# stiffness coefficients for a flexural...

44
1 September 18, 2002 Ahmed Elgamal Stiffness Coefficients for a Flexural Element Ahmed Elgamal

Post on 05-Oct-2019

8 views

Category:

## Documents

TRANSCRIPT

1

September 18, 2002 Ahmed Elgamal

Stiffness Coefficients for a Flexural Element

Ahmed Elgamal

2

Ahmed ElgamalSeptember 18, 2002

Stiffness coefficients for a flexural element (neglecting axial deformations), Appendix 1, Ch. 1 Dynamics of Structures by Chopra.

u1u3u2 u4

4 degrees of freedom

Positive directionsk11k21

k31k41

3

September 18, 2002 Ahmed Elgamal

u1 1.0

L

To obtain k coefficients in 1st column of stiffness matrix, move u1 = 1, u2 = u3 = u4 = 0, and find forces and moments needed to maintain this shape.

4

September 18, 2002 Ahmed Elgamal

2L6EI

2L6EI

3L12EI

3L12EI

Σ M = 3L12EI - 3L

12EI= 0

Positive directionsk11k21

k31k41

Note that Σ Forces = 0Σ Moments = 0

3L12EIi.e. remember , and you

can find other forces & moments

These are (see structures textbook)

5

September 18, 2002 Ahmed Elgamal

⎥⎥⎥⎥

⎢⎢⎢⎢

=

44434241

34333231

24232221

14131211

kkkkkkkkkkkkkkkk

k

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−

=

6L6L12

12

LEIk 3

, where i is row numberand j is column number

kkij =

6

September 18, 2002 Ahmed Elgamal

u21.0

L

u2 = 1, u1 = u3 = u4 = 0

7

September 18, 2002 Ahmed Elgamal

2L6EI

2L6EI

3L12EI

3L12EI

u2 = 1

Positive directionsk12k22

k32k42⎥⎥⎥⎥

⎢⎢⎢⎢

=

6L6L1212-

LEIk 3

Σ M = 0, Σ F = 0

8

September 18, 2002 Ahmed Elgamal

u3 = 1, u1 = u2 = u4 = 0

u3 = 11.0

L

9

September 18, 2002 Ahmed Elgamal

2L6EI

2L6EI

L2EI

L4EI

Positive directionsk13k23

k33k43⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

=

L2EIL

4EIL6EIL6EI-

k2

2

Σ M = 0, Σ F = 0

10

September 18, 2002 Ahmed Elgamal

u4 = 1, u1 = u2 = u3 = 0

u4 = 1 1.0

L

11

September 18, 2002 Ahmed Elgamal

2L6EI

2L6EI

L2EI

L4EI

Positive directionsk14k24

k34k44⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

=

L4EIL

2EIL

6EIL6EI-

k2

2

Σ M = 0, Σ F = 0

12

September 18, 2002 Ahmed Elgamal

u1u2

ug

m

L

m is lumped at a point & does not contribute in rotation

Example: Water Tank

u2 above was u3 in the earlier section of these notes

13

September 18, 2002 Ahmed Elgamal

Example: Water Tank (continued)

u1u2

ug

m

L

k11k21

k12k22

g2

1

2

23

2

1 u0m

uu

L4EI

L6EI

L6EI

L12EI

uu

0m

&&&&

&&⎥⎦

⎤⎢⎣

⎡−=⎥

⎤⎢⎣

⎥⎥⎥

⎢⎢⎢

+⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

“Note Symmetry”Rotational(used to be u3)

14

September 18, 2002 Ahmed Elgamal

Example: Water Tank (continued)

Static Condensation:

Way to solve a smaller system of equations by eliminating degrees of freedom with zero mass.

e.g., in the above, the 2nd equation gives

0uL

4EIuL6EI

212 =+−

or

11122 u2L3u

4L6u

4EIL

L6EIu === -----*

15

September 18, 2002 Ahmed Elgamal

Example: Water Tank (continued)Substitute * into Equation 1

g1231 umu2L3

L6EI

L12EIum &&&& −=⎟

⎠⎞

⎜⎝⎛ −+

or,

g131 umu2L

18EI24EIum &&&& −=⎟⎠⎞

⎜⎝⎛ −

+

or,

g131 umuL

3EIum &&&& −=⎟⎠⎞

⎜⎝⎛+

Now, solve for u1 and u2 can be evaluated from Equation * above.

