streaming codes for channels with burst and isolated losses · streaming codes with burst &...

62
Streaming Codes for Channels with Burst and Isolated Losses Ashish Khisti Department of Electrical and Computer Engineering University of Toronto Joint work with: Ahmed Badr (Toronto), Wai-Tian Tan (Cisco), John Apostolopoulos (Cisco)

Upload: others

Post on 10-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Streaming Codes for Channels withBurst and Isolated Losses

Ashish Khisti

Department of Electrical and Computer EngineeringUniversity of Toronto

Joint work with:

Ahmed Badr (Toronto), Wai-Tian Tan (Cisco), John Apostolopoulos (Cisco)

Page 2: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Motivation - Audio Streaming

Audio  Codec  

Audio  Waveform  

0  Time  (ms)  

Packet  Stream  

10   20   30   40  

Assumptions:

Audio Packets are generated uniformly, e.g. every 10 ms.

Maximum Playback Delay, e.g. T = 120 ms.

All packets are same size (a first order approximation)

2/ 34

Page 3: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Dynamics of Loss Patterns

Link:

(a): I.I.D. Erasure Sequence

Link:

(b): Burst Erasure Sequence

Capacity: Fraction of Erasures

Delay: Dynamics of Erasure Patterns

3/ 34

Page 4: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Block Codes - Example

(3,2) Block Code

s0   s1   p0   s2   s3   p1   s4   s5  

(6,4) Block Code

s0   s1   p2  s2   s3   p1   s4   s5  

Table : Comparison of Packet Loss Patterns

Error Sequence (3, 2) Code (6, 4) Code

Isolated Loss T = 3 T = 5

Two Consecutive Losses NA T = 6

4/ 34

Page 5: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Convolutional Codes - Example

Rate R = 2/3

s0   s1   s2   s3   s4   s5   s6   s7  

p0   p1   p2   p3   p4   p5   p6   p7  

Concatenate a parity-check packet to the source packet.

Size of parity-check is half the size of the source packet.

Less overhead due to header packets

Adaptive to the erasure patterns:

Single Loss: Like a (3, 2) codeTwo Losses: Like a (6, 4) code

5/ 34

Page 6: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Strongly-MDS Convolutional CodesH. Gluesing-Luerssen, J. Rosenthal and R. Smarandache (IT-2006)

(n,k,m)    Convolu-onal  

Code  

xi = (xi,1, . . . , xi,n)si = (si,1, . . . , si,k)

Source  Symbol:  si   Channel  Symbol:  xi  

xi = si ·G0 + si−1 ·G1 + . . .+ si−m ·Gm, Gj ∈ Fk×nq

Column Distance: dT :

dT = min[s0,...,sT ]s0 6=0

wt

[s0 . . . sT]G0 G1 . . . GT

0 G0 . . . GT−1...

. . ....

0 . . . G0

wt(·): Hamming weight (symbol level).

6/ 34

Page 7: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Strongly-MDS Convolutional CodesH. Gluesing-Luerssen, J. Rosenthal and R. Smarandache (IT-2006)

Column-Distance (Costello ’1969):Trellis Path with the following properties:

Diverges from the all-zero state at t = 0Min. Weight in the interval [0, T ]

Sta

tes

Column Distance in [0,3]

Column Distance: dT :

dT = min[s0,...,sT ]s0 6=0

wt

[s0 . . . sT]G0 G1 . . . GT

0 G0 . . . GT−1...

. . ....

0 . . . G0

wt(·): Hamming weight (symbol level).

6/ 34

Page 8: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Strongly-MDS Convolutional CodesH. Gluesing-Luerssen, J. Rosenthal and R. Smarandache (IT-2006)

Sta

tes

Column Distance in [0,3]

Generalized Singleton Bound: dj ≤ (n− k)(j + 1) + 1, ∀j ≥ 0

Systematic Codes: xi = (si,pi), where pi ∈ Fn−kq

pi = si ·H0 + si−1 ·H1 + . . . si−M ·HM , Hi ∈ Fk×n−kq

m-MDS Codes: dj = (n− k)(j + 1) + 1 for j = 0, . . . ,m

7/ 34

Page 9: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Column Distance and Error Correction

s0 s1 sj

Encoder  

k  

xjx1x0n  

n   n  

Channel  Input  

Interval: [0, (j + 1)n− 1], Column Distance: dj = (n− k)(j + 1) + 1

Erasure Sequence Condition Recovery: t = (j + 1)n− 1

Arbitrary N Erasures N < dj s0Burst Erasure B < dj All erased

[c, c+B − 1], 0 ≤ c < k symbols

8/ 34

Page 10: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Column Distance and Error Correction

