statistical modelling of spatial...

46
Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 1 / 38 Statistical Modelling of Spatial Extremes Davison, A.C. Padoan, S.A. Ribatet, M. , Institute of Mathematics, EPFL Department of Decision Science, University of Bocconi Department of Mathematics, University of Montpellier 2 Institute of Actuarial and Financial Science, University of Lyon 1

Upload: others

Post on 02-Aug-2020

4 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 1 / 38

Statistical Modelling of Spatial Extremes

Davison, A.C.† Padoan, S.A.‡ Ribatet, M.X,z

†Institute of Mathematics, EPFL‡Department of Decision Science, University of BocconiXDepartment of Mathematics, University of Montpellier 2zInstitute of Actuarial and Financial Science, University of Lyon 1

Page 2: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 2 / 38

322 486 649 812 976 1140 1358 1576 1794 2012 2230 2448 meters●

●●

●●

Figure 1: Map of Switzerland showing the stations of the 51 rainfall gauges used for the analysis,with an insert showing the altitude. The 36 stations marked by circles were used to fit the models,and those marked with squares were used to validate the models. The pairs of stations with bluesymbols will appear in the next Figure.

Page 3: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 2 / 38

1970 1990 2010

50

100

150

Effretikon−Uster

Annual m

axim

a o

f R

ain

(mm

)

1970 1990 2010

50

100

150

Frauenfeld−Kalchrain

1970 1990 2010

50

100

150

Gruningen−Hinwil

1970 1990 2010

50

100

150

Hallau−Kleine Scheid

1970 1990 2010

50

100

150

Sum

mer

maxim

a o

f R

ain

(mm

)

1970 1990 2010

50

100

150

1970 1990 2010

50

100

150

1970 1990 2010

50

100

150

1970 1990 2010

50

100

150

Time

Win

ter

maxim

a o

f R

ain

(mm

)

1970 1990 2010

50

100

150

Time1970 1990 2010

50

100

150

Time1970 1990 2010

50

100

150

Time

Figure 1: Annual, summer and winter maximum daily rainfall values for 1962–2008 at the four pairsof stations shown in blue in the previous Figure.

Page 4: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

EVT: Finite dimensional setting

⊲ I. EVT

Univariate case

Multivariate Case

Spectral measure

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation of

max-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 3 / 38

Page 5: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Univariate case

I. EVT

⊲ Univariate case

Multivariate Case

Spectral measure

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation of

max-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 4 / 38

� Let X1, X2, . . . be independent replications from F� Provided that G is non degenerate

Pr

[

maxi=1,...,n

Xi − bnan

≤ x

]

−→ G(x), n→ +∞, (1)

for some normalizing sequences an > 0 and bn ∈ R, then

G(x) = exp{

−(1 + ξx)−1/ξ}

.

� For modelling purposes, as long as n is large enough we willassume

Pr

[

maxi=1,...,n

Xi ≤ x

]

≈ exp

{

−(

1 + ξx− µ

σ

)−1/ξ}

.

Page 6: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Multivariate Case

I. EVT

Univariate case

⊲MultivariateCase

Spectral measure

II. Classical

approaches

III. Max-stable

processes

IV. Spatial

dependence ofextremes

V. Simulation ofmax-stable

random fields

VI. Pairwise

likelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 5 / 38

� Let X1,X2, . . . iid d-random vectors with distribution F� Our interest is in the (non degenerate) limiting distribution

Pr

[

maxi=1,...,n

Xi − bn

an≤ x

]

−→ G(x), n→ ∞

for some sequences an > 0 and bn ∈ Rd. G is called a

multivariate extreme value distribution� Paralleling the univariate case we have

Gt(x) = G{α(t)x+ β(t)}, t > 0,

for some normalizing functions α(t) > 0 and β(t) ∈ Rd.

� W.l.o.g. we’ll assume unit Fréchet margins, i.e.,

G(x,+∞, . . . ,+∞) = . . . = G(+∞, . . . ,+∞, x) = exp(−1/x),

Page 7: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Spectral measure / Dependence function

I. EVT

Univariate case

Multivariate Case

⊲Spectral

measure

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 6 / 38

Theorem. Let E = [0,+∞]d \ {0}. G is a unit Fréchet MEVD

iff there exists a finite measure H on Sd = {y ∈ E : ‖y‖ = 1}such that

Sd

ωidH(ω) = 1, G(x) = exp

{

−∫

Sd

maxi=1,...,d

ωi

xidH(ω)

}

,

for i = 1, . . . , d and x ∈ E.

