strain localisation modes in the mechanics of...

74
Strain localisation modes in the mechanics of materials Samuel Forest Centre des Mat´ eriaux/UMR 7633 Ecole des Mines de Paris/CNRS BP 87, 91003 Evry, France [email protected]

Upload: others

Post on 02-Nov-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Strain localisation modes in the mechanics ofmaterials

    Samuel Forest

    Centre des Matériaux/UMR 7633Ecole des Mines de Paris/CNRS

    BP 87, 91003 Evry, [email protected]

  • Outline

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Loi de comportement élastoplastique

    • Elasticity ε̇∼ = ε̇∼e + ε̇∼

    p, σ∼ = E∼∼: ε∼

    e

    • Yield function g(σ∼ , α), N∼ =∂g

    ∂σ∼

    • Plastic flow ε̇∼p = λ̇ P∼ , P∼ 6= N∼

    • Hardening modulus α̇ = λ̇h, H = −∂g∂α

    .h

    • Tangent operator (non symmetrical if non associative) σ̇∼ = L∼∼ : ε̇∼

    L∼∼= E∼∼

    si g < 0 ou (g = 0 et N∼ : E∼∼: ε̇∼ ≤ 0)

    L∼∼= D∼∼

    si g = 0 et N∼ : E∼∼: ε̇∼ > 0

    with

    D∼∼= E∼∼

    −(E∼∼

    : P∼)⊗

    (N∼ : E∼∼)

    H + N∼ : E∼∼: P∼

    Bifurcation modes in elastoplastic solids 5/74

  • Rate form of the boundary value problem

    ∂Ω2

    ∂Ω1

    V

    ε̇∼ =12(∇v +∇

    tv )

    div σ̇∼ + ḟ = 0, σ̇∼ = L∼∼: ε̇∼

    σ̇∼ . n = Ṫ in ∂Ω1

    v = V in ∂Ω2

    • Linear comparison solid: take L∼∼ = D∼∼• Variational formulation (virtual power theorem)∫

    Ωσ̇∼ : ε̇∼

    ? dV =

    ∫Ω

    ḟ .v ? dV +

    ∫∂Ω1

    Ṫ .v ? dS+

    ∫∂Ω2

    (σ̇∼ .n ).V dS

    for any field v ? such that v ? = V in ∂Ω2

    Bifurcation modes in elastoplastic solids 6/74

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Conditions of uniqueness of the solution