s0 s1 sj

Encoder  

k  

xjx1x0n  

n   n  

Channel  Input  

Erasures  

Interval: [0, (j + 1)n− 1], Column Distance: dj = (n− k)(j + 1) + 1

Erasure Sequence Condition Recovery: t = (j + 1)n− 1

Arbitrary N Erasures N < dj s0Burst Erasure B < dj All erased

[c, c+B − 1], 0 ≤ c < k symbols

8/ 34

Page 11: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Column Distance and Error Correction

s0 s1 sj

Encoder  

k  

xjx1x0n  

n   n  

Channel  Input  

Erasures   s0

Interval: [0, (j + 1)n− 1], Column Distance: dj = (n− k)(j + 1) + 1

Erasure Sequence Condition Recovery: t = (j + 1)n− 1

Arbitrary N Erasures N < dj s0Burst Erasure B < dj All erased

[c, c+B − 1], 0 ≤ c < k symbols

8/ 34

Page 12: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Column Distance and Error Correction

s0 s1 sj

Encoder  

k  

xjx1x0n  

n   n  

Channel  Input  

s0s1

Interval: [0, (j + 1)n− 1], Column Distance: dj = (n− k)(j + 1) + 1

Erasure Sequence Condition Recovery: t = (j + 1)n− 1

Arbitrary N Erasures N < dj s0Burst Erasure B < dj All erased

[c, c+B − 1], 0 ≤ c < k symbols

8/ 34

Page 13: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Column Distance & Error Correction - Packet Erasures

s0 s1 sj

Encoder  

k  

xjx1x0n  

xjx1x0Packet  Erasure  Channel  

Interval: [0, j], Column Distance: dj = (n− k)(j + 1) + 1

Erasure Sequence Condition Recovery: t = j

Arbitrary N Erasures N ≤ (1−R)(j + 1) s0Burst Erasure: [0, B − 1] B ≤ (1−R)(j + 1) All erased symbols

9/ 34

Page 14: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Burst-Erasure Channel : OptimalityMartinian and Sundberg (2004)

s0 s1 sj

Encoder  

k  

xjx1x0n  

xjx1x0Packet  Erasure  Channel  

Decoder  

sT sT+1

s0 s1

xT+1

xT+1xT

xT

Delay  =  T  10/ 34

Page 15: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Burst-Erasure Channel : OptimalityMartinian and Sundberg (2004)

Source Model : s[t] ∈ (Fq)k

Streaming Encoder: x [t] = ft (s[0], . . . , s[t]), x [t] ∈ (Fq)n

Burst Erasure Channel: Maximum burst length = B

Delay-Constrained Decoder: s[t] = gt(y [0], . . . , y [t+ T ])

Rate R = kn

Streaming Capacity (Burst Erasure Channels)

A rate R is achievable, if there is a sequence of encoding anddecoding functions, ft(·) and gt(·) respectively, over a sufficientlylarge field Fq with R = k

n . The supremum of achievable rates isthe streaming capacity.

10/ 34

Page 16: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Burst-Erasure Channel : OptimalityMartinian and Sundberg (2004)

Streaming Capacity

For the burst erasure channel, the capacity C is a function of

Delay T

Erasure burst length B

C =

{T

T+B , T ≥ B0, otherwise

11/ 34

Page 17: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Burst-Erasure Channel : OptimalityMartinian and Sundberg (2004)

Immediate extension to multiple bursts with a guard intervalof T or more symbols.

0   1   2   3   4   5   6   7   8   9  

B=2  

T=3  

s0   s1   s5   s6  

C > RmMDS = 1− BT+1

0   1   2   3   4  

B=2  

T=3  

s0   s1  Streaming  Code,  R=3/5  

0   1   2   3   4  

B=2  

T=3  

s0,  s1  mMDS  Code,  R=1/2  

11/ 34

Page 18: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Streaming Capacity : Code ConstructionMartinian and Sundberg (2004), Martinian and Trott (2007)

Example: B = 2, T = 3, C = 3/5

Step 1: Block Code: (a, b, c)→ (a, b, c, a+ c, b+ c)

Step 2: Diagonal Interleaving:st = (at, bt, ct) =⇒ xt = (at, bt, ct, at−3 + ct−1, bt−3 + ct−2).

x[i − 1] x[i] x[i + 1] x[i + 2] x[i + 3] x[i + 4]

ai−1 ai ai+1 ai+2 ai+3 ai+4

bi−1 bi bi+1 bi+2 bi+3 bi+4

ci−1 ci ci+1 ci+2 ci+3 ci+4

ai−4 + ci−2 ai−3 + ci−1 ai−2 + ci ai−1 + ci+1 ai + ci+2 ai+1 + ci+3

bi−4 + ci−3 bi−3 + ci−2 bi−2 + ci−1 bi−1 + ci bi + ci+1 bi+1 + ci+2

General Construction: Two Step Approach

Converse: Periodic Erasure Channel.

