statistical analysis of multi source calibration - astron.nl · the scientific goals of new radio...

26
Statistical analysis of multi Statistical analysis of multisource source Calibration Calibration Calibration Calibration S. Kazemi Kazemi Kapteyn Kapteyn Astronomical Institute Astronomical Institute [email protected] [email protected] Presentation in CALIM, August Presentation in CALIM, August 2010 2010 Here comes your footer Page 1 Page 1 (Under supervision of S. (Under supervision of S. Zaroubi Zaroubi, and , and S.Yatawatta S.Yatawatta)

Upload: vuongnguyet

Post on 26-Aug-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

Statistical analysis of multiStatistical analysis of multi‐‐source source CalibrationCalibrationCalibrationCalibration

SS. . KazemiKazemi

KapteynKapteyn Astronomical Institute Astronomical Institute [email protected]@astro.rug.nl

Presentation in CALIM, August Presentation in CALIM, August 20102010

Here comes your footer Page 1Page 1

(Under supervision of S. (Under supervision of S. ZaroubiZaroubi, and , and S.YatawattaS.Yatawatta))

Page 2: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LS, EM, and SAGE algorithmsSolver noise

Illustrative example

CalibrationNoise in solutions

ww

w.lo

faIllustrative exampleConclusions and future work

IntroductionIntroductionThe scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR EOR)

Calibration  

E i i k i d h k d i h b f i i

Calibration challenges:• Accuracy of calibration algorithms becomes crucial for achievement of scientific goals

Estimating unknown instrument and the sky parameters and correcting them before imaging.

• Accuracy of calibration algorithms becomes crucial for achievement of scientific goals•The large number of data requires fast algorithms

Input noise  output noise“I t i ”

p“Instrumental noise”

“Sky noise”“RFI”

“Input noise”+

Noise of the calibration algorithm“solver noise”

Calibration process

Here comes your footerPresentation in CALIM  August 2010 Page 2

The aim is to devise new calibration methods which minimize the solver noiseThe aim is to devise new calibration methods which minimize the solver noise

Page 3: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

ww

w.lo

fa

2 Measurement equation

3 The LS, EM, and SAGE algorithms

4 Solver noise

6 Conclusions and future work

5 Illustrative example

6 Conclusions and future work

Here comes your footer Page 3Presentation in CALIM  August 2010

Page 4: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LS, EM, and SAGE algorithmsSolver noise

Illustrative example

Initial assumptionsCalibration problem modeling

ww

w.lo

faIllustrative exampleConclusions and future work

Measurement equationMeasurement equationInitial assumptions   Every antenna             

has dual l i d f d

YRadio frequency sky is decomposed to K separated 

sources far away from the array

polarized feeds Y

Baseline pqCalibration problem modeling  Hamaker‐Bregman‐Sault, 1996.

Coherency: describes polarization state of the source i

Jones matrix: describes amplifier gains, beam shapes, ionospheric effects, and etc

V i d f

Noise matrix of

Vectorized form 

Here comes your footer Page 4

Noise matrix of the baseline pq

Measured visibility  

Presentation in CALIM  August 2010

Page 5: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LS, EM, and SAGE algorithmsSolver noise

Illustrative example

The Least  Squares  (LS, Normal) calibration methodExpectation Maximization (EM) algorithmSpace Alternating Generalized Expectation Maximization algorithm (SAGE)

ww

w.lo

faIllustrative exampleConclusions and future work

The LS, EM, and SAGE algorithmsThe LS, EM, and SAGE algorithmsThe Least Squares (LS, Normal) calibration method ( AIPS, AIPS++, CASA)

Levenberg Marquardt

•Easy to program But,

g q

technique

•Heavy computational cost of O((KN)2 ) •Slow rate of convergence

Expectation Maximization (EM) algorithm

Y Ob d d t

Feder and Weinstein, 1988.

Y : Observed dataX : Complete data: Parameter value 

Jensen’s inequality: this expected value will be decreased for all

Here comes your footer Page 5

will be decreased for all                   

Presentation in CALIM  August 2010

Page 6: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LS, EM, and SAGE algorithmsSolver noise

Illustrative example

The Least  Squares  (LS, Normal) calibration methodExpectation Maximization (EM) algorithmSpace Alternating Generalized Expectation Maximization algorithm (SAGE)

ww

w.lo

faIllustrative exampleConclusions and future work

Expectation‐Step: Compute the expected value of the log‐likelihood function, with respect to conditional distribution of the complete data X given observed data y under the current

Maximization‐Step: Maximize the log‐likelihood with respect to 

conditional distribution of the complete data X given observed data y under the current parameter estimate     

Assuming that the contribution of source i depends only on a subset of parameters       and partitioning the parameter vector as   

Yatawatta et al. 2009, Kazemi et al. in prep.

