static cal 8m dia cr tank r2

22
8.0 M. Dia.Tank Page:1 Cone Roof Rev. : 2 INDEX PAGE NO. Index 1 Design Criteria & References 2 Design Data 3 Allowable Stress Calculation 4 Shell Thickness Calculation 5 Bottom & Roof Plate Thickness 6 Compression Ring calculation 7-8 Wind Girder Calculation 9 Section Modulus 10 Weight Calculation 11 C.G. Calculation 12 Wind Analysis 13-14 Seismic Analysis 15-21 Foundation Load & Summary 22 API-650 11TH Edition, June.2007,Add.2008 Static Design 9 10 11 12 14 13 7 DESCRIPTION 1 2 4 3 8 SHEET NO. 5 6

Upload: rahulanil

Post on 27-Nov-2014

867 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page:1Cone Roof Rev. : 2

INDEX

PAGE NO.

Index 1

Design Criteria & References 2

Design Data 3

Allowable Stress Calculation 4

Shell Thickness Calculation 5

Bottom & Roof Plate Thickness 6

Compression Ring calculation 7-8

Wind Girder Calculation 9

Section Modulus 10

Weight Calculation 11

C.G. Calculation 12

Wind Analysis 13-14

Seismic Analysis 15-21

Foundation Load & Summary 22

API-650 11TH Edition, June.2007,Add.2008

Static Design

9

10

11

12

14

13

7

DESCRIPTION

1

2

4

3

8

SHEET NO.

5

6

Page 2: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page: 2Cone Roof Rev. : 2

DESIGN CODES

API-650 11TH EDITION. JUNE 2007Addendum 1 November 2008

REFERENCESa. Client's Tank data receivedb. Client's P & ID No. N.Ac. Standard specification and reference drawingsd. Design Basise. Environmental data

DESIGN PHILOSOPHY

. All components of the tanks are designed in accordance withAPI-650 API-650 11TH EDITION. JUNE 2007 Addendum 1 November 2008

. Shell is designed as per one Foot method.. Fixed Roof Design as per Appendix F.. Wind force and moment calculated as per API 650 guide line. Seismic force and moment calculated as per API 650 guide line

Other Reference design :

1.0 Structural calculation for Fixed Cone Roof

API-650 11TH Edition, June.2007,Add.2008

Static Design

Design criteria and References

Page 3: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page:3Cone Roof Rev. : 2

DESIGN DATADesign Code API-650 11TH ED. JUNE 2007 Addendum-1, Nov. 2008Applicable Appendix Basic Design & App. EAppendix M applicable NOTank nominal diameter (Uncorroded) D mmTank height Ht mmMin. Filling Level Hmin mmNormal Filling Level mmDesign liquid Level mm

Maximum capacity of Tank Cl.5.2.6.2 m3

Net working capacity Cl.5.2.6.3 m3

Design temperature Td (max) CMin. Design Metal Temp. Td (min) CDesign pressure Pi mm wcMinimum Vacuum pressure Cl.5.2.1b) Pv mm wcIs it internal floating Roof with Circulation ventVacuum pressure mm wcDesign vacuum pressure mm wcOperating pressure atmospheric Po mm wcOperating temperature max To CFluid handledSpecific gravity GPrimary Design Liquid Column Ho mmHydrotest Liquid column Cl.5.2.1d) Hoh mmHydrotest temperature Ambient Tht C

Design Snow load Sw KPaMin. Design Wind Speed Cl.5.2.1k) km/hrActual site wind speed km/hrTopography factor S1Ground Roughness S2Statistical factor S3Seismic CalculationsSeismic Zone

Max. Pumping Rate In m3/Hr

Out m3/HrInsulation thickness NIL 0 mm

Density of Insulation Material 0 Kg/m3

RadiographyCorrosion allowance ( Bottom) mmCorrosion allowance ( Shell & Internals) mmCorrosion allowance (Roof & Structural) mmMATERIAL OF CONSTRUCTIONShell All courses A 36Bottom / Roof Plate A 36Roof structure/Compression Ring A 36Nozzle Pipes A 106 Gr BNozzle Flanges A 105Manhole Neck and cover A 36Bolting for nozzle A 193 Gr B7/A 194 Gr.2HBolting for manhole A 193 Gr B7/A 194 Gr.2HExternal attachments / pads A 36Anchor Bolt If required A 307API-650 11TH Edition, June.2007,Add.2008

0.00

As Per Section 8 & Fig. 8.1 of API 650

55.0

1.0

190

II

130.00

55.0

361.9

500

7200

8000

Static Design

7200

7200

1.61.6

7200

1.01.05

160

342.00

As per App. E

1.0

40

0.0

Potable water1.0007200

255.0

25.0

0.00.0

25.0NO25.0

2

2

2

2

Page 4: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 4Cone Roof Rev. : 2

Allowable Stress Calculation.