12/ 34

Page 19: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Summary So Far ...

s0 s1 sj

Encoder  

k  

xjx1x0n  

xjx1x0Packet  Erasure  Channel  

Decoder  

sT sT+1

s0 s1

xT+1

xT+1xT

xT

Delay  =  T  

Burst Erasures Arbitrary Erasures

Martinian-Sundberg- Optimal Not Feasible

Conv. MDS Codes Feasible Feasible

13/ 34

Page 20: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Gilbert-Elliott Channels

Gilbert Elliott Channel

Good State: Pr(loss) = ε

Bad State: Pr(loss) = 1

Good Bad

ȕ

1-ȕ

Į

1-Į

14/ 34

Page 21: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Gilbert-Elliott Channels

Gilbert Elliott Channel

Good State: Pr(loss) = ε

Bad State: Pr(loss) = 1

Good Bad

ȕ

1-ȕ

Į

1-Į

Bad State Good State Bad State

Loss Pattern

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

0.1

0.2

0.3

0.4

0.5

Gilbert Channel ( , ) = (5x10 4,0.5) Simulation Length = 107

Burst Length

Prob

abili

ty o

f Occ

uren

ce

14/ 34

Page 22: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Simulation ResultsGilbert-Elliott Channel (α, β) = (5× 10−4, 0.5), T = 12 and R ≈ 0.5

1 2 3 4 5 6 7 8 9 10x 10 3

10 5

10 4

10 3

10 2

10 1Lo

ss P

roba

bilit

y

Gilbert Elliott Channel ( , ) = (5E 4,0.5), T = 12

Code N B Code N B

m-MDS 6 6 MiDAS 2 9

Burst-Erasure 1 11

15/ 34

Page 23: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Sliding Window Erasure Channel

Good Bad

ȕ

1-ȕ

Į

1-Į

Gilbert-Elliott Model

Bad State Good State Bad State

Loss Pattern

Sliding Window Erasure Channel: C(N,B,W )

In any sliding window of length W , the channel can introduce onlyone of the following:

An erasure burst of maximum length B

Upto N erasures in arbitrary positions

16/ 34

Page 24: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Streaming Codes with Burst & Isolated ErasuresBadr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To Appear 2015)

Theorem

Consider the C(N,B,W ) channel, with W ≥ B + 1, and let thedelay be T .Upper-Bound For any rate R code, we have:(

R

1−R

)B +N ≤ min(W,T + 1)

Lower-Bound: There exists a rate R code that satisfies:(R

1−R

)B +N ≥ min(W,T + 1)− 1.

The gap between the upper and lower bound is 1 unit of delay.

17/ 34

Page 25: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionmMDS Codes (Gluesing-Luerssen-Rosenthan-Smarandache ’06)

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

Recover s0, s1, s2, s3

s0

p0 p1 p2 p3 p4 p5 p6 p7

xi

s1 s2 s3 s4 s5 s6 s7kn

pi = si ·H0 + si−1 ·H1 + . . .+ si−M ·HM , Hi ∈ Fk×n−kq

p4

p5

p6

p7

=

H4 H3 H2 H1

H5 H4 H3 H2

0 H5 H4 H3

0 0 H5 H4

︸ ︷︷ ︸

full rank

s0s1s2s3

18/ 34

Page 26: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionmMDS Codes (Gluesing-Luerssen-Rosenthan-Smarandache ’06)

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

Recover s0, s1, s2, s3

s0

p0 p1 p2 p3 p4 p5 p6 p7

xi

s1 s2 s3 s4 s5 s6 s7kn

pi = si ·H0 + si−1 ·H1 + . . .+ si−M ·HM , Hi ∈ Fk×n−kq

p4

p5

p6

p7

=

H4 H3 H2 H1

H5 H4 H3 H2

0 H5 H4 H3

0 0 H5 H4

︸ ︷︷ ︸

full rank

s0s1s2s3

18/ 34

Page 27: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionmMDS Codes (Gluesing-Luerssen-Rosenthan-Smarandache ’06)