E‐ Step:

M‐ Step: min

Fessler and Herro, 1994.

M Step: min 

Space Alternating Generalized Expectation Maximization (SAGE) algorithm  

• Dedicating whole the noise to only one sourcel h l h

Fessler and Herro, 1994.

Here comes your footer Page 6

• Utilizing the EM algorithm

Presentation in CALIM  August 2010

Page 7: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LS, EM, and SAGE algorithmsSolver noise

Illustrative example

The Least  Squares  (LS, Normal) calibration methodExpectation Maximization (EM) algorithmSpace Alternating Generalized Expectation Maximization algorithm (SAGE)

ww

w.lo

faIllustrative exampleConclusions and future work

Yatawatta et al. 2009, Kazemi et al. in prep.

E StE‐ Step:

M‐ Step: min 

Advantages of the EM algorithm over the Normal algorithm:•Breaking the likelihood maximization into smaller computational steps•Breaking the likelihood maximization into smaller computational steps•Computational cost equal to KO(N2 )

•Increasing the likelihood at each iteration step•Increasing the likelihood at each iteration step•Improving the speed of convergence compared with LS calibrationBut still,•Possibility of converging to a local optimum•Implementation of the algorithm is complicated compared with LS method•Implementation of the algorithm is complicated compared with LS method

Additional advantages of using the SAGE algorithm:•Improving the speed of convergence

Here comes your footer Page 7

Improving the speed of convergence•Improving the accuracy of calibration results

Presentation in CALIM  August 2010

Page 8: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LS, EM, and SAGE algorithmsSolver noise

Illustrative example

Initial assumptionsKullback ‐Leibler divergence (KLD)Likelihood Ratio Test (LRT)

ww

w.lo

faIllustrative exampleConclusions and future work

Solver noiseSolver noiseInitial assumptions

The goal is to minimize the “distance” between the real gainsThe goal is to minimize the  distance  between the real gains and calculated solutions = Minimizing the solver noise

x := gain solutions for the source s at the antenna q

• Sky noise for two different directions is uncorrelated• Thermal noise for any number of directions from the same station is the same

xq,s:= gain solutions for the source s at the antenna q

• Solver noise is the same for all stations and directions

Kullback‐Leibler Divergence (KLD)

The higher KLD between two different sources solutions at the same antenna, the solver noise is lessW fit G i i t d l t th l ti b EM l ith

Here comes your footer Page 8

•We fit a Gaussian mixture model to the solutions by EM algorithm•KLD is calculated via Monte‐Carlo algorithm

Presentation in CALIM  August 2010

Page 9: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LS, EM, and SAGE algorithmsSolver noise

Illustrative example

Initial assumptionsKullback ‐Leibler Divergence (KLD)Likelihood Ratio Test (LRT)

ww

w.lo

faIllustrative exampleConclusions and future work

Likelihood Ratio Test (LRT)Likelihood Ratio Test (LRT)

Null model: Independent solutions for different sources for the same antennaAlternative model: Dependent solutions for different sources for the same antenna 

Probability of accepting null modelrather than alternative model

The less LRT between two different sources solutions at the same antenna, the solver noise is less

Here comes your footer Page 9Presentation in CALIM  August 2010

Page 10: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LS, EM, and SAGE algorithmsSolver noise

Illustrative example

Comparison between the SAGE and the Normal  calibration algorithms 

ww

w.lo

faIllustrative exampleConclusions and future work

Illustrative exampleIllustrative exampleOne channel simulated observation of three sources by fourteen antennas 

Clean image Image having gain errors and

Here comes your footer Page 10Presentation in CALIM  August 2010

Clean image Image having gain errors and white Gaussian noise

Page 11: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LS, EM, and SAGE algorithmsSolver noise

Illustrative example

Comparison between the SAGE and the Normal  calibration algorithms 

ww

w.lo

faIllustrative exampleConclusions and future work

Residual ErrorsSAGE, 9 iterations NORMAL, 9 iterations

=1.2186

=1.2179

STD

STD

Here comes your footer Page 11Presentation in CALIM  August 2010

RMSE= 3.9259 RMSE= 3.9505

Page 12: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LS, EM, and SAGE algorithmsSolver noise

Illustrative example

Comparison between the SAGE and the Normal  calibration algorithms 

ww

w.lo

faIllustrative exampleConclusions and future work

LOFAR CS1 images from CasA and CygA

Here comes your footer Page 12Presentation in CALIM  August 2010

Yatawatta et al. 2009.