MATERIAL SPECIFICATION AND ALLOWABLE STRESSES

Design temperature Td 55.00 C

Appendix M applicable NOYield strength reduction factor fy 1.000 (Table-M1a)Specification A 36

ALLOWABLE STRESS - SHELL - DESIGN CONDITION (Sec. 5.6.2.1)As per Table 5.2aMin. Yield strength Ys 250.0 MPaMin. Tensile strength UTS 400.0 MPaProduct Design Stress fs 160.0 MPa

Sd = 2/3 * Ys * fy 166.7 MPaSd = 2/5 * UTS 160.0 MPa

Max.allowable product design stress Sd 160.0 MPa

ALLOWABLE STRESS - SHELL - HYDROSTATIC TEST CONDITION (Sec. 5.6.2.2)As per Table 5.2aHydrotest temperature 40.0 CMin. Yield strength Ys 250.0 Mpa

Min. Tensile strength UTS 400.0 MpaHydrostatic Test stress St 171.0 Mpa

St = 3/4 * Ys 187.5 MpaSt = 3/7 * UTS 171.4 Mpa

Max. allowable Hydrostatic test stress St 171.0 Mpa

Appendix A applicable? No

Max.allowable product design stress Sd 160.0 MPaJoint Efficiency As per API-650Joint Efficiency N.A

Radiography Requirement As per Fig.8-1

API-650 11TH Edition, June.2007,Add.2008

Static Design

Page 5: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 5Cone Roof Rev. : 2

SHELL DESIGN : As per Cl. No. 5.6.1CYLINDRICAL SHELL WITHOUT ANY INTERNAL PRESSURESTAKE NUMBER 1Material A 36Radiography As Per Section 8 & Fig. 8.1 of API 650 This will consider only in Appendix.A & SThickness of Bottom Shell Course t1 mmNominal diameter D mtrTank Height Ht mtrDesign liquid level Ho mtrHydrotest level Hoh mtrDesign pressure Pi mm wcHydrotest pressure Pt mm wcDesign specific gravity GCorrosion allowance CA mmSpecific gravity of Steel ρ Kg/m3

REQUIRED THICKNESS FOR DESIGN CONDITION

Pressure equivalent liquid column Hp mm

Hydrotest Pr. equivalent liquid column Hh mmDesign liquid column = H = Hp + Ho

Hydrotest liquid column = H = H h + Hoh

Design temperature Td oCHydrotest temperature Tht

oCAllowable stress (Design) Sd MPaAllowable stress (Hydrotest) St MPaRequired thickness (Design) = 4.9 * D * (H - 0.3) * G / Sd + CA [5.6.3.2]Required thickness (Hydrotest) = 4.9 * D * (H - 0.3) / St Min. Required thickness mm [5.6.1.1]

Shell ht

Total corroded wt : kg. Total wt. Of Shell : Kg.

API-650 11TH Edition, June.2007,Add.2008

0.00

1.000

0.0

0.0

5.0

7.200

7.200

5.700

1

2

1.50

1.50

7.200 7.200

7.400

Course No.

Stake width Ho

Total

10

1.200

3

4

8

4.200

2.700

5

1.50

1.50

1.40

6

7

Static Design

40

8.005

2.700 2.19

2.92

1.200

2.700

7.200

4.200

1.82

5.700

0.55

4.200 0.89

5.700

2.564.200

1.200 6

0.0

Reqd. THK

1.24

5

6

8

6

6

Provided THK

0.21

1.58

7850

160.0

2.700

5.700

Hydrotest

HHoh

55.00

7.200 7.200

1.200

3.29

Design

Reqd. THK

H

9359.27021

1.60

Hence all provided thicknesses are O.K

171.0

9

2

2

Page 6: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 6Cone Roof Rev. : 2

BOTTOM PLATE & ANNULAR PLATE API 650 Clause 5.4 & 5.5)

Annular Plate : As per Clause 5.5.1Mean diameter D 8.005 m

Product stress Sd 160.0 MPa

Hydrostatic stress St 171.0 MPaCorrosion allowance CA 1.60 mmAnnular plate is not requiredIf Client ask to provide, then Design shall be as follows:Thickness of bottom shell course ts 8.0 mmMax. Design Liquid level H 7.200 mRequired thk. Of 1st Shell Course td 3.292 mm

tt 1.583 mmThickness (Costructed) 8.0 mmProduct Stress 82.29 MPaHydrostatic test stress 33.83 MPaMin. thk of annular Plate (Cl. 5.5.3, Table 5.1) 6.00 mmMin. required thickness of annular Plate 7.60 mmProvided thk. of annular plate 8.00 mm OK