    Let (σ̇∼A, ε̇∼A) and (σ̇∼B , ε̇∼B) be two solutions on Ω at time t∫Ω

    σ̇∼A : ε̇∼A dV =

    ∫Ω

    ḟ .v A dV +

    ∫∂Ω1

    Ṫ .v A dS +

    ∫∂Ω2

    (σ̇∼A.n ).V dS

    Bifurcation modes in elastoplastic solids 8/74

  • Conditions of uniqueness of the solution

    Let (σ̇∼A, ε̇∼A) and (σ̇∼B , ε̇∼B) be two solutions on Ω at time t∫Ω

    σ̇∼A : ε̇∼A dV =

    ∫Ω

    ḟ .v A dV +

    ∫∂Ω1

    Ṫ .v A dS +

    ∫∂Ω2

    (σ̇∼A.n ).V dS∫Ω

    σ̇∼A : ε̇∼B dV =

    ∫Ω

    ḟ .v B dV +

    ∫∂Ω1

    Ṫ .v B dS +

    ∫∂Ω2

    (σ̇∼A.n ).V dS

    Bifurcation modes in elastoplastic solids 9/74

  • Conditions of uniqueness of the solution

    Let (σ̇∼A, ε̇∼A) and (σ̇∼B , ε̇∼B) be two solutions on Ω at time t∫Ω

    σ̇∼A : ε̇∼A dV =

    ∫Ω

    ḟ .v A dV +

    ∫∂Ω1

    Ṫ .v A dS +

    ∫∂Ω2

    (σ̇∼A.n ).V dS

    −∫

    Ωσ̇∼A : ε̇∼B dV =

    ∫Ω

    ḟ .v B dV+

    ∫∂Ω1

    Ṫ .v B dS+

    ∫∂Ω2

    (σ̇∼A.n ).V dS

    ∫Ω

    σ̇∼A : ∆ε̇∼ dV =

    ∫Ω

    ḟ .∆v dV +

    ∫∂Ω1

    Ṫ .∆v dS

    Bifurcation modes in elastoplastic solids 10/74

  • Conditions of uniqueness of the solution

    Let (σ̇∼A, ε̇∼A) and (σ̇∼B , ε̇∼B) be two solutions on Ω at time t∫Ω

    σ̇∼A : ∆ε̇∼ dV =

    ∫Ω

    ḟ .∆v dV +

    ∫∂Ω1

    Ṫ .∆v dS

    −∫

    Ωσ̇∼B : ∆ε̇∼ dV =

    ∫Ω

    ḟ .∆v dV +

    ∫∂Ω1

    Ṫ .∆v dS

    ∫Ω

    ∆σ̇∼ : ∆ε̇∼ dV = 0

    Bifurcation modes in elastoplastic solids 11/74

  • Conditions of uniqueness of the solution

    Let (σ̇∼A, ε̇∼A) and (σ̇∼B , ε̇∼B) be two solutions on Ω at time t∫Ω

    ∆σ̇∼ : ∆ε̇∼ dV = 0

    If the solutions (σ∼A, ε∼A) and (σ∼B , ε∼B) have coincided until time t,one can assume

    σ̇∼A = D∼∼: ε̇∼A, σ̇∼B = D∼∼

    : ε̇∼B

    A necessary condition for the existence of several solutions then is∫Ω

    ∆ε̇∼ : D∼∼: ∆ε̇∼ dV = 0

    Bifurcation modes in elastoplastic solids 12/74

  • A sufficient condition for uniquenessA sufficient condition ensuring the uniqueness of the solution(∆ε̇∼ = 0) is the positivity of second order power :

    ε̇∼ : D∼∼: ε̇∼ > 0, ∀ε̇∼ 6= 0

    ε̇∼ : D∼∼s : ε̇∼ > 0, avec D∼∼

    sijkl =

    1

    2(Dijkl + Dklij)

    Hill’s condition for uniqueness: D∼∼s positive definite (Hill, 1958)

    Uniqueness may be lost (possible bifurcation) when

    detD∼∼s = 0

    which gives Hu =1

    2(√

    N∼ : E∼∼: N∼

    √P∼ : E∼∼

    : P∼ −N∼ : E∼∼ : P∼)H > Hu: uniqueness ensured associative plasticity: Hu = 0softening!

    uniaxial + Large Strain= Considère criterion...

    Bifurcation modes in elastoplastic solids 13/74

  • Example : von Mises plasticity

    • Von Mises plasticity:

    g(σ∼ ,R) = J2(σ∼)− R, J2(σ∼) =√

    3

    2σ∼

    dev : σ∼dev

    • Associative plasticity: N∼ = P∼ =3

    2

    σ∼dev

    J2• The tangent operator can be computed easily!

    N∼ : E∼∼: N∼ = N∼ : (2µN∼ ) = 3µ

    D∼∼= E∼∼

    − 3µ2

    H/3 + µ

    σ∼dev ⊗ σ∼

    dev

    J22• Principal or eigen–tensors of D∼∼ = D∼∼

    s : one tries

    d∼1 =σ∼

    dev

    J2, D∼∼

    : d∼1 =2µH

    H + 3µd∼1

    • Principal or eigen–values: k, 2µ, 2µHH + 3µ

    When H = 0 (perfect plasticity, begining of a softening regime)Bifurcation modes in elastoplastic solids 14/74

  • Example : necking mode

    Tensile test,

    [d∼1] =

    −1 0 00 2 00 0 −1

    possible perturbations when H =0...

    σ̇∼A = D∼∼: ε̇∼A = D∼∼

    : (ε̇∼A + λd∼1)

    Bifurcation modes in elastoplastic solids 15/74

  • Example : necking mode

    Tensile test,

    [d∼1] =

    −1 0 00 2 00 0 −1

    possible perturbations when H =0...

