statistical digital signal processing

Upload: shah-jee

Post on 07-Aug-2018

252 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/20/2019 Statistical Digital Signal Processing

    1/31

    Statistical

    SignalProcessing

    ECE 5615 Lecture Notes

    Spring 2015

     © 2007–2015Mark A. Wickert

    Equalizer

    +1

    -1

    DistortedInput

    EqualizedInput

    EstimatedData

     x[n]

    e[n]

     y[n]

    -

    +

    d [n]

  • 8/20/2019 Statistical Digital Signal Processing

    2/31

  • 8/20/2019 Statistical Digital Signal Processing

    3/31

    Chapter 1Course Introduction/Overview

    Contents1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 1-3

    1.2 Where are we in the Comm/DSP Curriculum? . . . . 1-4

    1.3 Instructor Policies . . . . . . . . . . . . . . . . . . . . 1-6

    1.4 The Role of Computer Analysis/Simulation Tools . . . 1-7

    1.5 Required Background . . . . . . . . . . . . . . . . . . 1-8

    1.6 Statistical Signal Processing? . . . . . . . . . . . . . . 1-9

    1.7 Course Syllabus . . . . . . . . . . . . . . . . . . . . . 1-10

    1.8 Mathematical Models . . . . . . . . . . . . . . . . . . 1-11

    1.9 Engineering Applications . . . . . . . . . . . . . . . . 1-13

    1.10 Random Signals and Statistical Signal Processing in

    Practice . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14

    1-1

  • 8/20/2019 Statistical Digital Signal Processing

    4/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

    .

    1-2 ECE 5615/4615 Statistical Signal Processing  

  • 8/20/2019 Statistical Digital Signal Processing

    5/31

    1.1. INTRODUCTION 

    1.1 Introduction

     Course perspective

     Course syllabus

     Instructor policies

     Software tools for this course

     Required background

     Statistical signal processing overview

    ECE 5615/4615 Statistical Signal Processing 1-3

  • 8/20/2019 Statistical Digital Signal Processing

    6/31

  • 8/20/2019 Statistical Digital Signal Processing

    7/31

    1.3. INSTRUCTOR POLICIES

    1.3 Instructor Policies

     Working homework problems will be a very important aspect

    of this course  Each student is to his/her own work and be diligent in keeping

    up with problems assignments

     Homework papers are due at the start of class

      If work travel keeps you from attending class on some evening,

    please inform me ahead of time so I can plan accordingly, andyou can make arrangements for turning in papers

     The course web site

    will serve as an information source between weekly class meet-

    ings  Please check the web site updated course notes, assignments,

    hints pages, and other important course news; particularly ondays when weather may result in a late afternoon closing of thecampus

      Grading is done on a straight 90, 80, 70, ... scale with curving

    below these thresholds if needed

      Homework solutions will be placed on the course Web site inPDF format with security password required; hints pages mayalso be provided

    ECE 5615/4615 Statistical Signal Processing 1-5  

  • 8/20/2019 Statistical Digital Signal Processing

    8/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

    1.4 The Role of Computer Analysis/

    Simulation Tools

      In working homework problems pencil and paper type solu-tions are mostly all that is needed

    –  It may be that problems will be worked at the board bystudents

    –   In any case pencil and paper solutions are still required tobe turned in later

     Occasionally an analytical expression may need to be plotted,here a visualization tool such as Python (via IPython consoleor notebook), MATLAB or Mathematica will be very helpful

     Simple simulations can be useful in enhancing your under-standing of mathematical concepts

     The use of Python for computer work is encouraged since it isfast and efficient at evaluating mathematical models and run-ning Monte-Carlo system simulations

     There will be one or more Python or MATLAB based simula-tion projects, and the Hayes text supports this with MATLABbased exercises at the end of each chapter

    –   I intend to rework MATLAB examples in Python, includ-ing converting code from the text to freely available Python