Page 13: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

C l i d f t kC l i d f t k

ww

w.lo

faConclusions and future workConclusions and future work

Conclusions:•The SAGE algorithm is superior in terms of accuracy and speed of convergence•The non‐linear problem requires suitable regularization •The KLD and the LRT could be used to study the influence of solver noise  

Future work:A l th l ith t l d t f LOFAR•Apply the algorithms to real data of LOFAR

•Study different regularization methods•Implement different noise models

Here comes your footer Page 13Presentation in CALIM  August 2010

Page 14: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LM, EM, and SAGE algorithmsNoise in solutions

Illustrative example

LOFARCalibrationSolver noise 

Th kTh k ww

w.lo

faIllustrative exampleConclusions and future work

i i d /RAI P j t SKA ht l

LOFARLOFAR Thank youThank yourai.ncsa.uiuc.edu/RAI_Projects_SKA.html

Here comes your footerPresentation at YERAC  July 2010 Page 14

Page 15: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LM, EM, and SAGE algorithmsNoise in solutions

Illustrative example

SimulationDirection dependent gainsDetecting solver noise via KLD and LRT

ww

w.lo

faIllustrative exampleConclusions and future work

i i d /RAI P j t SKA ht l

Illustrative exampleIllustrative examplerai.ncsa.uiuc.edu/RAI_Projects_SKA.html

Detection solver noise via KLD and LRTSolutions of antenna seven are given sin(t) noise where t is integration time

Normal calibrationThe SAGE calibrationg ( ) g

Real Solutions                                                             Solution added sin(t) noise 

Here comes your footerPresentation at YERAC  July 2010 Page 15

The KLD of the noisy antenna becomes zero 

Page 16: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LM, EM, and SAGE algorithmsNoise in solutions

Illustrative example

SimulationDirection dependent gainsDetecting solver noise via KLD and LRT

ww

w.lo

faIllustrative exampleConclusions and future work

i i d /RAI P j t SKA ht l

Illustrative exampleIllustrative examplerai.ncsa.uiuc.edu/RAI_Projects_SKA.html

Detection solver noise via KLD and LRT Normal calibrationThe SAGE calibration

Real Solutions                                                             Solution added sin(t) noise 

Here comes your footerPresentation at YERAC  July 2010 Page 16

The LRT of the noisy antenna becomes higher The LRT of the noisy antenna becomes higher 

Page 17: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LM, EM, and SAGE algorithmsNoise in solutions

Illustrative example

SimulationDirection dependent gainsDetecting solver noise via KLD and LRT

ww

w.lo

faIllustrative exampleConclusions and future work

i i d /RAI P j t SKA ht l

Illustrative exampleIllustrative examplerai.ncsa.uiuc.edu/RAI_Projects_SKA.html

KLD comparison                                                                  LRT comparisonThe Normal and the SAGE algorithms with 16 number of iterations

Here comes your footerPresentation at YERAC  July 2010 Page 17

The SAGE algorithm solutions have superior accuracy  

Page 18: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LM, EM, and SAGE algorithmsNoise in solutions

Illustrative example

SimulationDirection dependent gainsDetecting solver noise via KLD and LRT

ww

w.lo

faIllustrative exampleConclusions and future work

i i d /RAI P j t SKA ht l

Illustrative exampleIllustrative examplerai.ncsa.uiuc.edu/RAI_Projects_SKA.html

Real Solutions                                                             Solution added sin(t) noise 

Here comes your footerPresentation at YERAC  July 2010 Page 18

The LRT of noisy antenna is highly increased

Page 19: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LM, EM, and SAGE algorithmsNoise in solutions

Illustrative example

SimulationDirection dependent gainsDetecting solver noise via KLD and LRT

ww

w.lo

faIllustrative exampleConclusions and future work

i i d /RAI P j t SKA ht l

Illustrative exampleIllustrative examplerai.ncsa.uiuc.edu/RAI_Projects_SKA.html

Real Solutions                                                             Solution added sin(t) noise 

Here comes your footerPresentation at YERAC  July 2010 Page 19

The KLD of noisy antenna becomes almost zero 

Page 20: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LM, EM, and SAGE algorithmsNoise in solutions