Equivalently G(x) = exp {−V (x1, . . . , xd)} where V is

homogeneous of order −1, i.e. V (t ·) = t−1V (·), and

V (x,+∞, . . . ,+∞) = . . . = V (+∞, . . . ,+∞, x) = x−1.

Remark. Let x = (x, . . . , x), x > 0. As V is homogeneous,

G(x) = exp{−V (x, . . . , x)} = exp(−θd/x) = G(x)θd,

where θd = V (1, . . . , 1) is known as the extremal coefficient.

Page 8: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Spectral measure / Dependence function

I. EVT

Univariate case

Multivariate Case

⊲Spectral

measure

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 6 / 38

Theorem. Let E = [0,+∞]d \ {0}. G is a unit Fréchet MEVD

iff there exists a finite measure H on Sd = {y ∈ E : ‖y‖ = 1}such that

Sd

ωidH(ω) = 1, G(x) = exp

{

−∫

Sd

maxi=1,...,d

ωi

xidH(ω)

}

,

for i = 1, . . . , d and x ∈ E.

Equivalently G(x) = exp {−V (x1, . . . , xd)} where V is

homogeneous of order −1, i.e. V (t ·) = t−1V (·), and

V (x,+∞, . . . ,+∞) = . . . = V (+∞, . . . ,+∞, x) = x−1.

Remark. In a spatial context, it is more convenient to think ofthe extremal coefficient as a function of the distance between topoints in R

d. This is the extremal coefficient function

θ(h) = −z log Pr{Z(o) ≤ z, Z(h) ≤ z}, z > 0.

Page 9: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Moving smoothly to the infinite

dimensional case

I. EVT

⊲II. Classicalapproaches

BHM

Copula

To take home

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 7 / 38

Page 10: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

I. EVT

II. Classicalapproaches

BHM

Copula

To take home

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 8 / 38

� In trying to model spatial extremes, we aim at capturing the

1. spatial behavior of the marginal parameters, i.e., µ, σ, ξ2. spatial dependence, e.g., a single storm impacts several

locations

� For the first point, one might use polynomial surfaces, e.g.,

µ(x) = β0 + β1lon(x) + β2lat(x)

� For the second point, there are several possibilities based onthe model used

Page 11: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Bayesian hierarchical models

I. EVT

II. Classicalapproaches

⊲ BHM

Copula

To take home

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 9 / 38

� Deterministic trend surfaces might not be flexible enough tocapture the spatial variability of the marginal parameters

� What if we use instead stochastic processes for this? E.g.,

µ(x) = fµ(x;βµ) + Sµ(x;αµ, λµ),

where fµ is a deterministic function and Sµ is a zero meanGaussian process.

� Then conditional on the values of the 3 Gaussian processes atthe sites (x1, . . . , xk),

Yi(xj) | {µ(xj), σ(xj), ξ(xj)} ∼ GEV{µ(xj), σ(xj), ξ(xj)},

independently for each location (x1, . . . , xk).� This is most naturally performed in a MCMC framework

Page 12: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Assets and Drawbacks: BHM

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 10 / 38

� The quantile surfaces are realistic

Zurich

40

45

50

55

60

65

70

Zurich

55

60

65

70

75

80

85

Zurich

70

80

90

100

Figure 2: Maps of the pointwise 25-year return levels for rainfall (mm) obtained from the latentvariable model. The left and right panels are respectively the estimated 0.025 and 0.975 quantiles,and the middle panel shows the posterior mean.

Page 13: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Assets and Drawbacks: BHM

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 10 / 38

� The quantile surfaces are realistic but� After averaging over S(x) the marginal distribution of {Y (x)} isn’t GEV� The spatial dependence is ignored because of conditional independence

0

20

40

60

80

>100

xZurich

Figure 2: One realisation of the latent variable model, showing the lack of local spatial structure.