Static condensation can be applied to large MDOF systems of equations, the same way as shown above.

16

September 18, 2002 Ahmed Elgamal

Example: Water Tank (continued)

if EIb = 0

Ib

or of column

g131 umuL

3EIum &&&& −=⎟⎠⎞

⎜⎝⎛+

k of water tank as we were given earlier.

17

September 18, 2002 Ahmed Elgamal

Example 9.4 page 362-364

Example 9.8 page 368-369

Sample Exercises: 9.5, 9.8, & 9.9

bendingbeam

18

September 18, 2002 Ahmed Elgamal

(a)

(b)

Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2

Example

19

September 18, 2002 Ahmed Elgamal

(c)

(d)

Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2

20

September 18, 2002 Ahmed Elgamal

(e)

(f)

Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2

21

September 18, 2002 Ahmed Elgamal

(g)

(h)

Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2

22

September 18, 2002 Ahmed Elgamal

(i)

(j)

Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2

23

September 18, 2002 Ahmed Elgamal

,⎥⎥⎥⎥

⎢⎢⎢⎢

=

00

mm

M 2

1

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−

−−−

=

22

223

8L2L06L2L4L6L6L06L24126L6L1212

LEIk

Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2

therefore,

Sample Exercise: For the above cantilever system, write equation of motion and perform static condensation to obtain a 2 DOF system.

24

September 18, 2002 Ahmed Elgamal

m

L

bendingbeam

3L3EIk = , m

k=ω

beam with EIbeam = 0

⎟⎠⎞

⎜⎝⎛= 3L

3EI2k⇒

Column Stiffness (lateral vibration)

25

September 18, 2002 Ahmed Elgamal

u

3L12EI

k =L ⎟⎠⎞

⎜⎝⎛= 3L12EI2k

Case ofEIb = ∞

h1 h2

(rigid roof)

32

2231

11

hI12E

hI12E

k +=

26

September 18, 2002 Ahmed Elgamal

h

L = 2h

3c

7h96EIk = if cb EIEI =

beam column

, & EEE bc ==412ρ112ρ

h24EIk 3

c

++

=c

b

4IIρ =

(See example 1.1 in Dynamics of Structures by Chopra)

27

September 18, 2002 Ahmed Elgamal

u1

θ1θ2

fs

call it u2

call it u3

Obtained by “static condensation” of 3x3 system

⎥⎥⎥

⎢⎢⎢

⎡=

⎥⎥⎥

⎢⎢⎢

⎥⎥⎥

⎢⎢⎢

00f

uuu S

3

2

1

force

Use to represent u2 and u3 in terms of u1 & plug back into

Technique can also be used for large systems of equationsand get fs = ku1

(See example 1.1 in Dynamics of Structures by Chopra)

28

September 18, 2002 Ahmed Elgamal

u1

u2u3

IcIc

Ib

Neglect axial deformationDraft Example

29

September 18, 2002 Ahmed Elgamal

L

L

2c

L6EI

( ) ⎟⎠⎞

⎜⎝⎛

3c

L12EI2

2c

L6EI

u1 = 1

u2 = u3 = 0

30

September 18, 2002 Ahmed Elgamal

u2 = 1

u1 = u3 = 0

2c

L6EI

L4EIc

L4EIb

L2EIb

31

September 18, 2002 Ahmed Elgamal

u3 = 1

u1 = u2 = 0

2c

L6EI

L4EIc

L4EIb

L2EIb

( )( ) ⎥

⎥⎥

⎢⎢⎢

++=

2cb

2bc

2b

2cbc

ccc

3

LII4L2IL6IL2ILII4L6IL6IL6I24I

LEk

32

September 18, 2002 Ahmed Elgamal

If frame is subjected to lateral force fs

Then (for simplicity, let Ic = Ib = I)

