stellar winds - universität zu kölnszecsi/publications/talks/... · 2019. 3. 11. · basic ideas,...

13
Stellar winds Dorottya Szécsi PhD Meeting of Stellar students 12th November 2013

Upload: others

Post on 21-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

Stellar winds

Dorottya Szécsi

PhD Meeting of Stellar students12th November 2013

Page 2: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

Outline

• Basic ideas, M and v∞• Radiation field of stars with different Teff• Physical processes in the atmosphere• Line driven winds• The bi-stability jump• Vink et al. 2000• The famous P Cygni profile• WR stars, cool stars• What is actually implemented in BEC

Page 3: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

Basic ideas, M and v∞Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

Sun:• flows driven by gas pressure gradients (1958)

• Alfvén wave driven winds (1965)

• magnetic rotator theory (1967)

• radiation driven winds (1970)

Two main parameters to derive from wind theories (and spectra): M and v∞• kinetic energy that the wind deposits into the ISM per unit time (→momentum

and energy transfer):

dEkindt

=12Mv2∞ (1)

• velocity law: v(r) distribution of the velocity of the wind with radial distance –approximation:

v(r) ' v0 + (v∞ − v0)(1− R∗

r

)β(2)

v0: initial velocity at the photosphereβ: steepness of the law

(v∞ = v(r→∞))

Page 4: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

Radiation field of stars with different Teff

B(ν,Teff ) =2hc2

ν3

ehν

kBTeff − 1

(3)

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

0 2e+14 4e+14 6e+14 8e+14 1e+15

Sp

ectr

al ra

dia

nce

[e

rg/c

m2

]

Frequency [1/s]

(2*h/c**2)*(x**3)/(exp((h/k)*x/3000)-1)(2*h/c**2)*(x**3)/(exp((h/k)*x/4000)-1)(2*h/c**2)*(x**3)/(exp((h/k)*x/5000)-1)

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0 5e+14 1e+15 1.5e+15 2e+15 2.5e+15 3e+15 3.5e+15 4e+15

Sp

ectr

al ra

dia

nce

[e

rg/s

/Hz/c

m2

/sr]

Frequency [Hz]

300040005000

1000015000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 2e+15 4e+15 6e+15 8e+15 1e+16 1.2e+16 1.4e+16

Sp

ectr

al ra

dia

nce

[e

rg/s

/Hz/c

m2

/sr]

Frequency [Hz]

300040005000

10000150003500055000

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 2 4 6 8 10 12 14 16 18 20

Flu

x [

erg

/cm

2/s

/Hz/s

r]

Frequency [1015

Hz]

Teff = 55000 K log L/L⊙ = 6.1 M = 80.3 M⊙

FLyFW

= 7.6e+05 L⊙FLy

BB = 7.4e+05 L⊙

FHeIFW

= 3.2e+05 L⊙

FHeIBB

= 2.6e+05 L⊙

Lyman continuum

HeI co

ntin

uum

FASTWIND SPECTRUM

BLACK BODY

Page 5: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

Radiation field of stars with different Teff

B(ν,Teff ) =2hc2

ν3

ehν

kBTeff − 1

(3)

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

0 2e+14 4e+14 6e+14 8e+14 1e+15

Sp

ectr

al ra

dia

nce

[e

rg/c

m2

]

Frequency [1/s]

(2*h/c**2)*(x**3)/(exp((h/k)*x/3000)-1)(2*h/c**2)*(x**3)/(exp((h/k)*x/4000)-1)(2*h/c**2)*(x**3)/(exp((h/k)*x/5000)-1)

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0 5e+14 1e+15 1.5e+15 2e+15 2.5e+15 3e+15 3.5e+15 4e+15

Sp

ectr

al ra

dia

nce

[e

rg/s

/Hz/c

m2

/sr]

Frequency [Hz]

300040005000

1000015000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 2e+15 4e+15 6e+15 8e+15 1e+16 1.2e+16 1.4e+16

Sp

ectr

al ra

dia

nce

[e

rg/s

/Hz/c

m2

/sr]

Frequency [Hz]

300040005000

10000150003500055000

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 2 4 6 8 10 12 14 16 18 20

Flu

x [erg

/cm

2/s

/Hz/s

r]

Frequency [1015

Hz]

Teff = 55000 K log L/L⊙ = 6.1 M = 80.3 M⊙

FLyFW

= 7.6e+05 L⊙FLy

BB = 7.4e+05 L⊙

FHeIFW

= 3.2e+05 L⊙

FHeIBB

= 2.6e+05 L⊙

Lyman continuum

HeI co

ntin

uum

FASTWIND SPECTRUM

BLACK BODY

Page 6: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

Physical processes in the atmosphere

• line scattering (ground state: resonance scattering→ resonance lines)

• recombination→ emission (e.g. Hα emission)

• collision→ emission

• masering

Spectral lines: photospheric lines , wind lines (Doppler shifted, absorption+emission)

Resonance lines:• most sensitive indicators of mass loss from hot stars

• scattering:

• photon emitted by the photosphere is absorbed by an atom→• photo-excitation of a ground-state electron→• new photon is emitted, but in another direction

• observable, because: abundant elements; oscillator strength of atomic resonancetransitions is large

• examples: CIV, NV, SiIV (O-B stars), CII (B-A stars), MgII (B-M stars) – in UV!