Page 14: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Assets and Drawbacks: BHM

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 10 / 38

� The quantile surfaces are realistic but� After averaging over S(x) the marginal distribution of {Y (x)} isn’t GEV� The spatial dependence is ignored because of conditional independence

−1 0 1 2 3 4 5

−1

01

23

45

Model

Obs

erve

d

−1 0 1 2 3 4 5

−1

01

23

45

Model

Obs

erve

d

−1 0 1 2 3 4 5

−1

01

23

45

Model

Obs

erve

d

−1 0 1 2

−1

01

2

Model

Obs

erve

d

−1 0 1 2 3

−1

01

23

Model

Obs

erve

d

−1 0 1 2 3 4 5 6

−1

01

23

45

6

Model

Obs

erve

d

−2 −1 0 1 2

−2

−1

01

2

Model

Obs

erve

d

−1 0 1 2 3 4

−1

01

23

4

Model

Obs

erve

d

0 2 4 60

24

6

Model

Obs

erve

d

Figure 2: Model checking for the Bayesian hierarchical model.

Page 15: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Copula based approach

I. EVT

II. Classicalapproaches

BHM

⊲ Copula

To take home

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 11 / 38

� One might be tempted to use copula to take into account thespatial dependence

� For instance using a Gaussian copula

Pr{Y (x1) ≤ y1, . . . , Y (xk) ≤ yk} = Φ{

Φ−1(u1), . . . ,Φ−1(uk)

}

,

or a t-copula

Pr{Y (x1) ≤ y1, . . . , Y (xk) ≤ yk} = Tν{

T−1ν (u1), . . . , T

−1ν (uk)

}

,

where ui = GEV{yi;µ(xi), σ(xi), ξ(xi)} for all i = 1, . . . , k.

Page 16: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Extreme value copulas

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 12 / 38

� Since we are working with extreme values, it might be more sensible to useextreme value copulas, i.e., a copula C such that for all m ∈ (0,∞)

C(um1 , . . . , umk ) = Cm(u1, . . . , uk), 0 ≤ u1, . . . , uk ≤ 1.

� For example one might consider the Hüsler–Reiss copula

Pr{Y (x1) ≤ y1, Y (x2) ≤ y2} = exp

[

Φ

{

a

2+

1

aln

lnu2

lnu1

}

ln u1 +Φ

{

a

2+

1

aln

lnu1

lnu2

}

lnu2

]

,

or the extremal–t copula

ln Pr{Y (x1) ≤ y1, Y (x2) ≤ y2} = Tν+1

{

−ρ

b+

1

b

(

lnu2

lnu1

)1/ν}

lnu1+Tν+1

{

−ρ

b+

1

b

(

lnu1

lnu2

)1/ν}

lnu2,

where b2 = (1− ρ2)/(ν + 1).

Page 17: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Assets and Drawbacks: Copula

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 13 / 38

� Non extreme value copulas might falsely appear to be adapted

20

30

40

50

60

70

80

Figure 3: One simulation from the fitted Gaussian copula model.

Page 18: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Assets and Drawbacks: Copula

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 13 / 38

� Non extreme value copulas might falsely appear to be adapted

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Gaussian & Student−t Copulas

h (km)

γ(h)

Whittle−Student−tCauchy−Gaussian

0 20 40 60 80 100

1.0

1.2

1.4

1.6

1.8

2.0

Husler−Reiss

h (km)

θ(h)

Gauss CopulaStableExponential

0 20 40 60 80 100

1.0

1.2

1.4

1.6

1.8

2.0

Extremal t

h (km)

θ(h)

Whittle−St CopulaWhittleCauchy

Figure 3: Comparison between the empirical variogram and the fitted one (red line) on the Gaus-sian/Student scale. On the original scale we compare the extremal coefficient function. Grey points:data used for model fitting, black ones: data used for model validation.

Page 19: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Assets and Drawbacks: Copula

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 13 / 38

� Non extreme value copulas might falsely appear to be adapted

0 2 4 6

02

46

ModelO

bser

ved

0 2 4 6

02

46

Model

Obs

erve

d

0 2 4 6

02

46

Model

Obs

erve

d

−2 −1 0 1 2

−2

−1

01

2

Model

Obs

erve

d

−1 0 1 2 3

−1

01

23

ModelO

bser

ved

0 2 4 6

02

46

Model

Obs

erve

d

−2 −1 0 1 2

−2

−1

01

2

Model

Obs

erve

d

−1 0 1 2 3 4

−1

12

34

Model

Obs

erve

d

0 2 4 6

02

46

ModelO

bser

ved

Figure 3: Model checking for the gaussian copula model.

