status of hplwr development - atoms for peace and … · t. schulenberg, karlsruhe institute of...

28
T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011 Status of HPLWR Development Thomas Schulenberg SCWR System Steering Committee Karlsruhe Institute of Technology Germany

Upload: vankhanh

Post on 26-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Status of HPLWR Development

Thomas Schulenberg SCWR System Steering Committee

Karlsruhe Institute of Technology

Germany

Page 2: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 2 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

What is a Supercritical Water Cooled Reactor?

• Produces superheated steam at supercritical pressure

• Once through steam cycle – No steam generators – No recirculation

pumps – No steam separators

or dryers • Follows the technology

trend of fossil fired power plants

HP IP LP

PH PH

Page 3: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 3 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Advantage: Higher Efficiency

1970

2010 1970

1990

2015

2010 HPLWR

?

Page 4: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 4 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Advantage: Lower Costs Comparison of Containment Size

- same scale -

AP1000 1117 MWe

BWR 1284 MWe

HPLWR 1000 MWe

83 m

49 m

25 m

Page 5: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 5 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Core Design Target Evaporator

Superheater 1

Superheater 2

Köhly et al., KIT (2009)

Thermal power: 2300 MWth

Coolant mass flow: 1179 kg/s Active core height: 4.20 m Thermal neutron spectrum Feedwater temp. 280°C Core outlet temp. 500°C Core inlet pressure 25 MPa Max. linear heat rate 39 kW/m Peak cladding temp. 630°C Target burn up 60 MWd/kgHM

280°C, 25 MPa

500°C

Page 6: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 6 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1000 2000 3000 4000 5000

Enthalpy [kJ/kg]

Tem

pera

ture

[°C

]

Hot channel

Core Design Strategy

Nominal enthalpy rise

inlet outlet

liquid like

steam like

A target hot channel factor

of 2 would exceed the

max. cladding temperature

by far.

Page 7: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 7 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1000 2000 3000 4000 5000

Enthalpy [kJ/kg]

Tem

pera

ture

[°C

]

liquid like

steam like

inlet outlet

Hot Channel Evaporator

SH1

Multiple heat up steps with intermediate

coolant mixing

eliminates hot streaks.

Core Design Strategy

Page 8: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 8 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Fuel Assembly Design Concept

Assembly box

Water box

40 wire wrapped fuel rods

Sealing ring

Spring

Control rod spider

Orifice at moderator water inlet

Head Piece of

Assembly Cluster

40 fuel rods d = 8 mm p = 9.44 mm Wire pitch 20 cm 73.5 mm

Page 9: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 9 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Foot Piece Design

Control rod

Outlets for moderator

water Piston rings for sealing

Fuel assembly

Coolant

Page 10: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 10 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Head Piece with Upper Mixing Chamber

Upper mixing chamber

Reflector

RPV

Page 11: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 11 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Core Arrangement

Evaporator: 52 fuel assembly clusters, upward flow

Superheater 1: 52 fuel assembly clusters, upward flow

Superheater 2: 52 fuel assembly clusters, upward flow

Page 12: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 12 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Equilibrium Cycle Analysis

Year 1 Year 2 Year 3 Year 4

Shuffling Scheme

Cluster type

Axial seg-ment

235U Enrichment [w/o] Gd2O3 content Basic Corne

r With Gd

4 Bottom 6.0 5.0 5.5 2.0 Top 7.0 6.0 6.5 2.0

6 Bottom 6.5 5.5 6.0 3.0 Top 7.0 6.0 6.5 3.0

Fresh fuel used primarily in the evaporator

Fresh fuel enrichment

C. Maraczy et al., KFKI 2010

Page 13: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 13 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Power Distribution and Radial Form Factors at End of Equilibrium Cycle

1.5 1.3 1.1 0.9 0.7 0.5 0.3 0

Radial Form Factor Radial Power Distribution

C. Maraczy et al., KFKI 2010

Page 14: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 14 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

… by Coolant Mass Flow Rate

2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2

… by Control Rods at BOC

Only one orifice per cluster! Control rods only in 5 of 9 assemblies!