⎥⎥⎥

⎢⎢⎢

⎡=

⎥⎥⎥

⎢⎢⎢

⎥⎥⎥

⎢⎢⎢

00f

uuu

8L2L6L2L8L6L6L6L24

LEI s

3

2

1

22

223

33

September 18, 2002 Ahmed Elgamal

Static condensation:

From 2nd and 3rd equations,

1

1

22

22

3

2 u6L6L

8L2L2L8L

uu

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−=⎥

⎤⎢⎣

⎡−

1

1

22

22

44 u6L6L

8L2L-2L-8L

4L64L1

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−−

=−

1u11

10L6

⎥⎦

⎤⎢⎣

⎡−=

⎥⎦

⎤⎢⎣

⎡−

−−

=⎥⎦

⎤⎢⎣

⎡−

acbd

dcba 1

Note matrix inverse:

34

September 18, 2002 Ahmed Elgamal

Substitute into 1st equation

13s13 u10L

168EIfu1036

103624

LEI

==⎥⎦⎤

⎢⎣⎡ −−

or

310L168EIk = (check this result)

35

September 18, 2002 Ahmed Elgamal

2L

L

Draft Example 2

u1

u2u3

36

September 18, 2002 Ahmed Elgamal

2c

L6EI

( ) ⎟⎠⎞

⎜⎝⎛

3c

L12EI2

2c

L6EI

u1 = 1

u2 = u3 = 0

37

September 18, 2002 Ahmed Elgamal

2c

L6EI

L4EIc

2L4EIb

2L2EIb

u2 = 1

u1 = u3 = 0

38

September 18, 2002 Ahmed Elgamal

2c

L6EI

L4EIc

2L4EIb

2L2EIb

u3 = 1

u1 = u2 = 0

39

September 18, 2002 Ahmed Elgamal

⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢

⎟⎠⎞

⎜⎝⎛ +

⎟⎠⎞

⎜⎝⎛ +=

2c

b2bc

2b

2c

bc

ccc

3

LI2I4LIL6I

LILI2I4L6I

L6IL6I24I

LEk

⎥⎥⎥

⎢⎢⎢

⎡=

⎥⎥⎥

⎢⎢⎢

⎥⎥⎥

⎢⎢⎢

00f

uuu

6LL6LL6L6L6L6L24

LEI s

3

2

1

22

223

For simplicity, let Ib = Ic

40

September 18, 2002 Ahmed Elgamal

Static condensation:

1

1

22

22

3

2 u6L6L

6LLL6L

uu

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−=⎥

⎤⎢⎣

⎡−

1

1

22

22

44 u6L6L

6LL-L-6L

L36L1

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−

−=

11 u11

7L6u

11

35L03

⎥⎦

⎤⎢⎣

⎡−=⎥

⎤⎢⎣

⎡−=

41

September 18, 2002 Ahmed Elgamal

Substitute in 1st Equation

s13 fu7

367

3624LEI

=⎥⎦⎤

⎢⎣⎡ −−

13s uLEI

796f =

37L96EIk =

or,

or, Same as in Example 1.1, Dynamics of Structures by Chopra

42

September 18, 2002 Ahmed Elgamal

Sample Exercise

1.1 Derive stiffness matrix fork

EIc2

EIc1

EIb

h2

h1

L

1.2 For the special case of Ic1 = Ic2 = Ib, h1 = h2 = h and L = 2h,find lateral stiffness k of the frame.

1)

43

September 18, 2002 Ahmed Elgamal

Sample Exercise

2) Derive equation of motion for:

m

2m

EIb

EIb

EIc

EIcEIc

EIch

h

2h

use 600 lb/ft

Flexural rigidity of beams and columns

E = 29,000 ksi, Columns W8x24 sections

with Ic = 82.4 in4

h = 12 ftIb = ½ Ic

44

September 18, 2002 Ahmed Elgamal

Sample Exercise (Optional)

3) Derive lateral k of system (need to use computer to invert3x3 matrix)

Ib Ib

IcIcIch = 12 ft

24 ft 24 ft

E = 29,000 ksi,

W8x24 sectionsIc = 82.4 in4

Ib = ½ Ic