Page 20: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

To take home

I. EVT

II. Classicalapproaches

BHM

Copula

⊲ To take home

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 14 / 38

� These two models all fail to capture some aspect of the data

Latent More realistic quantile surfaces but still no spatialdependence modelling

Copula Might falsely take into account the spatial dependence —if not max-stable!

� How one can model spatial extremes?

Page 21: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

III. Max-stable processes

I. EVT

II. Classicalapproaches

⊲III. Max-stableprocesses

JustificationSpectralcharacterization

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 15 / 38

Page 22: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Why max-stable processes?

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

⊲ JustificationSpectralcharacterization

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 16 / 38

� Let {Y (x) : x ∈ X} be a continuous sample path stochasticprocess and Y1, . . . , Yn independent replicates of it

� Our goal is to focus on the (non degenerate) limiting process

{

maxi=1,...,n

Yi(x)− bn(x)

an(x)

}

x∈X

d−→ {Z(x)}x∈X , n→ +∞,

where an(x) > 0 and bn(x) are sequences of continuousfunctions.

de Haan [1984] shows that the class of thelimiting process {Z(x) : x ∈ X} corresponds to that ofmax-stable processes.

Page 23: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Max-stability

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

⊲ JustificationSpectralcharacterization

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 17 / 38

Definition. A stochastic process {Z(x) : x ∈ X} with continuoussample paths is called max-stable if there are continuous functions

an(x) > 0 and bn(x) ∈ R such that if Z1, . . . , Zniid∼ Z then

maxi=1,...,n

Zi(·)− bn(·)an(·)

d= Z(·), i = 1, 2, . . .

Remark. If {Z(x) : x ∈ X} has unit Fréchet margins then theabove equation becomes

n−1 maxi=1,...,n

Zi(·) d= Z(·), i = 1, 2, . . .

Page 24: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Spectral characterization

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

Justification

⊲Spectralcharacterization

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 18 / 38

� Probably the most useful spectral representation ofmax-stable processes is the following.

Theorem (Penrose, 1992; Schlather, 2002). Let {ξi}i≥1 be the

points of a Poisson process on (0,∞) with intensity

dΛ(ξ) = ξ−2dξ and Y1, Y2, . . . be i.i.d. replications of a non

negative stochastic process Y such that E{Y (x)} = 1, for all

x ∈ X . The processes Yi and the points of the Poisson process

are assumed to be independent. Then

Z(·) = maxi≥1

ξiYi(·).

is a max-stable process with unit Fréchet margins.

� Suitable choices for Y (·) yield different max-stable processes.

Page 25: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Some models

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 19 / 38

Smith Yi(x) = ϕ(x− Ui), {Ui}i≥1 points of a homogeneous PP on Rd

Schlather Yi(x) =√2πεi(x), εi(·) standard Gaussian process

Geometric Yi(x) = exp{σεi(x)− σ2/2}Brown–Res. Yi(x) = exp{ǫi(x)− γ(x)}, ǫi(·) intrinsically stationary

Gaussian process with (semi) variogram γ.

Smith

Zurich

Schlather

Zurich

Geometric

Zurich

Brown−Resnick

Zurich

Precipitation (mm)

10

20

30

40

50

60

70

80

Figure 4: One realization of a max-stable process. From left to right: extremal coefficient functions,Smith’s, Schlather’s, Geometric and Brown–Resnick’s models.

Page 26: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Connection with extreme value copulas

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

Justification

⊲Spectralcharacterization

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 20 / 38

� Since the fidis of max-stable processes are multivariateextreme value distributions, there are some strongconnections with extreme value copulas.

� For instance

– the Hüsler–Reiss copula corresponds to the fidis ofBrown–Resnick processes.

– The extremal-t copula corresponds to the fidis of

Z(x) = maxi≥1

cνξimax{0, εi(x)}ν

for some known constant cν , ν ≥ 1 [Opitz, 2013].

Page 27: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

IV. Spatial dependence of extremes

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

Spatialdependence

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 21 / 38

Page 28: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Spatial dependence of extremes

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

⊲Spatialdependence

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 22 / 38

� It would be nice to have a kind of variogram for extremes of astochastic process

γ(x1 − x2) =1

2E[{Z(x1)− Z(x2)}2]

� But if we assume that Z is a unit Fréchet max-stable process,Var{Z(x)} = E{Z(x)} = ∞!