    σ̇∼A = D∼∼: ε̇∼A = D∼∼

    : (ε̇∼A + λd∼1)

    Bifurcation modes in elastoplastic solids 16/74

  • Example : necking mode

    Tensile test,

    [d∼1] =

    −1 0 00 2 00 0 −1

    possible perturbations when H =0...

    σ̇∼A = D∼∼: ε̇∼A = D∼∼

    : (ε̇∼A + λd∼1)

    Bifurcation modes in elastoplastic solids 17/74

  • Example : necking mode

    0

    20

    40

    60

    80

    100

    120

    0 0.04 0.08 0.12 0.16

    F/S

    δ/LBifurcation modes in elastoplastic solids 18/74

  • Example : necking mode

    0

    20

    40

    60

    80

    100

    120

    0 0.04 0.08 0.12 0.16

    F/S

    δ/LBifurcation modes in elastoplastic solids 19/74

  • Example : necking mode

    0

    20

    40

    60

    80

    100

    120

    0 0.04 0.08 0.12 0.16

    F/S

    δ/LBifurcation modes in elastoplastic solids 20/74

  • Example : necking mode

    0

    20

    40

    60

    80

    100

    120

    0 0.04 0.08 0.12 0.16

    F/S

    δ/LBifurcation modes in elastoplastic solids 21/74

  • Example : necking mode

    0

    20

    40

    60

    80

    100

    120

    0 0.04 0.08 0.12 0.16

    F/S

    δ/LBifurcation modes in elastoplastic solids 22/74

  • Example : necking mode

    0

    20

    40

    60

    80

    100

    120

    0 0.04 0.08 0.12 0.16

    F/S

    δ/LBifurcation modes in elastoplastic solids 23/74

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Compatible discontinuous bifurcation modes :Hadamard jump conditions

    Strain localization is the precursor offracture.Continuity of displacement is assumedthrough a surface S

    [[u ]] = [[u̇ ]] = 0

    but discontinuities of some componentsof its gradient ∇u are considered

    1

    2S

    n

    Compatible bifurcation modes 26/74

  • Compatible discontinuous bifurcation modes :Hadamard jump conditions

    Let us work in the frame attached to thesurface of discontinuity:

    [[u1]] = 0 =⇒ [[u1,1]] = 0

    [[u2]] = 0 =⇒ [[u2,1]] = 0

    but, in general, ∃g such that

    [[u1,2]] = g1 6= 0, [[u2,2]] = g2 6= 0

    1

    2S

    n

    Compatible bifurcation modes 27/74

  • Compatible discontinuous bifurcation modes :Hadamard jump conditions

    Let us work in the frame attached to thesurface of discontinuity:

    [[u1]] = 0 =⇒ [[u1,1]] = 0

    [[u2]] = 0 =⇒ [[u2,1]] = 0

    but, in general,

    [[u1,2]] = g1 6= 0, [[u2,2]] = g2 6= 0

    [[∇u ]] =[

    0 g10 g2

    ]=

    [g1g2

    ]⊗

    [01

    ][[∇u ]] = g ⊗ n

    1

    2S

    n

    Compatible bifurcation modes 28/74

  • Compatible discontinuous bifurcation modes :Hadamard jump conditions

    [[∇u̇ ]] = g ⊗ n

    [[∇ε̇∼]] =1

    2(g ⊗ n + n ⊗ g )

    in general g .n 6= 0Criterion for the occurence of compatiblebifurcation modes:

    ∆ε̇∼ : D∼∼: ∆ε̇∼ = (g⊗n ) : D∼∼ : (g⊗n ) = 0

    The acoustic tensor Q∼

    is introduced:

    g .Q∼.g = g .Q

    ∼sym.g = 0, Q

    ∼= n .D∼∼

    .n

    =⇒ detQ∼

    sym = 0

    1

    2S

    n

    Compatible bifurcation modes 29/74

  • Compatible discontinuous bifurcation modes :Hadamard jump conditions

    One can imagine two parallel surfaces ofdiscontinuity: it is a strain localizationband or shear band in a wide sense. In-deed, the band does generally not un-dergo pure shear...