Radial width : As per Cl. 5.5.2Min. Annular bottom plate width inside of shell 600.0 mmProjection outside shell 65 mmLap of bottom annular plate 65 mmMin. required radial width 738 mmCalculation of greater radial widthDesign specific gravity G 1.000Annular bottom plate width = 215 * tb / (H * G)

0.5 641 mmHence Min. required width of Annular plate 738 mmProvided annular width 750 mm OKApproximate weight of Annular Plate 1149 KgsBottom Sketch Plate : API 650 Clause 5.4.1Corrosion allowance CA 1.60 mmMinimum required thickness. Cl. 5.4.1 tmin 6.00 mmTherefore Required Thk. tmin + CA = 7.60 mmProvided thk. of Bottom plate 8.00 mm OKUplift force on bottom due to Vacuum pressure 25.00 Kgf/m2

Resisting downward force due to bottom plate wt. 50.24 Kgf/m2

Bottom plate thickness is O.K in VacuumBottom plate Outer Diameter Do 8146 mmApproximate weight of Bottom Sketch Plate 2244 Kgs

ROOF PLATEType of Roof : Supported Cone RoofCone angle [Slope = 1: 6 ] θ 9.462 degreeCorrosion allowance for Roof plate CAr 1.0 mmMin. thickness as per Clause 5.10.2.2 trmin 5.00 mmMin. thickness + CA tr 6.00 mmApproximate Ht. Of Cone htr 0.667 mtrHence required Roof Thickness Treq 6.0 mm

Provided Roof plate thickness tr pro 6.0 mm OKApproximate weight of Roof Plate Wr 2418 Kgs

23719 NAPI-650 11TH Edition, June.2007,Add.2008

Static Design

Page 7: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 7Cone Roof Rev. : 2

ROOF TO SHELL COMPRESSION AREADesign Internal Pressure Pi KpaAppendix F is applicable?Tank Diameter D mInternal Test pressure P kPaDoes tank have Internal Pressure?BASIC DESIGNWeight of Roof Plate in term of under pressure KpaDoes Internal Pressure exeed weight of Roof plate?BASIC DESIGNWt. of Shell , Roof and attached framing (PRESSURE) KpaDoes I.P.exeed weight of Shell, Roof and attached framing? NOBASIC DESIGN PLUS APP.F1 TO F6Does Internal Pressure exeed 1.8 kpa NOAPI-650 WITH APP.FRoof thickness less corrosion allowance th mmAngle of Roof to shell joint θ degreeTAN (θ)Min. specified Yield strength Fy MpaRequired compression area ( Cl.F.5.1) Ar mm²=200xD²*(Pi-0.08*th)/(Fy*tan(θ))Maximum Design Pressure and Test procedure as per F.4Internal Design Pressure P=((A*Fy*tan(θ))/200*D²)) + 0.08*th) KpaNominal Roof Thickness th 6.0 mm

Area resisting the compressive force A m2

P KpaMax. Design Pressure at the base of the shell as per F.4.2P max = ((0.00127DLS/D²) + 0.08*th-0.00425M/D

3) Kpa

Where , Wind Moment M N-mWt. of Shell, framing and Structure DLS N

P max Kpa

Now Failure Pressure as per F.6 shall be Pf 1.6xPi-0.047xth KpaPf Kpa

As per F.4.3 Pmax < 0.8xPfNow, 0.8xPf = KpaHence Pmax = Kpa

Incase tank is designed for Frangible joint , Failure Pressure as per F.6 to be calculated.

Hence required copmpression area shall be calculated based on FailurePressure P Kpa

Ar mm²

API-650 11TH Edition, June.2007,Add.2008

Static Design

5.009.462

0.000

250.0-122.9

0.167

2.454

NO

207262

50.3

0.644

NO

0.472

8.0000.000

1.424

(0.282)

134253

(0.226)

1.424314.5

(0.282)

Page 8: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 8Cone Roof Rev. : 2

Calculation of Provided copmression area as per Fig F-2

Thickness of compression Bar tb mm

Refer Detail 'b'

Thickness of roof plate th mm

Corossion Allowance for Roof CAr mm

Thickness of shell plate at Roof Junction tc mm

Inside radius of tank shell Rc mm

Length of Normal to roof = Rc/sin( θ) R2 mm

Max. Participating width of Roof wh mm

=Min(0.3*(R2*th)0.5),300))Participating width of shell wc mm

=0.6*(Rc*tc)^0.5

Min. size of curb ange as per API-650 Cl.no. 5.1.5.9 50x50x5

Size of Curb Angle provided 65x65x6

Area of Curb angle 744 mm²

Total Available Area Aa mm²= (wih*th + wc*tc + Area of curb angleUnit weight of curb angle