    1-6 ECE 5615/4615 Statistical Signal Processing  

  • 8/20/2019 Statistical Digital Signal Processing

    9/31

    1.5. REQUIRED BACKGROUND 

    1.5 Required Background

      Undergraduate probability and random variables (ECE 3610 or

    similar)  Linear systems theory

    –  A course in discrete-time linear systems such as, ECE5650 Modern DSP, is highly recommend (a review is pro-vided in Chapter 2)

      Familiarity with linear algebra and matrix theory, as matrix no-tation will be used throughout the course (a review is providedin Chapter 2)

      A desire to use the IPython Notebook, but falling back to MATLABor Mathematica if needed. Homework problems will requireits use of some vector/matrix computational tool, and a rea-sonable degree of proficiency will allow your work to proceed

    quickly

     A desire to dig in!

    ECE 5615/4615 Statistical Signal Processing 1-7  

  • 8/20/2019 Statistical Digital Signal Processing

    10/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

    1.6 Statistical Signal Processing?

     The author points out that the text title is not unique, in fact

     A Second Course in Discrete-Time Signal Processing is alsoappropriate

     The Hayes text covers:

    –   Review of discrete-time signal processing and matrix the-ory for statistical signal processing

    –  Discrete-time random processes

    –  Signal modeling

    –  The Levinson and Related Recursions

    –  Wiener and Kalman filtering

    –  Spectrum estimation

    –  Adaptive filters

     The intent of this course is not entirely aligned with the texttopics, as this course is also attempting to fill the void leftby Random Signals, Detection and Extraction of Signals from

     Noise, and Estimation Theory and Adaptive Filtering

     A second edition to the classic detection and estimation theorytext by Van Trees is another optional text for 2015; This is the

    text I first learned from

     Two Steven Kay books on detection and estimation are nowoptional texts, and may take the place of the Hayes book in thefuture

    1-8 ECE 5615/4615 Statistical Signal Processing  

  • 8/20/2019 Statistical Digital Signal Processing

    11/31

    1.7. COURSE SYLLABUS

    1.7 Course Syllabus

    ECE 5615/4615

    Statistical Signal ProcessingSpring Semester 2015

    Instructor: Dr. Mark Wickert   Office: EN292   Phone: [email protected]   Fax: 255-3589http://www.eas.uccs.edu/wickert/ece5615/ 

    Office Hrs: Wednesday 10:40–11:45 AM, other times by appointment.

    RequiredTexts:

    Monson H. Hayes, Statistical Digital Signal Processing and Modeling, John

    Wiley, 1996.

    OptionalTexts:

    H.L. Van Trees, K.L. Bell, and Z. Tian, Detection, Estimation, and Modulation

    Theory, Part I , 2nd. ed., Wiley, 2013. Steven Kay, Fundamentals of Statistical

    Signal Processing, Vol I: Estimation Theory, Vol II: Detection Theory, Prentice

    Hall, 1993/1998. ISBN-978-0133457117/978-0135041352

    OptionalSoftware:

    Scientific Python (PyLab) via the IPython command line or notebook (http:// 

    ipython.org/ install.html). IPython Notebook is highly recommended. A Linux

    Virtual machine is available with all the needed tools. The ECE PC Lab also

    has IPython and the notebook installed. If needed the full version of MATLAB

    for windows (release 2014b) is also in the lab.

    Grading: 1.) Graded homework assignments and computer projects worth 55%.2.) Midterm exam worth 20%.

    3.) Final exam worth 25%.

    Topics Text Sections

    1. Introduction and course overview Notes ch 1

    2. Background: discrete-time signal processing, linear algebra 2.1–2.4 (N ch2)

    3. Random variables & discrete-time random processes 3.1–3.7 (N ch3)

    4. Classical detection and estimation theory N ch4

    (optional texts)

    5. Signal modeling 4.1–4.8 (N ch5)

    6. The Levinson recursion 5.1–5.5 (N ch6)

    7. Optimal filters including the Kalman filter 7.1–7.5 (N ch8)

    8. Spectrum estimation 8.1–8.8 (N ch9)

    9. Adaptive filtering 9.1–9.4

    (N ch10)