    • g .n = 0: shear band• g ‖ n : opening mode

    1

    2S 1S 2

    Compatible bifurcation modes 30/74

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Example: compatible strain localization mode underplane stress conditions

    Consider the mode

    [d∼1] =

    24 −1 0 00 2 00 0 −1

    35but write it with respect to the frame (m , n )

    [d∼1] =

    24 2 sin2 θ − cos2 θ 3 cos θ sin θ 03 cos θ sin θ 2 cos2 θ − sin2 θ 00 0 −1

    35to be identified with 1

    2(g ⊗ n + n ⊗ g ) =

    »0 g1/2

    g1/2 g2

    =⇒ tan2 θ = 12, ou sin2 θ =

    1

    3

    θ = 35, 26◦, 90◦ − θ = 54.74◦

    mn

    1

    2

    θ

    Compatible bifurcation modes 32/74

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Mandel–Rice criterion

    Add the equilibrium contitions at the interface whichwere not taken into account until now:

    [[σ̇∼]].n = 0, [[D∼∼: ε̇∼]].n = 0

    If the solutions on each side of S are identical untiltime t, one has [[D∼∼

    ]] = 0

    D∼∼: [[ε̇∼]].n = 0

    Let us consider the compatible modes:

    D∼∼: (g ⊗ n ).n = 0

    Dijklgknlnj = njDjiklnlgk = 0

    Q∼

    .g = 0

    This is the acoustic tensor: Q∼

    = n .D∼∼.n

    1

    2S

    n

    Mandel–Rice criterion:

    detQ∼

    (n ) = 0

    stable propagation of perturbations [Mandel, 1966] [Rice, 1976]

    Stability / ellipticity of the boundary value problem 35/74

  • Vocabulary

    • Plastic waves [Mandel, 1962]the previous situation corresponds to stationary plastic waves

    • Stability: analysis if the growth of perturbations• Loss of ellipticity of the boundary value problem:

    when the incremental constitutive equations are inserted inthe equations of equilibrium (static case), one gets a systemof partial differential equations of order 2 in u̇i . The system issaid to be elliptic when the differential operator has definitepositive eigen–values. It can be shown that the problem thenis well–posed (meaning that the solution continuouslydepends on the data).

    Stability / ellipticity of the boundary value problem 36/74

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Orientation of strain localization bandsThe resolution of the equation det n .D∼∼

    .n = 0 provides us with the plastic

    modulus H(n ) for which a surface of discontinuity of normal n can arise. Todetermine the first possible band, one must find Hcr and n such that

    Hcr = max‖n ‖=1

    H(n )

    In the case of isotropique elasticity and incompressible associative plasticity,

    one finds

    dimension critical modulus orientationof the problem Hcr n

    plane 0 n21 =P1

    P1−P2stress n22 = 1− n213D −EP2k n2i =

    Pi+νPkPi−Pj

    nk = 0, n2j = 1− n2i

    plane 0 n21 = n22 =

    12

    strain

    The Pi are the eigenvalues of the plastic flow direction P∼ (ε̇∼p = λ̇P∼).

    Stability / ellipticity of the boundary value problem 38/74

  • Why is the 3D case less restrictive than the 2Dcase?

    Tensile test, von Mises plasticity: Hcrplane stress = 0, Hcr3D = − E4

    Answer: the modes found under plane stress are incompatible with respect to

    the third direction...

    mn

    1

    2

    θ

    3

    2

    1

    2 3

    Stability / ellipticity of the boundary value problem 39/74

  • Example: the elliptic criterion

    • Plasticity criterion

    g(σ∼) = σ? − R, σ2? =

    3

    2Cσ∼

    dev : σ∼dev + F (trace σ∼)

    2

    • Normality rule

    N∼ =∂g

    ∂σ∼=

    1

    σ?