Illustrative example

Initial assumptionsKullback ‐Leibler divergence (KLD)Likelihood Ratio Test (LRT)

ww

w.lo

faIllustrative exampleConclusions and future work

i i d /RAI P j t SKA ht l

Noise in solutionsNoise in solutionsrai.ncsa.uiuc.edu/RAI_Projects_SKA.html

Initial assumptions

• Sky noise for two different directions is uncorrelated• Thermal noise for any number of directions from the same station is the same• Solver noise is the same for all stations and directions

The goal is to minimize the “distance” between the real gains d l l d l i Mi i i i h l i

Kullback‐Leibler Divergence (KLD)

and calculated solutions = Minimizing the solver noise

The higher KLD between two different sources solutions at the same antenna, the solver noise is lessW fit G i i t d l t th l ti b EM l ith

Here comes your footerPresentation at YERAC  July 2010 Page 20

•We fit a Gaussian mixture model to the solutions by EM algorithm•KLD is calculated via Monte‐Carlo algorithm

Page 21: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LM, EM, and SAGE algorithmsNoise in solutions

Illustrative example

CalibrationSolver noise 

ww

w.lo

faIllustrative exampleConclusions and future work

i i d /RAI P j t SKA ht l

IntroductionIntroduction

Calibration  

rai.ncsa.uiuc.edu/RAI_Projects_SKA.html

•Estimating unknown instrument and the sky parameters and correcting them before imaging.•Finding the Maximum Likelihood estimate of the sky and the Instrument Unknown parameters.

Calibration challenges:•The scientific goals of LOFAR require extreme sensitivity and dynamic range (LOFAR EOR)•Intrinsically polarized feeds (dipoles)  ‐ polarized measurement equation Wid fi ld f i•Wide fields of view 

•Pronounced direction‐dependent effects

Input noise “instrumental noise”

output noiseNoise in calibration solutions

Solver noise

Here comes your footerPresentation at YERAC  July 2010 Page 21

Page 22: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LM, EM, and SAGE algorithmsNoise in solutions

Illustrative example

SimulationDirection dependent gainsDetecting solver noise via KLD and LRT

ww

w.lo

faIllustrative exampleConclusions and future work

i i d /RAI P j t SKA ht l

Illustrative exampleIllustrative examplerai.ncsa.uiuc.edu/RAI_Projects_SKA.html

Detection solver noise via KLD and LRT

Solutions of antenna seven are added sin(t) noise where t is integration time:

Here comes your footerPresentation at YERAC  July 2010 Page 22

Page 23: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LM, EM, and SAGE algorithmsNoise in solutions

Illustrative example

SimulationDirection dependent gainsDetecting solver noise via KLD and LRT

ww

w.lo

faIllustrative exampleConclusions and future work

i i d /RAI P j t SKA ht l

Illustrative exampleIllustrative examplerai.ncsa.uiuc.edu/RAI_Projects_SKA.html

Direction dependent gains

Jy Jy

Here comes your footerPresentation at YERAC  July 2010 Page 23

Random solutions Sin(t) solutions

Page 24: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

Xq,s

Here comes your footer Page 24

Page 25: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

Statistical analysis of multiStatistical analysis of multi‐‐sourcesourceStatistical analysis of multiStatistical analysis of multi source source CalibrationCalibration

axie

n/zu

kunf

t.htm

bonn

.mpg

.de/

.../g

ala

S. S. KazemiKazemi

ww

w.m

pifr-

b

KapteynKapteyn Astronomical Institute Astronomical Institute [email protected]@astro.rug.nl

Presentation in CALIM, August Presentation in CALIM, August 20102010(Under supervision of S(Under supervision of S ZaroubiZaroubi andand S YatawattaS Yatawatta))(Under supervision of S. (Under supervision of S. ZaroubiZaroubi, and , and S.YatawattaS.Yatawatta))

Page 26: Statistical analysis of multi source Calibration - astron.nl · The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity and dynamic range (e.g. LOFAR

ar.o

rg/

IntroductionMeasurement equation

The LS, EM, and SAGE algorithmsSolver noise

Illustrative example

Comparison between the SAGE and the Normal  calibration algorithms 

ww

w.lo

faIllustrative exampleConclusions and future work

i i d /RAI P j t SKA ht l

Illustrative exampleIllustrative examplerai.ncsa.uiuc.edu/RAI_Projects_SKA.html

Here comes your footer Page 26Presentation in CALIM  August 2010