    ECE 5615/4615 Statistical Signal Processing 1-9  

  • 8/20/2019 Statistical Digital Signal Processing

    12/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

    1.8 Mathematical Models

     Mathematical models serve as tools in the analysis and design

    of complex systems

     A mathematical model is used to represent, in an approximateway, a physical process or system where measurable quantitiesare involved

     Typically a computer program is written to evaluate the math-ematical model of the system and plot performance curves

    –  The model can more rapidly answer questions about sys-tem performance than building expensive hardware pro-totypes

      Mathematical models may be developed with differing degreesof fidelity

      A system prototype is ultimately needed, but a computer sim-ulation model may be the first step in this process

     A computer simulation model tries to accurately represent allrelevant aspects of the system under study

     Digital signal processing (DSP) often plays an important rolein the implementation of the simulation model

      If the system being simulated is to be DSP based itself, the sim-ulation model may share code with the actual hardware proto-type

    1-10 ECE 5615/4615 Statistical Signal Processing  

  • 8/20/2019 Statistical Digital Signal Processing

    13/31

    1.8. MATHEMATICAL MODELS

     The mathematical model may employ both deterministic andrandom signal models

    !"#$%&'()*+,"(-)./.

    0)1/2) 45,)#/$)2( ("6).( *+,"(-)./.

    7-+./8'&"# 9/$%&'(/"2 "17#"8)..:9+.()$

    ;"#))$)2(?

    =&& =.,)8(."1 @2()#).(

    @2A).(/>'()

  • 8/20/2019 Statistical Digital Signal Processing

    14/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

    1.9 Engineering Applications

    Communications, Computer networks, Decision theory and decision

    making, Estimation and filtering, Information processing, Power en-gineering, Quality control, Reliability, Signal detection, Signal anddata processing, Stochastic systems, and others.

    Relation to Other Subjects2

    !"#$%& ()*#"+,"#$ (-,./&,

    01%2"2)+).-

    3,.)&".)%#"#$ 4)+./1)#*

    ()*#"+01%5/,,)#*

    !/+)"2)+).-

    6/5),)%#78/%1-

    9"&/78/%1-

    :)#/"1(-,./&,

    ;%&&

  • 8/20/2019 Statistical Digital Signal Processing

    15/31

    1.10. RANDOM SIGNALS AND STATISTICAL SIGNAL PROCESSING IN PRACTICE 

    1.10 Random Signals and Statistical Sig-

    nal Processing in Practice

     A typical application of random signals concepts involves oneor more of the following:

    –  Probability

    –  Random variables

    –  Random (stochastic) processes

    Example 1.1: Modeling with Probability

     Consider a digital communication system with a  binary sym-metric channel and a coder and decoder

    !

    "

    !

    "

    #$%&' (&'%&'

    "   ! !

    "   ! !

    !

    !

    !"#$%   &'()%*!+)(($,   -$."#$%

    !"#$%&'($##)*+,-)*

    ',../#"0$1",# 

    2&31). 

    4"1( 

    5%%,%  

    ',#1%,*

    &'()%*

    /(0"%1)2'"(

    3$.$'4$#

    /(0"%1)2'"(

    !   )**+*  ,*+-.-/0/'1"

    A data link with error correction

    ECE 5615/4615 Statistical Signal Processing 1-13

  • 8/20/2019 Statistical Digital Signal Processing

    16/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

     The channel introduces bit errors with probability P e.bit/ D

      A simple code scheme to combat channel errors is to repetitioncode the input bits by say sending each bit three times

      The decoder then decides which bit was sent by using a major-ity vote decision rule

     The system can tolerate one channel bit error without the de-coder making an error

     The probability of a symbol error is given by

    P e.symbol/ D P .2 bit errors/ C P .3 bit errors/

     Assuming bit errors are statistically independent  we can write

    P .2 bit errors/ D        .1   / C    .1   /    

    C .1   /          D 32.1   /

    P .3 errors/ D          D 3

     The symbol error probability is thus

    P e.symbol/ D 32 23

     Suppose  P e.bit/   D     D   103, then  P e.symbol/   D   2:998  

    106

     The error probability is reduced by three orders of magnitude,but the coding reduces the throughput by a factor of three

    1-14 ECE 5615/4615 Statistical Signal Processing  

  • 8/20/2019 Statistical Digital Signal Processing

    17/31

    1.10. RANDOM SIGNALS AND STATISTICAL SIGNAL PROCESSING IN PRACTICE 

    Example 1.2: Separate Queues vs A Common Queue

    A well known queuing theory result3 is that multiple servers, with

    a common queue for all servers, gives better performance than mul-tiple servers each having their own queue. It is interesting to seeprobability theory in action modeling a scenario we all deal with inour lives.