    (3

    2Cσ∼

    dev + F (trace σ∼)1∼

    )• Tensile test

    [P] =signe σ2√

    C + F

    F −C2 0 0

    0 C + F 0

    0 0 F − C2

    Stability / ellipticity of the boundary value problem 40/74

  • Example: the elliptic criterionBifurcation analysis under plane stress conditions:

    Hcr = 0, n21 =1

    3

    (1− 2F

    C

    )

    F = 0 von Mises

    θ = 35.26◦ withrespect to thehorizontal axis

    F =C

    4

    θ = 25◦ withrespect to thehorizontal axis

    F =C

    2

    θ = 0◦ with respectto the horizontal

    axisStability / ellipticity of the boundary value problem 41/74

  • Example: the elliptic criterionBifurcation analysis under plane stress conditions:

    Hcr = 0, n21 =1

    3

    (1− 2F

    C

    )

    F = 0 von Mises

    θ = 35.26◦ withrespect to thehorizontal axis

    F =C

    4

    θ = 25◦ withrespect to thehorizontal axis

    F =C

    2

    θ = 0◦ with respectto the horizontal

    axisStability / ellipticity of the boundary value problem 42/74

  • Example: the elliptic criterionBifurcation analysis under plane stress conditions:

    Hcr = 0, n21 =1

    3

    (1− 2F

    C

    )

    F = 0 von Mises

    θ = 35.26◦ withrespect to thehorizontal axis

    F =C

    4

    θ = 25◦ withrespect to thehorizontal axis

    F =C

    2

    θ = 0◦ with respectto the horizontal

    axisStability / ellipticity of the boundary value problem 43/74

  • Example: compression of an aluminium foam

    Stability / ellipticity of the boundary value problem 44/74

  • Example: compression of an aluminium foam

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 0.1 0.2 0.3 0.4 0.5 0.6

    stre

    ss (

    MP

    a)

    strain

    experimentsimulation

    Stability / ellipticity of the boundary value problem 45/74

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Strain localisation criteria

    • An open question!• In 2D, Rice’s

    criterion isplausible (test itin compressibleand nonassociativeplasticity!)

    • In 3D, thecriterion foroccurrence ofcompatible modesis more plausible(strong ellipticity;Rice’s criterion istoo optimistic!)

    HH

    cr

    Q �� g

    0de

    tQ ��

    0

    Hse

    g

    � Q �� g

    0de

    tQ �

    s

    0

    Hu

    ε �:D � �

    :ε ��

    0

    detD � �

    s

    0

    ellip

    tici

    ty

    stro

    ngel

    lipti

    city

    uniq

    uene

    ss

    Summary of strain localization criteria 47/74

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Spurious / pathological mesh–dependence of finiteelement results

    0 0.0072 0.0144 0.0216 0.0288 0.0360

    40

    80

    120

    160

    200

    déplacement (mm)

    charge (N)

    maillage 10x20

    maillage 20x40

    maillage 30x60

    Regularization methods 50/74

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Mécanique des milieux continus généralisés

    Principe de l’action locale: seule compte l’histoire d’un voisinagearbitrairement petit de la particule X

    [Truesdell, Toupin, 1960] [Truesdell, Noll, 1965]

    Mili

    eu

    Con

    tinu

    acti

    on

    loca

    le

    acti

    on

    non

    loca

    leth

    éori

    eno

    nlo

    cale

    :fo

    rmul

    atio

    nin

    tégr

    ale

    [Eri

    ngen

    ,197

    2]

    Regularization methods 52/74

  • Mécanique des milieux continus généralisés

    Principe de l’action locale: seule compte l’histoire d’un voisinagearbitrairement petit de la particule X

    [Truesdell, Toupin, 1960] [Truesdell, Noll, 1965]

    Mili

    eu

    Con

    tinu

    acti

    on

    loca

    le

    acti

    on

    non

    loca

    leth

    éori

    eno

    nlo

    cale

    :fo

    rmul

    atio

    nin

    tégr

    ale

    [Eri

    ngen

    ,197

    2]

    mili

    eum

    atér

    ielle

    men

    tsi

    mpl

    e:F �

    mili

    euno

    nm

    atér

    ielle

    men

    tsi

    mpl

    e

    mili

    eude

    Cau

    chy

    (182

    3)(c

    lass

    ique

    /Bol

    tzm

    ann)

    Regularization methods 53/74

  • Mécanique des milieux continus généralisés

    Principe de l’action locale: seule compte l’histoire d’un voisinagearbitrairement petit de la particule X

    [Truesdell, Toupin, 1960] [Truesdell, Noll, 1965]