Tank Diameter mtr

As available area is greater than required area, Curb angle size is O.k

Approx. wt. of Curb angle W Kgs

API-650 11TH Edition, June.2007,Add.2008

8.00

2348.2

5.80

209.30

5.0

0.0

4000

92.95

146

Static Design

6.0

24332

1.0

1

Page 9: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 9Cone Roof Rev. : 2

Wind Girder Calculation.Appendix 'M' is applicable? NoAPI 650 Section 5.9.7Tank Nominal diameter D mTop mean course thickness t mmCorrosion allowance for Shell CA mm

Design temperature T C

Design Wind velocity as per Sec.5.9.7.1, vd km/hrBasic wind speed v1 m/secTopography factor S1 1.00Tarrain category factor S2 1.05Statistical Factor S3 1.00Design Vacuum pressure ped 25.0 mm of WC

KpaVacuum considered in Cl.5.9.7.1(a) pef KpaCorrection factor for excess vacuum Cpe=1.72/(1.72+(ped-pef)) Cl.5.9.7.1(d)Young's modulus @ design temperature Ed MpaYoung's modulus @ ambient temperature Ea MpaReduction factor due to modulus of Elasticity CeSite actual wind speed v km/hr

km/hrDesign wind velocity = v*S1*S2*S3 = v' 46.7 m/sec

Wind Speed Correction factor=(vd / v')2 CwsMaximum height of unstiffened shell (Cl.5.9.7.1) H1 m

= 9.47*t*(t/D)3/2*Cws*Cpe*CeHeight of transformed shell based on net thicknessesActual width of each shell strake = Net thickness of each shell strake = Transformed width of each shell strake Wtr = Transformed width Htr = mSince Htr < H1 intermediate wind girder is not required.

No. of wind girder required = nosUnstiffened Height = mtr

Distance between WG & top angle

Hi-1 m

As per Clause 5.9.7.6Sec. Modulus Correction Factor

Zc = ( v / 190 )2 =Required Section Modulus of WG

Z = D2 * Hi * Zc/ 17

= Cm3

Where H = Σ W & Htr = Σ Wtr Wtr = W * (t/tc)5/2

API-650 11TH Edition, June.2007,Add.2008

- -

Wtr

1.500

-

4.40

tc

4.40

1.000

6.488

1.400

-

8

9

H = 7.400

Static Design

8.0054.40

W

0-

6.488W * (t/tc)5/2

tc

52.78

1.6055.00

190.00

0.588

1.500

4.40

1.500

Course No.1

5

Htr =

10

3

4

1.500

Shell CourseRequired Height

---

4th WG

--

6

7

1.500

1.500

4.40

1.400

-

3rd WG

1.500

6.40

1st WG 2nd WG

W

2

1.00016.928

168.0

0.245

1990001990001.000160

0.2400.997

Page 10: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page: 10Cone Roof Rev. : 2

Section Modulus Calculation As per Cl. 5.9.7.6.2

Nominal Diameter of Tank D MSection provided as per API-650 fig. 5.24

= yn

= In

= Y

= y1

Moment of inertia of section = IDist.of C.G from Shell inside = ymax

Section Modulus = Z = I / y

Width of respective area = b Thickness of Shell 6 mmdepth of respective area = d

IWG Section b mmd mm

1 92.9 6.0

2

3

Unit wt Kg/mtr

1

2

3

Unit wt Kg/mtr

1

2

3

Unit wt Kg/mtr

API-650 11TH Edition, June.2007,Add.2008

13.4*(Dt)^0.5

8.005

Static Design

Not Required 97.61

3471Total Σ 338821

1672

An*yn mm3

624.00

624.17

Distance from Shell I.D to C.G of respective area

Distance of section C.G. from Shell inside

Moment of Inertia of respective area

Distance of section C.G. from C.G of respective area

Total Σ

Z cm3

124.8

An*y12

cm4An mm2

557

2914

499

Y mmIn cm4

337150

94.6

-18.1

yn mm

3.0

115.7 95

0

2nd

I cm4

1218

y1(y-yn) mm

0.17

1st

3rd

Total Σ

∑∑=

A

Y A

∑ += )Ay1 I ( 2n

Page 11: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page: 11Cone Roof Rev. : 2

WEIGHT CALCULATION

Component Weight (Metric tons)