    !

    "

     .

     .

     .

    #$%&$%'

    ()$*+$+$

    ,-./0/)1 3/)$45$6.%0/)17+'089$%'

    :.0$

    !

    T  s

     !  ;&$%.1$ #$%&/

  • 8/20/2019 Statistical Digital Signal Processing

    18/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

    Common Queue Analysis

     The number of servers is defined to be  m, the mean customerarrival rate is  per unit of time, and the mean customer servicetime is T s units of time

     In the single queue case we let u D T s  D traffic intensity

      Let  D u=m D server utilization

     For stability we must have u < m and   < 1

      As a customer we are usually interested in the average time inthe queue, which is defined as the waiting time plus the servicetime (Tanner)

    T CQ

    Q   D T w C T s  D Ec.m; u/T s

    m.1   /  C T s

    D

    Ec.m; u/ C m.1   /

    T s

    m.1   /

    where

    Ec.m; u/ D  um=mŠ

    um=mŠ C .1   /Pm1

    kD0 uk=kŠ

    is known as the Erlang-C formula

     To keep this problem in terms of normalized time units, we

    will plot T Q=T s versus the traffic intensity u D T s

     The normalized queuing time is

    T CQ

    Q

    T sD

     Ec.m; u/ C .m   u/

    m   u  D

     Ec.m; u/

    m   u  C 1

    1-16 ECE 5615/4615 Statistical Signal Processing  

  • 8/20/2019 Statistical Digital Signal Processing

    19/31

    1.10. RANDOM SIGNALS AND STATISTICAL SIGNAL PROCESSING IN PRACTICE 

    Separate Queue Analysis

      Since the customers randomly choose a queue, arrival rate into

    each queue is just =m

     The server utilization is    D  .=m/    T s which is the same asthe single queue case

      The average queuing time is (Tanner)

    T SQ

    Q   D  T s

    1   

     D  T s

    1     T sm

    D  mT s

    m   T s

     The normalized queuing time is

    T SQ

    Q

    T sD

      m

    m   T sD

      m

    m   u

      Create the Erlang-C function in MATLAB:

     We will plot T Q=T s versus u D T s for m D 2 and 4

    ECE 5615/4615 Statistical Signal Processing 1-17  

  • 8/20/2019 Statistical Digital Signal Processing

    20/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

     The plots are shown below:

    ! !"# !"$ !"% !"& ' '"# '"$ '"% '"& #!

    '

    #

    (

    $

    )

    %

    *

    &

    T Q

    T  s

    !!!!!!!

    Traffic Intensity!T  s

    "

    Separate

    Common

    m  , #

    Queuing time of common queue and separate queues for  m D 2 servers

    1-18 ECE 5615/4615 Statistical Signal Processing  

  • 8/20/2019 Statistical Digital Signal Processing

    21/31

    1.10. RANDOM SIGNALS AND STATISTICAL SIGNAL PROCESSING IN PRACTICE 

    ! !"# $ $"# % %"# & &"# '!

    $

    %

    &

    '

    #

    (

    )

    *

    T Q

    T  s

    !!!!!!!