    Mili

    eu

    Con

    tinu

    acti

    on

    loca

    le

    acti

    on

    non

    loca

    leth

    éori

    eno

    nlo

    cale

    :fo

    rmul

    atio

    nin

    tégr

    ale

    [Eri

    ngen

    ,197

    2]

    mili

    eum

    atér

    ielle

    men

    tsi

    mpl

    e:F �

    mili

    euno

    nm

    atér

    ielle

    men

    tsi

    mpl

    e

    mili

    eude

    Cau

    chy

    (182

    3)(c

    lass

    ique

    /Bol

    tzm

    ann)

    mili

    eud’

    ordr

    en

    mili

    eude

    degr

    én

    Cos

    sera

    t(1

    909)

    u

    �R �

    mic

    rom

    orph

    e[E

    ring

    en,M

    indl

    in19

    64]

    u

    �χ �

    seco

    ndgr

    adie

    nt[M

    indl

    in,1

    965]

    F ��F �

    grad

    ient

    deva

    riab

    lein

    tern

    e[M

    augi

    n,19

    90]

    u�α

    Regularization methods 54/74

  • Le milieu micromorphe: cinématique

    • Degrés de liberté et raffinement de la théorie

    DOF := {u , χ∼}

    χ∼

    = χ∼

    s + χ∼

    a

    MODEL := {u ⊗∇, χ∼⊗∇}

    Cas particuliers:

    ? Milieu de Cosserat χ∼≡ χ

    a = −�∼.Φ

    ? Milieu microstrain χ∼≡ χ

    s

    ? Théorie du second gradient χ∼≡ u ⊗∇

    • Mesures de déformation

    STRAIN := {ε∼, e∼ := u ⊗∇− χ∼ , K∼ := χ∼ ⊗∇}

    Regularization methods 55/74

  • Le milieu micromorphe: statique

    • Méthode des puissances virtuelles [Germain, 1973]

    P(i) =∫D

    p(i) dV , P(c) =∫

    ∂Dp(c) dS

    p(i) = σ∼ : ε̇∼ + s∼ : ė∼ + S∼...K̇∼

    p(c) = t .u̇ + M∼ : χ̇∼

    • Equations de champ? Quantité de mouvement (σ∼ + s∼).∇ = 0? Moment cinétique généralisé S

    ∼.∇ + s∼= 0

    • Conditions aux limites

    t = (σ∼ + s∼).n , M∼ = S∼.n

    Regularization methods 56/74

  • Le milieu micromorphe: thermodynamique

    • Equation locale de l’énergie

    ρ�̇ = p(i) − q .∇ + r

    • Second principe et inégalité de Clausius–Duhem

    ρη̇ +(q

    T

    ).∇ − r

    T≥ 0

    ρ (T η̇ − �̇) + p(i) −q

    T.(∇T ) ≥ 0

    • Variables d’état et énergie libre de Helmholtz

    ε∼ = ε∼e + ε∼

    p, e∼ = e∼e + e∼

    p, K∼

    = K∼

    e + K∼

    p

    Z := {T , ε∼e , e∼

    e , K∼

    e , α}

    Ψ = �− Tη

    Regularization methods 57/74

  • Le milieu micromorphe: potentiel de dissipation

    • Exploitation du second principe à la Coleman–Noll? Lois d’état

    η = −∂Ψ∂T

    , σ∼ = ρ∂Ψ

    ∂ε∼e, s∼= ρ

    ∂Ψ

    ∂e∼e, S

    ∼= ρ

    ∂Ψ

    ∂K∼

    e , R = ρ∂Ψ

    ∂α

    ? Lois d’évolutiondissipation résiduelle

    D = σ∼ : ε̇∼p + s∼ : ė∼

    p + S∼

    ...K̇∼

    p− Rα̇

    potentiel de dissipation

    Ω(σ∼ , s∼,S∼,R)

    ε̇∼p =

    ∂Ω

    ∂σ∼, ė∼

    p =∂Ω

    ∂s∼, K̇

    p=

    ∂Ω

    ∂S∼

    , α̇ = −∂Ω∂R

    Regularization methods 58/74

  • Le modèle microstrain

    Degrés de liberté (u ,χ∼

    s)Mesures de déformation :

    (ε∼, ε∼− χ∼s ,χ

    ∼s ⊗∇)