1. Shell

2. Compression Ring

3. Bottom plate & Annular Plate

4. Roof plate

5. Roof Supporting Structure

6. Staircase & Railings on Shell

7. Railings on Roof

8. Intermediate Wind Girder 1

Intermediate Wind Girder 2

Intermediate Wind Girder 3

9. Nozzles & accessories on shell

10. Nozzles & accessories on roof

11. Insulation with str. 0.000

12. Miscellaneous

13. Weight of contents

14. Weight of water for hydrotest

15. Empty weight (Erection condition)= SUM (1 to 12)

16. Operating weight = SUM (1 to 13)17. Hydrotest weight = SUM (1 to 12 + 14)18. Wt. of roof, Railings & attach. on Roof

= SUM (4, 7 & 10)19. Wt. of shell and attachments

= SUM (1, 2, 5, 6, 8 & 9)

20. corroded wt. Of shell

API-650 11TH Edition, June.2007,Add.2008

19.50

7.021

381.407380.833

3.169

12.059

0.300

0.146

1.404

0.251

0.500

0.00

0.00

0.00

Static Design

9.359

361.9

0.500

361.9

3.393

2.418

0.650

Page 12: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page:12Cone Roof Rev. : 2

CALCULATION OF C.G. FOR SHELL AND ATTACHMENTS

Component Mean Ht. (Kgs)

Bottom plate & Annular PlateShell course 1Shell course 2Shell course 3Shell course 4Shell course 5Shell course 6Shell course 7Shell course 8Shell course 9Shell course 10Shell course 11Shell course 12Roof PlateCompression RingRailings on RoofRoof Supporting StructureNozzles & accesories on shellIntermediate Wind Girder 1Intermediate Wind Girder 2Intermediate Wind Girder 3Nozzles & accessories on roofStaircase & Railings on ShellMiscellaneous

Total (tons)

Ht. of C.G. of tank m

API-650 11TH Edition, June.2007,Add.2008

0 -

300.0 3.600

500

00

--

18.92

Wt.

1777.0

3393.018

2369.9

1404

145.8

0.004

2417.874

3.600

1777.01658.5

650

6.700

5007.200

7.200

1777.0

251.3274

7.533

Static Design

3.718

(m)

0.7502.2503.7505.250

7.16

7.5333.600

Page 13: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 13Cone Roof Rev. : 2

WIND ANALYSIS AS PER API-650 CL. 5.11Height of tank(up to Curb angle) H mTank diameter D mOuter diameter of tank Do mInsulation thickness on shell I mmEffective diameter against wind Dw mBasic Wind velocity vb Km/hr

Height Correction factor = (v / 190 ) 2 HcWind Pressure as per(CL.5.2.1(k) )on shell P1 N/m2

Effective wind pressure = P1 * Hc Pw N/m2

Vacuum pressure Pv N/m2

Total External pressure for Shell P1=Pw+Pv N/m2

Shape FactorEffective wind pressure N/m2

Hence effective external pressure on shell P1 N/m2

Snow load N/m2

Wind Pressure as per(CL.2.1.k) on Roof P2 N/m2

Effective wind pressure = P2 * Hc Pw N/m2

Vacuum pressure Pv N/m2

Total External pressure on Roof P2=Pw+Pv N/m2

Mean height from base = H/2 z mEffective frontal area of Shell Ae1 m2

Ae = Dw * HEffective frontal area of Roof Ae2 m2

Wind load on Shell = Ae1 * P1 F1 kNWind load on Roof = Ae2 * P2 F2 kNTotal Load F kNMoment at Base = F1*z1+F2*z2 M kN-mAs per Clause No. 3.11.2Design internal Pressure Ip KpaTotal force due to Internal Pressure If KNMpi = Moment about the shell to bottom joint from design internal pressure

Mpi kN-mMw = Overturning Moment about the shell to bottom joint from horizontal

plus vertical wind pressure Mw kN-mMDL = Moment about the shell to bottom joint from the weight of the shell

and Roof supported by the shell MDL kN-mWeight of Shell and Roof Ww kNMF = Moment about the shell to bottom joint from Liquid weight

MF kN-mEffective weight of Liquid wL=59tb(FbyH)

0.5 /1000Where tb = mm WL KNand Fby = MPaand H = mHowever, WL should not exeed 0.90HD KNHence , WL KNWhere Z =z1+z2For Shell z1 = H/2 z1 mtrFor Roof z2 = H+h1 h1 mtr

z2 mtr

API-650 11TH Edition, June.2007,Add.2008

0.00

6.42507.2

0.90HD

207.262

7.422

3.60

49.649

0.000

1440.25

429.51115.53

1.000

57.72

160.00

860.25

1440.001440.00

860.00860.00

602.170.7

Static Design

0.245

8.0008.016

8.016

7.200

0.2452

53.492207.262

3.843

2.67

16.0

51.816.0

57.7

860.25

0.0000.000

0.000

3.6000.222

Page 14: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 14Cone Roof Rev. : 2