    Traffic Intensity !T  s

    "

    Separate

    Common

    m  , '

    Queuing time of common queue and separate queues for  m D 4 servers

    Example 1.3: Power Spectrum Estimation

     The second generation wireless system  Global System for Mo-bile Communications (GSM), uses the Gaussian minimum shift-keying (GMSK) modulation scheme

    xc.t/ Dp 

    2P c cos

    2f 0t  C 2f d 

    1XnD1

    ang.t   nT b/

    where

    g.t/ D 1

    2

    erf 

     

    r   2

    ln 2BT b

      t

    T b

    1

    2

    C erf 

    r   2

    ln 2BT b

      t

    T bC

    1

    2

    ECE 5615/4615 Statistical Signal Processing 1-19  

  • 8/20/2019 Statistical Digital Signal Processing

    22/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

     The GMSK shaping factor is  BT b   D   0:3 and the bit rate isRb  D 1=T b  D 270:833 kbps

      We can model the baseband GSM signal as a complex randomprocess

     Suppose we would like to obtain the fraction of GSM signalpower contained in an RF bandwidth of  B  Hz centered aboutthe carrier frequency

      There is no closed form expression for the power spectrum of a

    GMSK signal, but a simulation, constructed in MATLAB, canbe used to produce a  complex baseband  version of the GSMsignal

    !"#$%#&'( *& +,-

       .  /  #  '   0  "  1   2    3  #  &  4   *   0  (   5   6   7   8

    GSM Baseband Power Spectrum

     B

     P fraction

    9:;; 9;; ; >;; =;; ;

    =;

    1-20 ECE 5615/4615 Statistical Signal Processing  

  • 8/20/2019 Statistical Digital Signal Processing

    23/31

    1.10. RANDOM SIGNALS AND STATISTICAL SIGNAL PROCESSING IN PRACTICE 

     Using averaged periodogram spectral estimation we can esti-mate  S GMSK.f /  and then find the fractional power in any RFbandwidth, B , centered on the carrier

    P fraction D

    R B=2B=2

    S GMSK.f / df R 11

    S GMSK.f / df 

    –  The integrals become finite sums in the MATLAB calcu-lation

    ! "! #!! #"! $!! $"! %!!!

    !&$

    !&'

    !&(

    !&)

    #

     B 200 kHz! 95.6%!

     B 100 kHz! 67.8%!

     B 50 kHz! 38.0%!

    *+ -./012034 2/ 567

       +  8  .  9   3   2  :  /  .   ;    <  :  1  =  8

    GSM Power Containment vs. RF Bandwidth

    Fractional GSM signal power in a centered  B  Hz RF bandwidth

     An expected result is that most of the signal power (95%) iscontained in a 200 kHz bandwidth, since the GSM channelspacing is 200 kHz

    ECE 5615/4615 Statistical Signal Processing 1-21

  • 8/20/2019 Statistical Digital Signal Processing

    24/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

    Example 1.4: A Simple Binary Detection Problem

     Signal x is measured as noise alone, or noise plus signal

    x  D

    (n;   only noise for hypothesis H 0V   C n;   noise + signal for hypothesis H 1

     We model  x  as a random variable with a   probability density function dependent upon which hypothesis is present

    0   V V    1 !   1   V    1"1 !

     X 

     p x   X H 0! "   p x   X H 1! "

    V T 

     ! 

    "#$ 

    %&'$()*+,+-.*/01,$

     We decide that the hypothesis H 1 is present if  x > V T , whereV 

    T  is the so-called decision threshold 

     The probability of detection is given by

    P D  D Pr.x > V T jH 1/ DZ   1

    V T 

    px.X jH 1/ dX 

    0   V V    1 !   1   V    1"1 !

     X 

     p x

      X H 1

    ! "

    V T 

     P  D

      Pr   x vT 

      H 1

    #! "#

    Area corresponding to P D

    1-22 ECE 5615/4615 Statistical Signal Processing  

  • 8/20/2019 Statistical Digital Signal Processing

    25/31

    1.10. RANDOM SIGNALS AND STATISTICAL SIGNAL PROCESSING IN PRACTICE 

     We may choose  V T   such that the probability of   false alarm,defined as

    P F   D Pr.x < V T jH 0/ DZ   1

    V T px.X jH 0/ dX 

    is some desired value (typically small)

    0   V V    1 !   1   V    1"1 !

     X 

     p x

      X H 0

    ! "