    σ∼ = C∼∼: (ε∼− ε∼

    p)

    s∼ = b(ε∼− χ∼s)

    S∼

    = Aχ∼

    s ⊗∇

    div (σ∼ + s∼) = 0

    div S∼

    + s∼ = 0

    Sijk,k + sij = 0

    Aχsij ,kk +b(εij−χsij) = 0

    εij = χsij − l2∆χsij

    Lien avec “implicitgradient–enhanced

    elastoplasticity models”[Engelen et al., 2003]

    Conditions aux limites :(ui , χ

    sij) or

    (σij + sij)nj ,Sijknk

    Regularization methods 59/74

  • Programmation en éléments finis (1)

    Exemple: milieu micromorphe 2D

    [DOF] = [U1 U2 X11 X22 X12 X21]T

    [STRAIN] = [ε11 ε22 ε33 ε12 e11 e22 e33 e12 e21

    K111 K112 K121 K122 K211 K212 K221 K222]T

    [STRAIN] = [B] [DOF]

    [FLUX] = [σ11 σ22 σ33 σ12 s11 s22 s33 s12 s21

    S111 S112 S121 S122 S211 S212 S221 S222]T

    Regularization methods 60/74

  • Programmation en éléments finis (2)

    [B] =

    ∂x1 0 0 0 0 00 ∂x2 0 0 0 00 0 0 0 0 0

    12∂x2

    12∂x1 0 0 0 0

    ∂x1 0 −1 0 0 00 ∂x2 0 −1 0 00 0 0 0 0 0

    ∂x2 0 0 0 −1 00 ∂x1 0 0 0 −10 0 ∂x1 0 0 00 0 ∂x2 0 0 00 0 0 0 ∂x1 00 0 0 0 ∂x2 00 0 0 ∂x1 0 00 0 0 ∂x2 0 0

    S111S112S121S122S211S212S221S222

    = [A]

    K111K112K121K122K211K212K221K222

    Regularization methods 61/74

  • Programmation en éléments finis (3)

    matrice d’élasticité généralisée [Mindlin, 1964]

    AA 0 0 A1,4,5 0 A2,5,8 A1,2,3 00 A3,10,14 A2,11,13 0 A1,11,15 0 0 A1,2,30 A2,11,13 A8,10,15 0 A5,11,14 0 0 A2,5,8

    A1,4,5 0 0 A4,10,13 0 A5,11,14 A1,11,15 00 A1,11,15 A5,11,14 0 A4,10,13 0 0 A1,4,5

    A2,5,8 0 0 A5,11,14 0 A8,10,15 A2,11,13 0A1,2,3 0 0 A1,11,15 0 A2,11,13 A3,10,14 0

    0 A1,2,3 A2,5,8 0 A1,4,5 0 0 AA

    avecAA = 2A1+2A2+A3+A4+2A5+A8+A10+2A11+A13+A14+A15et Ai ,j ,k = Ai + Aj + Ak

    Regularization methods 62/74

  • Plan

    1 Bifurcation modes in elastoplastic solidsLinear incremental formulationLoss of uniqueness

    2 Compatible bifurcation modesHadamard jump conditionsOrientation of a strain localization band

    3 Stability / ellipticity of the boundary value problemMandel–Rice criterionOrientation of localization bands in 3D and 2D

    4 Summary of strain localization criteria

    5 Regularization methodsMesh dependence of the resultsMechanics of generalized continuaApplication to the case of metal foams

  • Bande de localisation de largeur finie

    Cas des bandes horizontales obtenues à l’aide d’un critère elliptique

    σeq =√

    C + F |σ22|, ε̇p22 = ṗ√

    C + F , ṗ =2µ√

    C + F ε̇222µ(C + F ) + H

    (σ22 + s22),2 = 0, S222,2 + s22 = 0

    σ22 = 2µ(ε22 − εp22) =2µ

    2µ(C+F )+H (Hε22 + R0√

    C + F )

    s22 = 2µ(ε22 − χ22), S222 = Aχ22,2Finalement

    χ22,222 −2µH̄

    A(H̄ + 2µ)χ22,2 = 0, H̄ =

    2µH

    2µ(C + F ) + H

    Longueur d’onde

    1

    ω=

    √A(H̄ + 2µ)