As per 5.11.2 For Unanchored Tank the followings are to be satishfied

1 0.6Mw+Mpi < MDL/1.52 Mw+0.4Mpi < (MDL+MF)/2

Codition-10.6Mw+Mpi ,= kN-m MDL/1.5 ,= kN-m

As the above first equation satishfy, Anchor Bolts are not required

Codition-2

Mw+0.4Mpi ,= kN-m(MDL+MF)/2 ,= kN-m

As the above second equation satishfy, Anchor Bolts are not required

API-650 11TH Edition, June.2007,Add.2008

Static Design

286.3

207.3

124.4

243.6

Page 15: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 15Cone Roof Rev. : 2

SEISMIC ANALYSIS (API 650 - APPENDIX E)

Tank height upto curb angle Ht 7.200 mDesign liquid level H 7.200 mNominal tank diameter D 8.000 m

CALCULATION OF SEISMIC DESIGN LOAD : Clause No. E.6.1

Total Design base shear V

V 56205803 Nwhere,Design base shear due to impulsive component from effective weight of tankand contents Vi Ai*(Ws+Wr+Wf+Wi)

Vi 56075976 N

Design base shear due to convective component of the effective sloshing wt. Vc Ac*WcVc 3818016.8 N

Total weight of shell and appurtenances Ws 96719.2 N

Total weight of fixed tank roof including framing, knuckles, any permanent attachments and 10% of the roof design snow load

Wr 36430.8 N

Weight of the tank bottom Wf 33285.5 NRatio D/H 1.111

Now effective weight of product:As per clause no. E-6.11 of API-650for (D/H) ≥ 1.333 Wi

Wi 2749840.8 N

for (D/H) < 1.333 Wi

Wi 2690377.5 N

Effective impulsive portion of the liquid wt.Wi 2690377.5 N

API-650 11TH Edition, June.2007,Add.2008

Static Design

22

ci VV +

pW

HD

HD

866.0

)866.0tanh(

pWHD *218.00.1 ⎟⎠⎞

⎜⎝⎛ −

Page 16: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 16Cone Roof Rev. : 2

Effective convective (sloshing) portion of the liquid weight Wc

Wc 904861.6 N

Total weight of the tank contents Wp 3550352 NNatural period of vibration for impulsive mode of behaviour (Cl. No. E.4.5.1-1a)

Ti

Ti 0.174 secwhere,Coefficient for determining impulsive period of tankfrom FIGURE E-1 Ci 6.1

Density of fluid ρ 1000 kg/m3

Elastic modulus of tank material E 2100000 MPa

Equivalent uniform thk. of tank shell tu 5.333333333 mm

Impulsive design response spectrum acceleration coefficient Condition 5(Cl. No. E.4.6) Ai 19.629 %g

i) Mapped design method (seismic site class A to D)

Ai

Ai 36.786 %g

ii) Mapped design method (seismic site class E & F only)

Ai

Ai 5.134 %g

iii) Site specific response spectra Ai

Ai 29.464 %g

API-650 11TH Edition, June.2007,Add.2008

Static Design

( ) pDH W

HD *67.3tanh230.0 ⎥⎦

⎤⎢⎣⎡

007.0

5.2)( 0

⎟⎟⎠

⎞⎜⎜⎝

⎛=

wia

wiDS R

ISQFR

IS

)(625.0)(5.0 1wi

pwi

i RIS

RISA =≥

*0)(5.2 a

wi

SRIQ

Dt

HC

u

ρ

20001

Page 17: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 17Cone Roof Rev. : 2

iv) Site specific response spectra (assuming the impulsive period=0.2)

Ai

Ai 3.929 %g

v) for site specific response spectra (based on calculated impulsive period Ti)

Ai

Ai 19.629 %g

Natural period of convection (sloshing) mode of behaviour of the liquid(Cl. No. E.4.5.2-a) Tc 1.8KsD

0.5 2.947 sec

Sloshing period coefficient (Cl. No. E.4.5.2-c)Ks

Ks 0.579Regional-dependent transition period for longer period ground motion

TL 2 secIs Tc <= TL NO

Convective design response spectrum acceleration coefficient (Cl. No. E.4.6) Condition 2 Ac 4.219 %g