Compensation of Power Peaks

kg/s C. Maraczy et al., KFKI 2010

Page 15: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 15 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Local Peaking Factors

Peaking factors of fuel rod power Coolant peaking factors

… due to power gradients

E.g. Superheater 2 Assembly

L. Monti, KIT 2009

Page 16: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 16 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Local Peaking Factors

1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Begin of Cycle End of Cycle

… due to control rods … due to Gd Burn-out Gd-poison

W.Bernnat, IKE 2010

Page 17: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 17 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Evaporator Outlets Inlets

Superheater 1

Quality of Coolant Mixing in the Upper Mixing Chamber

°C 389 388 387 386 385

Evaporator Outlet

Superheater Inlet

Coolant Temperature Distribution

Superheater 2 Outlets

Mixing optimized by additional walls

A. Wank, KIT 2009

Page 18: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 18 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Quality of Coolant Mixing in the Lower Mixing Chamber

Swirl nozzles causing a ring vortex

450

445

440

435

430

425

°C

Coolant Temperature Distribution

A. Wank, KIT 2009

Jets mixing feed water

SH2 inlets

SH1 outlets

Page 19: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 19 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

Operational Uncertainties

E.g. by bending of an assembly box

Peaking factors at 4.5 mm max. deflection

Limited with spacers to 0.5 mm max. T. Reiss,

2008

W.Bernnat, IKE 2010

Page 20: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 20 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Design Concept of the HPLWR Safety System

Pressure suppression

pool Active low

pressure coolant injection system

Residual heat removal

Steam line Feedwater line

Automatic depressurization

system

Passive containment condensers Containment

isolation valves

4 Upper pools

Page 21: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 21 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Analyses of Safety System Performance

Example: Automatic depressurization transient

APROS Analysis

M. Schlagenhaufer, 2010

Mass Flow

Pressure

Cladding Temperature

Page 22: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 22 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Drain tank and pump

Turbine building

Pre- heater

Start-up system

4 Feedwater pumps

2 Re-heaters IP Turbine Generator

Feedwater tank

HP Turbine LP Turbine

Design Concept of the HPLWR Conventional Island

Köhly et al. 2010

Page 23: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 23 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

HPLWR Power Plant Concept (2010)

• Net Power 1000 MW, Net Efficiency 43.5% • Designed and analyzed by AREVA NP, CEA, IKE, KFKI, KIT, NRG, PSI,

VTT

Page 24: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 24 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Key Technologies: Heat Transfer of Supercritical Water

Numerical simulation of heat transfer phenomena in tubes and annuli

Application of method to rod bundle geometries

Wal

l tem

pera

ture

[°C

]

Bulk enthalpy [kJ/kg]

CFD analyses Palko 2008

Tube data Shitsman

1963

Predictions by correlations

Chandra et al., NRG 2009

Wall temperatures in K

Page 25: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 25 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Key Technologies: Materials for Fuel Claddings

Test of available cladding alloys in Europe

after 600h at 650°C

0,1

1

10

100

1000

0 5 10 15 20 25

Cr(%)

Oxi

de T

hick

ness

( µm

)

P91P92ODS (FZK)ODS (EU)PM2000316NG1.4970BGA4800HIN 625

Very promising:

Modified stainless steel 310 developed and tested in Japan

Not applicable because of low

strength or high Ni content

VTT and JRC

Page 26: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 26 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

In-Pile Test of Cladding Materials up to 600°C @ 25 MPa Effect of radiolysis and water chemistry on corrosion

Measurement and Auxiliary Systems of the In-Pile Supercritical Water Loop at CVR, Řež

M. Ruzickova et al. CVR

Page 27: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 27 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Next: Test of a Small Scale Fuel Assembly under Supercritical Water

Conditions

• In-Pile Test in the LVR-15 Research Reactor in the Czech Republic

• Out-of-Pile Test in the SWAMUP Test Facility at SJTU Shanghai

Supported by a European-Chinese Collaborative Project

Page 28: Status of HPLWR Development - Atoms for Peace and … · T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG -LWR Meeting July 2011 . Slide 5 . Core Design Target . Evaporator

Slide 28 T. Schulenberg, Karlsruhe Institute of Technology, IAEA TWG-LWR Meeting July 2011

Status of R&D for the High Performance Light Water Reactor

• Conceptual design of the HPLWR reactor including safety systems, containment and steam cycle component completed.

• A large number of steady state and transient analyses of the core, the reactor, the safety systems, and plant control confirm the viability of the concept.

• Codes and methods for prediction of global and local phenomena are ready.

• Available cladding materials are applicable up to 550°C. Better materials will require more R&D

IAEA Advanced Reactors Information System (ARIS) Final Report: www.hplwr.eu