    2µ|H̄|

    Regularization methods 64/74

  • Simulations par éléments finis à l’aide du milieumicromorphe

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0 20 40 60 80 100

    p

    y

    10x2 elements20x2 elements50x2 elements

    100x2 elements

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0 20 40 60 80 100

    analyticalFE analysis

    Regularization methods 65/74

  • Comportement et rupture des mousses de nickel

    longueur de fissure : 10 mm, taille de cellule : 0.5mm

    Regularization methods 66/74

  • Comportement et rupture des mousses de nickel

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

    stre

    ss (

    MP

    a)

    strain

    experimentmodel

    Direction de traction RD

    Critère simple(iste) de rupture

    p = pcrit = 0.08

    dispersion limitée en pcrit

    adoucissement explicite pourp > pcrit

    R = R(p > pcrit)

    Regularization methods 67/74

  • Traction d’une plaque fissurée : cas classique

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.01 0.02 0.03 0.04 0.05 0.06

    forc

    e/lig

    amen

    t (M

    Pa)

    displacement/gauge length

    1609 nodesexperiment

    00.05

    0.10.15

    0.20.25

    0.30.35

    0.40.45

    0.50.55

    0.60.65

    0.70.75

    0.80.85

    0.90.95

    1

    strain component ε11

    Regularization methods 68/74

  • Traction d’une plaque fissurée : cas classique

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.01 0.02 0.03 0.04 0.05 0.06

    forc

    e/lig

    amen

    t (M

    Pa)

    displacement/gauge length

    1609 nodes509 nodesexperiment

    00.05

    0.10.15

    0.20.25

    0.30.35

    0.40.45

    0.50.55

    0.60.65

    0.70.75

    0.80.85

    0.90.95

    1

    strain component ε11

    Regularization methods 69/74

  • Traction d’une plaque fissurée : cas classique

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.01 0.02 0.03 0.04 0.05 0.06

    forc

    e/lig

    amen

    t (M

    Pa)

    displacement/gauge length

    3927 nodes1609 nodes509 nodesexperiment

    00.05

    0.10.15

    0.20.25

    0.30.35

    0.40.45

    0.50.55

    0.60.65

    0.70.75

    0.80.85

    0.90.95

    1

    strain component ε11

    Regularization methods 70/74

  • Traction d’une plaque fissurée : cas micromorphe

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.01 0.02 0.03 0.04 0.05 0.06

    forc

    e/lig

    amen

    t (M

    Pa)

    displacement/gauge length

    experimentmicrofoam

    00.02

    0.040.06

    0.080.1

    0.120.14

    0.160.18

    0.20.22

    0.240.26

    0.280.3

    0.320.34

    0.360.38

    0.4

    strain component ε11

    Regularization methods 71/74

  • Traction d’une plaque fissurée : cas micromorphe

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 0.01 0.02 0.03 0.04 0.05 0.06

    forc

    e/lig

    amen

    t (M

    Pa)

    displacement/gauge length

    experimentmicrofoam 3927 nodesmicrofoam 1609 nodes

    microfoam 509 nodes

    influence of mesh size on the overall curves

    Regularization methods 72/74

  • Traction d’une plaque fissurée : cas micromorphe

    00.02

    0.040.06

    0.080.1

    0.120.14

    0.160.18

    0.20.22

    0.240.26

    0.280.3

    0.320.34

    0.360.38

    0.4

    Regularization methods 73/74

  • Traction d’une plaque fissurée : cas micromorphe

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 0.01 0.02 0.03 0.04 0.05 0.06

    forc

    e/lig

    amen

    t (M

    Pa)

    displacement/gauge length

    experimentlc = 0.06 mm

    lc = 0.1 mm

    Influence of the characteristic length on fracture : l2c = a8/µ withµ = 167 MPa

    Regularization methods 74/74

    PlanBifurcation modes in elastoplastic solidsincrementaluniquenessHill

    Compatible bifurcation modeshadamardbandes

    Stability / ellipticity of the boundary value problemRice3D-2D

    Summary of strain localization criteriaRegularization methodsmeshmmcgmicromorphnumericelliptic