Theorem (Cooley et al., 2006). If {Z(x) : x ∈ X} is a unit

Fréchet max-stable process, then

2νF (x1 − x2) := E [|F (Z(x1))− F (Z(x2)) |] =θ(x1 − x2)− 1

θ(x1 − x2) + 1.

Page 29: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Extremal coefficient function for some models

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

⊲Spatialdependence

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 23 / 38

Smith θ(h) = 2Φ{√

hTΣ1h2

}

Schlather θ(h) = 1 +

1−ρ(h)2

Geometric θ(h) = 2Φ

{

σ2{1−ρ(h)}2

}

Brown–Resnick θ(h) = 2Φ

{

γ(h)2

}

� Constraints on positive definite function [Matérn, 1986]implies that for the Schlather case, θ(h) −→ 1 +

1/2 ash→ ∞: independence never reached!

� Similarly for the Geometric model, θ(h) ≤ 2Φ(0.838σ) andθ(h) −→ 2Φ(σ/

√2): independence if σ2 large enough.

� If γ is unbounded, independence is always reached.

Page 30: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

V. Simulation of max-stable random fields

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulationof max-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 24 / 38

Page 31: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 25 / 38

� Recall that the spectral representation is

Z(x) = maxi≥1

ξiYi(x),

where {ξi}i≥1 are the points of a Poisson process on (0,+∞]

with intensity dΛ(ξ) = ξ−2dξ and Yiiid∼ Y where Y satisfies

E{Y (x)} = 1.� Simulation of an infinite number of points of a Poisson

process and independent replications of Y are required —ouch!

� Under further assumptions on Y it is however possible to getexact simulations.

Page 32: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 26 / 38

1. Start with a standard PP on (0,∞), i.e.,∑

Ei, Eiiid∼ Exp(1)

— intensity Λ̃([a, b]) = b− a2. Apply the mapping T : x 7→ x−1 to the above points, this

gives a new PP with intensity measure

Λ([a, b]) = Λ̃{T−1([a, b])} = Λ̃([b−1, a−1]) = a−1 − b−1

and its intensity density is as required dΛ(ξ) = ξ−2dξ.

3. But (up to a permutation) ξnd= 1/

∑ni=1Ei ↓ 0+ as

n→ +∞, so if Y is uniformly bounded by C < +∞ then

0 ≤ ξiY (x) ≤ ξiC ↓ 0+, n→ +∞

4. And we only need a finite number of replications

Page 33: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 27 / 38

� When Y isn’t stationary like for Brown–Resnick processes

Y (x) = exp{ε(x)− γ(x)}, γ(h) ∝ hα, 0 < α ≤ 2,

the above algorithm give poor approximations

−4000 0 2000

−10

0−

60−

200

α = 0.5

h

log{

Z(x

)}

−60 −20 20 60

−10

0−

60−

200

α = 1

h

log{

Z(x

)}

−15 −5 0 5 10 15

−30

0−

200

−10

00

α = 2

h

log{

Z(x

)}Figure 5: Simulation of Brown–Resnick processes when ε is a fraction Brownian motion. Thesesimulation are based on m = 250 independent simulations (grey curves). The black curves correspondsto the simulated Brown–Resnick processes.

Page 34: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Random shifting

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 28 / 38

� Since B.–R. processes are stationary one can use

Z(x) = maxi≥1

ξi exp{εi(x−Ui)−γ(x−Ui)}, Uiiid∼ F arbitrary.

� Roughly speaking the random shifting x 7→ x− U mitigatesthe impact of the conditioning ε(o) = 0 a.s.

−400 0 200

−50

−30

−10

010

x

log(

Z(x

))

α = 0.5

−40 0 20 40

−15

0−

100

−50

0

x

log(

Z(x

))

α = 1

−20 −10 0 10 20−40

0−

300

−20

0−

100

0

x

log(

Z(x

))

α = 1.5

Figure 6: Simulation of a Brown–Resnick process using uniform random shiftings.

Page 35: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

VI. Pairwise likelihood fitting

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihoodfitting

ComputationalburdenCompositelikelihoods

Why does it work?

Asymptotics

Model Selection

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 29 / 38

Page 36: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Computational burden

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 30 / 38

� Let {Z(x)} be a (unit Fréchet) max-stable process. We have

Pr[Z(x1) ≤ z1, . . . , Z(xk) ≤ zk] = exp{−V (z1, . . . , zk)}.