    V T 

     P  F 

      Pr   x vT 

      H 0

    #! "#

    Area corresponding to P F 

    Example 1.5: A Waveform Estimation Theory Problem

     Consider a received phase modulated signal of the form

    r.t/ D s.t/ C n.t/ D Ac cos.2f ct  C  .t// C n.t/

    where   .t/   D   kpm.t/,   kp   is the modulator phase deviationconstant, m.t/ the modulation, and n.t/ is additive white Gaus-sian noise

     The signal we wish to estimate is   m.t/, information phasemodulated onto the carrier

    ECE 5615/4615 Statistical Signal Processing 1-23

  • 8/20/2019 Statistical Digital Signal Processing

    26/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

     We may choose to develop an estimation procedure that ob-tains   Om.t/, the estimate of m.t/ such that the mean square erroris minimized, i.e.,

    MSE D Efjm.t/     Om.t/j2g

     Another approach is maximum likelihood estimation

     A practical implementation of a maximum likelihood basedscheme is a phase-locked loop (PLL)

      As a specific example here we consider the MATLAB Simulinkblock diagram shown below:

    !"#$%&

    !"#$%

    '%

    ()

    '%*+,()*- /#0#)$+%1

    '*23#)45)6%7&

    '*23#)

    45)6%7

    85+9%

    :%2%7*/#7

    8;

    8;

    ;#35+*/#7 5

    25)@AB

    3%2@AB

    =C9"7%/%;#35+#

    (2/%-7*/#7

    &,A,&

    /9@&B@AB

    =C9"7%/% (2/%-7*/#7

    D@ E B

    8F

    ()@5B

    0F%"G !C-2*+ H//7C65/%9

    &

    Complex baseband Simulink block diagram

      Results from the simulation using a squarewave input for twodifferent signal-to-noise power ratios (20 dB and 0 dB) areshown below

    1-24 ECE 5615/4615 Statistical Signal Processing  

  • 8/20/2019 Statistical Digital Signal Processing

    27/31

    1.10. RANDOM SIGNALS AND STATISTICAL SIGNAL PROCESSING IN PRACTICE 

    ! " # $ % & ' ( ) * "!

    !

    !+&

    "

    ! " # $ % & ' ( ) * "!

    !

    !+&

    "

    ! " # $ % & ' ( ) * "!

    !

    !+&

    "

    ,-./

       0  1  2  3   4    m   6     t   7

       8  9   4   -  .  :   4  /  :   4   #   !   ;   <

       8  9   4   -  .  :   4  /  :   4   !   ;   <

    Input/output waveforms

    Example 1.6: Nonrandom Parameter in White Gaussian Noise

    We are given observations

    ri  D A C ni ; i  D 1 ; : : : ; N  

    with the ni iid of the form N.0;  2n /

    ECE 5615/4615 Statistical Signal Processing 1-25  

  • 8/20/2019 Statistical Digital Signal Processing

    28/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

     The joint pdf is

    prja.RjA/ D

    Yi D11

    p 2 2n exp.Ri   A/

    2

    2 2n

     The log likelihood function is

    ln prja.RjA/ç D N 

    2  ln

      1

    2 2n

     

    1

    2 2n

    N XiD1

    .Ri   A/2

     Solve the likelihood equation

    @ lnŒprja.RjA/ç

    @A

    ˇ̌̌ˇ

    AD Oaml

    D  1

     2n

    N Xi D1

    .Ri   A/

    ˇ̌̌ˇ

    AD Oaml

    D 0

    H) Oaml D  1

    Xi D1Ri

     Check the bias:

    Ef Oaml.r/   Ag D E

     1

    N Xi D1

    ri   A

    D  1

    Xi D1Efri g„ƒ‚…A

    A D 0

    No Bias!

