAb electrodes. The EIS responses of five electrodes made in different batches were

found to be overlapping with each other, thereby proving their reproducibility.

4

5

Figure S8: (a) Selectivity study with the SPCE/MoS2QD/PSAAb electrodes [concentrations of

PSA and other tested proteins were 0.01 and 1 pg⋅mL-1, respectively] and (b) Response of

the SPCE/MoS2QD/PSAAb electrodes with spiked PSA both in standard buffer and serum

samples

Table S1. An overview on recently reported nanomaterial-based methods for determination of PSA

S. No.

Materials used Method Applied Linearity range

Limit of detection

Specificity Ref.

01 Nano-TiO2-modifiedcarbon paste electrode

Impedance spectroscopy 0.10-5.0 and 5.0-100 ng⋅mL-1

200 pg⋅mL-1 Specific with respect to carcinoembryonic antigenthyroid-stimulating hormone

[1]

02 Gold film Micro fluxgate device involving sandwichimmunoassay

0.1-10.0 ng⋅mL−1

0.1 ng⋅mL−1 Specific with respect to bovine serum albumin, carcinoembryonicantigen and alpha fetoprotein

[2]

03 Multi-walled carbon nanotubes

Sandwich type immunosensor with differentialpulse voltammetry

0.01-100 ng⋅mL−1

5.4 pg⋅mL-1 Specific with respect to carcinoembryonic antigen, myoglobin, mucoprotein and thrombin

[3]

04 Goldnanoparticles

Differentialpulse voltammetry

0.25-200 ng⋅mL−1

0.25 ng⋅mL−1

Specific with respect to bovine

[4]

6

covered with graphitized mesoporouscarbon nanoparticles

serum albumin, hemoglobin and thrombin

05 Functionalized graphene QDs

Electro-chemiluminescence

1-10 pg⋅mL−1

0.29 pg⋅mL−1

Specific with respect to carcinoembryonic antigen, bovine serum albumin glucose

[5]

06 Graphene oxide hybridized with ferrocene monocarboxylic acid

Differential pulse voltammetry

2 pg⋅mL−1 - 10 ng⋅mL−1

0.5 pg⋅mL−1 Specific with respect to Human immunoglobin M, human immunoglobin G, carcinoembryonic antigen, glucoseand thrombin

[6]

07 Graphene sheets–methylene blue–chitosan

Amperometry 0.05–5 ng⋅mL−1

13 pg⋅mL−1 Specific with respect to alpha fetoprotein, bovine serum albumin, vitamin C and glucose

[7]

08 Composite of Fe3O4 nanoparticlesand reduced graphene oxide

Sandwich type electrochemical immunoassay

0.1 pg⋅mL−1

- 5 ng⋅mL−10.03 pg⋅mL-

1Specific with respect to bovine serum albumin, carbohydrate antigen-125, carcinoembryonicantigen and alpha fetoprotein

[8]

09 Reduced graphene oxide functionalized with High molecular-weight silk peptide

Differential pulse voltammetry

0.1 - 80 ng⋅mL−1

53 pg⋅mL-1 Specific with respect to alpha-fetoprotein, human immunoglobin, bovine serum albumin, L-cysteine and L-Lysine

[9]

10 MoS2 QDs Impedance spectroscopy 0.01 pg⋅mL−1

- 200 ng⋅mL−1

0.01 pg⋅mL−1

Specific with respect to human serum albumin, carcinoembryonic antigen, Immunoglobin G and alpha-fetoprotein

This work

7

Table S2. PSA detection in spiked serum samples and recovery study

S. No. PSA Concentration[spiked (ng⋅mL-1)]

Rct (ohms) obtained with standard

samples

Rct (ohms) obtained with spiked serum

samples

Recovery (%)

01 1.0 × 10-5 5519 ± 25 5413 ± 27 102 ± 2.2

02 1.0 × 10-3 7189 ± 29 7143 ± 30 100 ± 2.6

03 1.0 × 10-1 8518 ± 35 8618 ± 39 98 ± 3.5

04 1.0 × 102 12187 ± 52 12339 ± 55 98 ± 2.5

Note that all the data reported herein are an average of triplicate analysis

References:

1. Biniaz Z, Mostafavi A, Shamspur T, Torkzadeh-Mahani M, Mohamadi M (2017)

Electrochemical sandwich immunoassay for the prostate specific antigen using a polyclonal

antibody conjugated to thionine and horseradish peroxidase. Microchimica Acta 184

(8):2731-2738. doi:10.1007/s00604-017-2284-2

2. Sun X-c, Lei C, Guo L, Zhou Y (2016) Sandwich immunoassay for the prostate specific

antigen using a micro-fluxgate and magnetic bead labels. Microchimica Acta 183 (8):2385-

2393. doi:10.1007/s00604-016-1889-1

3. Yang J, Wen W, Zhang X, Wang S (2015) Electrochemical immunosensor for the prostate

specific antigen detection based on carbon nanotube and gold nanoparticle amplification

strategy. Microchimica Acta 182 (9):1855-1861. doi:10.1007/s00604-015-1523-7

4. Liu B, Lu L, Hua E, Jiang S, Xie G (2012) Detection of the human prostate-specific

antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous

carbon. Microchimica Acta 178 (1):163-170. doi:10.1007/s00604-012-0822-5

5. Wu D, Liu Y, Wang Y, Hu L, Ma H, Wang G, Wei Q (2016) Label-free

electrochemiluminescent immunosensor for detection of prostate specific antigen based on

aminated graphene quantum dots and carboxyl graphene quantum dots, Scientific Reports 6,

Article number: 20511

6. Yang K, Qi L, Gao Z, Zu X, Chen M (2014) A novel electrochemical immunosensor for

prostate-specific antigen based on noncovalent nanocomposite of ferrocene monocarboxylic

acid with graphene oxide. Analytical Letters 47(13):2266–2280.

8

7. Mao K, Wu D, Li Y, Ma H, Ni Z, Yu H, Luo C, Wei Q, Du B (2012), Label-free

electrochemical immunosensor based on graphene/methylene blue nanocomposite.

Analytical Biochemistry 422(1):22-27.

8. Jiao L, Mu Z, Miao L, Du W, Wei Q, Li H (2017) Enhanced amperometric immunoassay

for the prostate specific antigen using Pt-Cu hierarchical trigonal bipyramid nanoframes as a

label. Microchimica Acta 184(2):423-429.

9. Wang Y, Qu Y, Liu G, Hou X, Huang Y, Wu W, Wu K, Li C (2015) Electrochemical

immunoassay for the prostate specific antigen using a reduced graphene oxide functionalized

with a high molecular-weight silk peptide. Microchimica Acta 182(11):2061-2067.

9