Page 7: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

Line driven winds

Luminous hot stars: radiation is emitted mainly in UV+

many absorption lines here (= elements in the atmosphere with potential transitions)+

Doppler effect: otherwise all radiation would be absorbed in the inner atmosphere...but outer parts are moving away (redshifted) :)

Momentum and energy transfer from radiation to the gas:• a bit complicated to calculate all Doppler-shifted transfers of all wavelength...

• and gravity may play a role... and radiation field may be not perfect Black Body...

• and not every gas-component scatters – they must bring everything with them(Coulomb coupling) to reach a steady outflow of plasma...

Sobolev approximation:treats the ’line’ (=small frequency range of the scattering) as a δ-function and theoptical depth as a step-function.

CAK theory (Castor, Abbott, Klein):a realistic estimate of the radiative force due to lines: computation of the degree ofionization and excitation of large number of energy levels for many different elements

Page 8: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

The bi-stability jump

Effective escape velocity (at the stellar surface):

vesc =

√2(1− Γe)

GMR

(4)

The ratio of v∞/vesc depends on Teff :

(Markova & Puls 2008)

21 000 K . Teff :C, N, O highly ionized lines in theLymann continuum

10 000 K . Teff :metal lines in the Lymann andBalmer continuum

Teff . 10 000 K:continuum driven wind (?) dust,molecules (?)

Page 9: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

Vink et al. 2000

Model atmospheres of stars with different L∗, M∗, Teff , v∞/vesc• covering the OB-range of the HRD

• multiple scattering!

• method: total loss of radiative energy is linked to the gain of momentum of thematerial outflow

• model atmosphere→ radiative acceleration and M are calculated

• M as a function of the basic parameters are fitted (= "mass loss recipe"), e.g. for12 500 K < Teff < 22 500 K:

logM = −6.69 + 2.21logL∗

105 − 1.34logM∗30

+ 1.07logTeff

20000− 1.6log

v∞/vesc2.0

(5)

• Vink et al. 2001: metallicity dependence (+0.85logZ)

• behaviour around the bi-stability jumps

• the calculated M match the observations

Page 10: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

The famous P Cygni profile

violet shifted absorptionlines are observable evenat low column density;

also a symmetricemission component is

observable coming fromthe ’halo’ region of thestar (recombination)

M, v∞ and β canbe accurately

derived

Page 11: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

WR stars, cool stars

Hα line (λ=6562Å→ optical spectra of OB supergiants):• emission line, high M needed

• widely used to derive parameters

WR stars (Hamann et al. 1995)

• high density strong winds→ spectrum is dominated by emission lines

• emission comes from recombination ∼ ρ2 ⇒ emission comes from lower layers

• problem with radius determination: normally, R∗ = R(τ = 2/3) at thephotosphere (where the continuum comes from); but WR wind is optically thick!→ the ’surface’ of the star is somewhere in the wind

• measured radius is different in different wavelength bands (τ = τ(λ)) :)

• mass loss rate for hot stars: derive M from radio continuum measurements + v∞from P Cygnu profile in UV

Cool stars (Nieuwenhuizen & de Jager 1990)

• molecular emission lines, e.g. CO, SiO, OH

• additionally: dust!

• dusty winds emit radiation in IR and mm bands, but the energy distribution ofdust is typical

Page 12: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

What is actually implemented in BEC

• m.dat: MTU=0, MTU=20, MTU=51 etc.

• BEC/CODE/dev/maslos.f

• "N": Nieuwenhuizen & de Jager (1990)

• "V": Vink et al. (2000-2001)

• "T": interpolated

• "W": 0.1 × Hamann et al. (1995)

• "O": ad hoc expression by Sung-Chul(?), see Yoon et al. (2006)

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

77-350

77-400

0

"N"

"V"

"T"

"W"

"O"

Page 13: Stellar winds - Universität zu Kölnszecsi/Publications/Talks/... · 2019. 3. 11. · Basic ideas, M˙ and v 1 Stellar wind: continuous outflow; stars emit radiation AND particles=’wind’

Thank you for your

attention!