    1-26 ECE 5615/4615 Statistical Signal Processing  

  • 8/20/2019 Statistical Digital Signal Processing

    29/31

    1.10. RANDOM SIGNALS AND STATISTICAL SIGNAL PROCESSING IN PRACTICE 

    Example 1.7: Sat-Com Adaptive Equalizer

      Wideband satellite communication channels are subject to bothlinear and non-linear distortion

    Uplink

    Channel

    Transmitter 

    Transponder 

    Receiver 

    PSK

    Mod

    HPA

    (TWTA)

    HPA

    (TWTA)

    Modulation

    Impairments

    Bandpass

    Filtering

    Bandpass

    Filtering

    Bandpass

    Filtering

    PSK Demod

    (bit true with

    full synch)

     Adaptive

    Equalizer 

    Other Signals

         M    o     d .

         M    o     d .

    WGNNoise

    (off)

    Data

    Source

    Recovered

    Data

    Downlink

    Channel

    WGN

    Noise

    (on)

    Other 

    Signals

         M    o     d .

    Other 

    Signals

      Spurious PM  Incidental AM

      Clock jitter 

      IQ amplitude imbalance  IQ phase imbalance

      Waveform asymmetryand rise/fall time

      Phase noise  Spurious PM  Incidental AM

     

    Spurious outputs

      Phase noise  Spurious PM  Incidental AM

     

    Spurious outputs

      BPSK  QPSK

      OQPSK

    Wideband Sat-Comm simulation model

     An adaptive filter can be used to estimate the channel dis-tortion, for example a technique known as   decision feedback equalization

    ECE 5615/4615 Statistical Signal Processing 1-27  

  • 8/20/2019 Statistical Digital Signal Processing

    30/31

    CHAPTER 1. COURSE INTRODUCTION/OVERVIEW 

    M1 Tap

    ComplexFIR

    Re

    z-1M

    1 Tap

    Complex

    FIR

    Im 2

    2

    M2 Tap

    Real

    FIR

    M2 Tap

    Real

    FIR

    CM Error/

    LMS Update

    DD Error/

    LMS Update

    CM Error/

    LMS Update

    DD Error/

    LMS Update

    Tap

    Weight

    UpdateSoft I/Q outputs

    from demod at

    sample rate = 2Rs

    Recovered

    I Data

    Recovered

    Q Data

    Stagger for 

    OQPSK, omit

    for QPSK

    +

    +

    -

    -

    -

    -

    +

    + AdaptMode

    Decision

    Feedback

    Decision

    Feedback

    µCM

    , µ

    DD

    µDF

    , γ 

    An adaptive baseband equalizer4

     Since the distortion is both linear (bandlimiting) and nonlin-ear (amplifiers and other interference), the distortion cannot becompletely eliminated

     The following two figures show first the modulation 4-phasesignal points with and with out the equalizer, and then the bit

    error probability (BEP) versus received energy per bit to noisepower spectral density ratio (Eb=N 0)

    4Mark Wickert, Shaheen Samad, and Bryan Butler. “An Adaptive Baseband Equalizer for HighData Rate Bandlimited Channels,Ó Proceedings 2006 International Telemetry Conference, Session5, paper 06–5-03.

    1-28 ECE 5615/4615 Statistical Signal Processing  

  • 8/20/2019 Statistical Digital Signal Processing

    31/31

    1.10. RANDOM SIGNALS AND STATISTICAL SIGNAL PROCESSING IN PRACTICE 

    −1.5   −1   −0.5 0 0.5 1 1.5−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    In−phase

          Q    u    a     d    r    a     t    u    r    e

    −1.5   −1   −0.5 0 0.5 1 1.5−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    In−phase

          Q    u    a     d    r    a     t    u    r    e

    Before Equalization: R b = 300 Mbps After Equalization: R 

    b = 300 Mbps

    OQPSK scatter plots with and without the equalizer

    6 8 10 12 14 16 18 20 22 2410

    −7

    10−6

    10−5

    10−4

    10−3

    10−2

    Eb/N

    0 (dB)

       P  r  o   b  a   b   i   l   i   t  y  o   f   B   i   t   E  r  r  o  r

    Theory EQ NO EQ

    4.0 dB 8.1 dB

    Semi-Analytic Simulation

    300 MBPS BER Performance with a 40/0 Equalizer 

    BEP versus Eb=N 0 in dB