For mapped design methods,

i)When Tc ≤ TL Ac

Ac 6.2165 %g

ii) When Tc > TL Ac

Ac 4.219 %g

iii) for site specific design method Ac

Ac 10.3125 %g

API-650 11TH Edition, June.2007,Add.2008

Static Design

*)( awi

SR

IQ

iwcc

Lsa

wcc

LD

AR

IT

TTSKQF

RI

TTKS

≤⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

20

21

5.2

iwcc

sa

wccD

AR

ITT

SKQF

RI

TKS

≤⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

0

1

5.2

1

iawc

ASR

IQK ≤⎟⎟

⎞⎜⎜⎝

⎛ *

⎟⎠⎞

⎜⎝⎛

DH68.3tanh

587.0

*)( awi

SR

IQ

Page 18: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 18Cone Roof Rev. : 2

Is Ac <= Ai ? YESImportance factor coefficient set by seismic use group (from table E-5)

Cond. 2 1.250i) for seismic use group I I 1.000ii) for seismic use group II II 1.250iii) for seismic use group III III 1.500

Force reduction factor for the impulsive mode (Table E-4)Rwi Cond. 1 3.500

i) Self anchored 1 3.500ii) Mechanically anchored 2 4.000Force reduction factor for the convective mode (for self anchored and mechanically anchored) (Table E-4) Rwc 2.000Scaling factor from the MCE to the design level spectral accelerations

Q 1.00i) where ASCE 7 methods apply Q 0.667ii) where ASCE 7 methods do not apply Q 1.000Coefficient to adjust the spectral acceleration from 5% to 0.5% damping

K 1.500The design, 5% damped, spectral response acceleration parameter at short periods (T = 0.2 seconds) based on ASCE 7 methods

SDS QFaSs 103.00 %gThe design, 5% damped, spectral response acceleration parameter at one second based on ASCE 7 methods SD1 QFvS1 28.75 %g

Mapped, MCE, 5% damped, spectral response acceleration parameter at a period of zero seconds (peak ground acceleration for a rigid structure)

S0 from map 28.000 %gMapped, MCE, 5% damped, spectral response acceleration parameter at a period of one second S1 1.25*Sp 28.75 %g

Design level peak ground acceleration parameter for sites not addressed by ASCE methods Sp from map 23.000 %gThe 5% damped, design spectral response acceleration parameter at zero period based on site-specific procedures Sa0

* from map 33.000 %g

The 5% damped, design spectral response acceleration parameter at any period based on site-specific procedures Sa

* 11.000 %gfrom map - value corresponding to Ti=0.2 sec 11.000 %gfrom map - value corresponding to calculated Ti 11.000 %gMapped, MCE, 5% damped, spectral response acceleration parameter at short periods (0.2 sec) Ss from map 103.000 %g

Acceleration-based site coefficient (at 0.2 sec period) (Based on SITE CLASS)TS (FvS1)/(FaSs) 0.2791262 sec

API-650 11TH Edition, June.2007,Add.2008

Static Design

Page 19: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 19Cone Roof Rev. : 2

Velocity-based site coefficient (at 1.0 sec period) (Based on SITE CLASS)Fa TABLE E-1 1.000Fv TABLE E-2 1.000

Overturning moment at the base of the tank shell (Ringwall Moment) (Cl. No. E.6.1.5)

{[Ai(WiXi+WsXs+WrXr)]2+[Ac(WcXc)]

2}0.5

Mrw 1.6358E+06 N-mwhere,Height from the bottom of the tank shell to Xi 2.848 mi) for D/H ≥1.3333 Xi 0.375H 2.700 mi) for D/H <1.3333 Xi 2.848 m

Height from the bottom of the tank shell to the shell's center of gravityXs 3.513 m

Height from bottom of tank shell to the roof and roof appurtenances center of gravity Xr 7.422 m

Height from the bottom of the tank shell to the center of action of lateral seismic force relative to the convective liquid force for ringwall moment

Xc

Xc 5.175 m

CHECK FOR OVERTURNING DUE TO SEISMIC MOMENT (Cl. No. E.6.2)

Circumferential length πxD 25.13 mForce resisting uplift in annular region wa

where, wa 26094.599 N/mThickness, excluding corrosion allowance, of the bottom annulus under the shell required to provide the resisting force for self anchorage

ta 6.4 mmMinimum specified yield strength of bottom annular

Fy 250 MPa

Effective specific gravity including vertical seismic effectsGe G(1-0.4Av) 0.9423

Specific gravity G 1Vertical earthquake acceleration coefficient

Av 0.144 %g0.14SDS or greater for ASCE 7, unless otherwise specified by the purchaserComputation of 201.1HDGe 201.1HDGe 10915.23API-650 11TH Edition, June.2007,Add.2008