� The corresponding density is therefore

f(z1, . . . , zk) =∂k

∂z1 · · · ∂zkPr[Z(x1) ≤ z1, . . . , Z(xk) ≤ zk].

� When k = 2, f = (V1V2 − V12) exp(−V )� When k = 3, f = (V12V3 + V13V2 + V1V23 − V123 − V1V2V3) exp(−V )� Combinatorial explosion: when k = 10 a single likelihood evaluation would

require a sum of over 100,000 different terms.� How to bypass this computational burden? Use pairwise likelihood.

Page 37: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Composite likelihoods

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

Computationalburden

⊲Compositelikelihoods

Why does it work?

Asymptotics

Model Selection

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 31 / 38

Definition. Let {f(y; θ), y ∈ Y , θ ∈ Θ} a parametric statisticalmodel, where Y ⊆ R

k, Θ ⊆ Rp, k ≥ 1 and p ≥ 1.

Consider a set of (marginal or conditional) events{Ai : Ai ⊆ F , i ∈ I}, where I ⊆ N and F is a σ-algebra on Y .A log-composite likelihood is defined as

ℓc(θ; y) =∑

i∈Iwi log f(y ∈ Ai; θ)

where f(y ∈ Ai; θ) = f({yj ∈ Y : yj ∈ Ai} ; θ), y = (y1, . . . , yn)and {wi, i ∈ I} is a set of suitable weights.

� In a nutshell, log-composite likelihoods are just linearcombinations of (smaller) log-likelihood entities

Page 38: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Why does it work?

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

ComputationalburdenCompositelikelihoods

⊲Why does itwork?

Asymptotics

Model Selection

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 32 / 38

� First, note that the “full likelihood” is a special case ofcomposite likelihood

� For i being fixed, log f(y ∈ Ai; θ) is a valid log-likelihood� Thus leading to an unbiased estimating equation

∇ log f(y ∈ Ai; θ) = 0

� Finally ∇ℓc(θ; y) =∑

i∈I wi∇ log f(y ∈ Ai; θ) = 0 isunbiased — as a linear combination of unbiased estimatingequations

� For max-stable processes, as only the bivariate densities areknown we will consider the pairwise likelihood

ℓp(y; θ) =n∑

k=1

i<j

log f(y(i)k , y

(j)k ; θ)

Page 39: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Asymptotics

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

ComputationalburdenCompositelikelihoods

Why does it work?

⊲ Asymptotics

Model Selection

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 33 / 38

� Instead of having

√n{H(θ)}1/2(θ̂ − θ)

d−→ N(0, Idp) , n→ +∞

where H(θ) = −E{∇2ℓ(θ;Y)}, (M1/2)TM1/2 =M� When we work under misspecification - which is the case

when using composite likelihoods, we now have

√n{H(θ)J(θ)−1H(θ)}1/2(θ̂−θ) d−→ N(0, Idp) , n→ +∞

where J(θ) = Var{∇ℓ(θ;Y)}� Note that if the 2nd Bartlett idendity holds then

H(θ)J(θ)−1H(θ) = H(θ),

i.e., usual MLE asymptotics.

Page 40: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Model Selection

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

ComputationalburdenCompositelikelihoods

Why does it work?

Asymptotics

⊲ Model Selection

V. Application

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 34 / 38

� Since we use composite likelihood, standard tools for modelselection cannot be used

� However IC and likelihood ratio tests can be used up to slightmodifications, i.e.,

TIC = −2ℓp(θ̂) + k tr{J(θ̂)−1H(θ̂)}, k = 2, logn

and

2{

ℓp(θ̂)− ℓp(ψ̂, γ0)}

d−→p

i=1

λiXi, n→ ∞,

where Xiiid∼ χ2

1.

Page 41: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

V. Application

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

⊲ V. Application

Advertising

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 35 / 38

Page 42: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 36 / 38

Table 1: Summary of the max-stable models fitted to the Swiss rainfall data. Standard errors arein parentheses. (∗) denotes that the parameter was held fixed. h− and h+ are respectively thedistances for which θ(x) is equal to 1.3 and 1.7. NoP is the number of parameters. ℓp is the pairwiselog-likelihood evaluated at its maximum. TIC is an information criterion for model selection undermisspecification — TIC = −2ℓp + 2tr{JH−1}.

SmithCorrelation σ11 σ12 σ22 h

−h+ NoP ℓp TIC

Isotropic 259 (45) 0 ( ∗) σ22 = σ11 12.4 33 8 −212455 427113Anisotropic 251 (46) 64 (13) 290 (50) 6.6–11.1 18–30 10 −212395 427020

Schlather

Correlation λ κ h−

h+ NoP ℓp TIC

Whittle 39.3 (21.4) 0.44 (0.12) 6.0 147 9 −210813 424200Cauchy 8.0 ( 2.2) 0.34 (0.16) 7.1 2370 9 −210874 424321Stable 34.8 (11.5) 0.95 (0.16) 6.3 146 9 −210815 424206Exponential 34.1 ( 9.0) —— 6.8 134 8 −210816 424167

Geometric Gaussian

Correlation σ2 λ κ h−

h+ NoP ℓp TIC

Whittle 11.05 (3.84) 700 ( ∗ ) 0.37 (0.03) 5.8 86 9 −210349 423232Cauchy 30.85 (8.14) 5.21 (0.66) 0.01 ( ∗ ) 6.7 192 9 −210412 423355Stable 15.04 (5.36) 1000 ( ∗ ) 0.76 (0.06) 5.9 86 9 −210349 423233Exponential 2.42 (0.93) 53.2 (18.4) —— 7.0 116 9 −210368 423271

Brown–ResnickCorrelation λ α h

−h+ NoP ℓp TIC

fBm 30 (9.23) 0.74 (0.07) 5.8 84 9 −210348 423231

Page 43: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Advertising

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 37 / 38

0 20 40 60 80 100

1.0

1.2

1.4

1.6

1.8

2.0

h

θ(h)

WhittleCauchy

Schlather

0 20 40 60 80 100

1.0

1.2

1.4

1.6

1.8

2.0

h

θ(h)

WhittleCauchy

Geometric

0 20 40 60 80 100

1.0

1.2

1.4

1.6

1.8

2.0

h

θ(h)

Brown−ResnickSmith

Brown−Resnick

Figure 7: Comparison between the F -madogram estimates for the fitting (greypoints) and the validation (black points) data sets and the estimated extremal coef-ficient functions for different max-stable models.

Page 44: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Advertising

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 37 / 38

Smith

Zurich

Schlather

Zurich

Geometric

Zurich

Brown−Resnick

Zurich

Precipitation (mm)

10

20

30

40

50

60

70

80

Figure 7: One realization of the best Smith, Schlather, geometric Gaussian andBrown–Resnick max-stable models, on a 50× 50 grid.

Page 45: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

Advertising

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 37 / 38

−1 0 1 2 3 4

−1

01

23

4

Model

Obs

erve

d

−1 0 1 2 3 4 5

−1

01

23

45

Model

Obs

erve

d

−1 0 1 2 3 4 5

−1

01

23

45

Model

Obs

erve

d

−2 −1 0 1 2 3

−2

−1

01

23

Model

Obs

erve

d

−1 0 1 2 3 4

−1

01

23

4

ModelO

bser

ved

−1 0 1 2 3 4 5

−1

01

23

45

Model

Obs

erve

d

−2 −1 0 1 2

−2

−1

01

2

Model

Obs

erve

d

−1 0 1 2 3 4

−1

01

23

4

Model

Obs

erve

d

0 1 2 3 4 5 6

01

23

45

6

Model

Obs

erve

d

Figure 7: Model checking for the best max-stable model (Brown–Resnick).

Page 46: Statistical Modelling of Spatial Extremesmistis.inrialpes.fr/docs/WorkshopCopulasExtremes/mathieu.pdf · Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble –

Advertising

I. EVT

II. Classicalapproaches

III. Max-stableprocesses

IV. Spatialdependence ofextremes

V. Simulation ofmax-stablerandom fields

VI. Pairwiselikelihood fitting

V. Application

⊲ Advertising

Statistical Modelling of Spatial Extremes — Mathieu Ribatet Grenoble – 38 / 38

Thank you for your attention!

Advertising:

� If you want to play with max-stable processes, have a look atthe SpatialExtremes R package

http://spatialextremes.r-forge.r-project.org/

� This talk was based on

Davison, A.C., Padoan, S.A. and Ribatet, M. (2012)Statistical Modelling of Spatial Extremes, Statistical Science,

7(2):161–186.