Static Design

HHD )]/(094.05.0[ −

H

DH

DH

DH

⎥⎥⎥⎥

⎢⎢⎢⎢

⎟⎠⎞

⎜⎝⎛

−⎟⎠⎞

⎜⎝⎛

−67.3sinh67.3

167.3cosh0.1

eya HGFt99

Page 20: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 20Cone Roof Rev. : 2

Is wa <= 201.1HDGe ? NONow L=0.035D L 0.2800 mtrNow L=0.01723ta(Fy/HGe)^0.5 L 0.6694 mtrHence , as per E.6.2.1.1.2.1a wa 10908.18 N/mHence, Anchor is not required

Anchorage ratio (Cl. No. E.6.2.1.1.1-1) J

1.17where,Tank and roof weight acting at the base of the shell

wtwt

3942.54 N/mTotal weight of the tank shell and appurtenances

Ws 96719.22 NRoof load acting on the shell, including 10% of the specified snow loadSnow Load Sw 0.00 N/M2

wrs 2367.50 NForce resisting uplift in annular region wa 26094.60 N/mCalculated design uplift load due to product pressure per unit circumferential length wint 20000 N/mTherefore,1.0 As J<= 1.54

Calculated design uplift load on anchors per unit circumferential lengthwAB

wAB 1146.75 N/m

CHECK FOR SHELL COMPRESSION : In our case The tank is self-anchored, Cl.E.6.2.2.1 to be followed

I) SHELL COMPRESSION IN SELF-ANCHORED TANKSMaximum longitudinal shell compression stressi) When J<0.785

ii) When 0.785<J<=1.54

Condition 2In our case Maximum longitudinal shell compression stress

σc 9.907 MPaThickness of bottom shell course less corrosion allowance

ts 6.4 mmAPI-650 11TH Edition, June.2007,Add.2008

The tank is self-anchored

Static Design

( )[ ]int2 4.04.01 wwAwD

M

avt

rw

−+−

rss

t wD

Ww +∏

=

( )s

rwvt tD

MAw1000

1273.14.01 2 ⎟⎠⎞

⎜⎝⎛ ++

( )[ ] s

aavt

tw

JwAw

10001

18667.0607.04.01

3.2 ⎟⎟⎠

⎞⎜⎜⎝

⎛−

−++

)4.01(273.12 vt

rw AwD

M−−⎟

⎠⎞

⎜⎝⎛

Page 21: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page : 21Cone Roof Rev. : 2

II) SHELL COMPRESSION IN MECHANICALLY ANCHORED TANKS

Maximum longitudinal shell compression stress

σc 5.74 MPa

ALLOWABLE LONGITUDINAL SHELL-MEMBRANE COMPRESSION STRESS IN TANK SHELL

Thichness of the shell ring under consideration 6.4 mm

Computation of GHD2/t2 11.25 mAs GHD^2/t^2 is lessr than 44, Fc=83ts/(2.5D)+7.5(GH)^0.5Hence , Allowable longitudinal shell membrane compression stress

FC 46.685 MPa

Min. specified yield strength of shell Ys 250 MPaFty 125 MPa

As Fc < Fty,the stresses are within limitsAlso, as σc < Fc, the tank is stable

API-650 11TH Edition, June.2007,Add.2008

Static Design

s

rwvt tD

MAw

10001273.1

)4.01( 2 ⎟⎠

⎞⎜⎝

⎛ ++

Page 22: Static Cal 8m Dia Cr Tank r2

8.0 M. Dia.Tank Page: 22Cone Roof Rev. : 2

Tank Parameter

Nominal tank diameter D 8.005 mTotal tank height Ht 7.200 mMax. Design Liquid height H 7.200 m

Design Summary

Bottom Plate Thickness tb 8.00 mm

Shell Thickness S1 8.00 mmS2 6.00 mmS3 6.00 mmS4 6.00 mmS5 6.00 mm

Roof Thickness Rt 6.00 mm

Wind Girder Details Wg1 N.RWg2 N.R

Rafter Sizes Raf. ISMC-100

Tank Load

Empty Weight WE 191.2 kN

Operating Weight WO 3734.4 kN

Hydrotest Weight WH 3740.1 kN

Wind LoadShear at Base F 53.49 kNMoment at Base Ip 207.26 kN-m

Seismic LoadShear at Base Fs 574.35 kNMoment at Base Ms 1635.75 kN-m

Total Uplift N.A

Counter Balance Weight required in Foundation N.AAnchor Bolt Not Required

API-650 11TH Edition, June.2007

STATIC CALCULATION

Foundation Loading Data