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

Recover s0, s1, s2, s3

s0

p0 p1 p2 p3 p4 p5 p6 p7

xi

s1 s2 s3 s4 s5 s6 s7kn

pi = si ·H0 + si−1 ·H1 + . . .+ si−M ·HM , Hi ∈ Fk×n−kq

p4

p5

p6

p7

=

H4 H3 H2 H1

H5 H4 H3 H2

0 H5 H4 H3

0 0 H5 H4

︸ ︷︷ ︸

full rank

s0s1s2s3

18/ 34

Page 28: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionmMDS Codes (Gluesing-Luerssen-Rosenthan-Smarandache ’06)

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

Recover s0, s1, s2, s3

s0

p0 p1 p2 p3 p4 p5 p6 p7

xi

s1 s2 s3 s4 s5 s6 s7kn

pi = si ·H0 + si−1 ·H1 + . . .+ si−M ·HM , Hi ∈ Fk×n−kq

p4

p5

p6

p7

=

H4 H3 H2 H1

H5 H4 H3 H2

0 H5 H4 H3

0 0 H5 H4

︸ ︷︷ ︸

full rank

s0s1s2s3

18/ 34

Page 29: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionmMDS Codes (Gluesing-Luerssen-Rosenthan-Smarandache ’06)

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

Recover s0, s1, s2, s3

s0

p0 p1 p2 p3 p4 p5 p6 p7

xi

s1 s2 s3 s4 s5 s6 s7kn

pi = si ·H0 + si−1 ·H1 + . . .+ si−M ·HM , Hi ∈ Fk×n−kq

p4

p5

p6

p7

=

H4 H3 H2 H1

H5 H4 H3 H2

0 H5 H4 H3

0 0 H5 H4

︸ ︷︷ ︸

full rank

s0s1s2s3

18/ 34

Page 30: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionmMDS Codes (Gluesing-Luerssen-Rosenthan-Smarandache ’06)

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

Recover s0, s1, s2, s3

s0

p0 p1 p2 p3 p4 p5 p6 p7

xi

s1 s2 s3 s4 s5 s6 s7kn

pi = si ·H0 + si−1 ·H1 + . . .+ si−M ·HM , Hi ∈ Fk×n−kq

p4

p5

p6

p7

=

H4 H3 H2 H1

H5 H4 H3 H2

0 H5 H4 H3

0 0 H5 H4

︸ ︷︷ ︸

full rank

s0s1s2s3

18/ 34

Page 31: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionmMDS Codes (Gluesing-Luerssen-Rosenthan-Smarandache ’06)

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

Recover s0, s1, s2, s3

s0

p0 p1 p2 p3 p4 p5 p6 p7

xi

s1 s2 s3 s4 s5 s6 s7kn

pi = si ·H0 + si−1 ·H1 + . . .+ si−M ·HM , Hi ∈ Fk×n−kq

p4

p5

p6

p7

=

H4 H3 H2 H1

H5 H4 H3 H2

0 H5 H4 H3

0 0 H5 H4

︸ ︷︷ ︸

full rank

s0s1s2s3

18/ 34

Page 32: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionmMDS Codes (Gluesing-Luerssen-Rosenthan-Smarandache ’06)

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

Recover s0, s1, s2, s3

s0

p0 p1 p2 p3 p4 p5 p6 p7

xi

s1 s2 s3 s4 s5 s6 s7kn

pi = si ·H0 + si−1 ·H1 + . . .+ si−M ·HM , Hi ∈ Fk×n−kq

p4

p5

p6

p7

=

H4 H3 H2 H1

H5 H4 H3 H2

0 H5 H4 H3

0 0 H5 H4

︸ ︷︷ ︸

full rank

s0s1s2s3

18/ 34

Page 33: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionmMDS Codes (Gluesing-Luerssen-Rosenthan-Smarandache ’06)

s0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

ns0p0 p1 p2 p3 p4 p5 p6 p7

xis1 s2 s3 s4 s5 s6 s7k

n

Recover s0, s1, s2, s3

s0

p0 p1 p2 p3 p4 p5 p6 p7

xi

s1 s2 s3 s4 s5 s6 s7kn

pi = si ·H0 + si−1 ·H1 + . . .+ si−M ·HM , Hi ∈ Fk×n−kq

p4

p5

p6

p7

=

H4 H3 H2 H1

H5 H4 H3 H2

0 H5 H4 H3

0 0 H5 H4

︸ ︷︷ ︸

full rank

s0s1s2s3

18/ 34

Page 34: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionB = 4, T = 8, R = T

T+B= 2

3

Rate 1/2 Baseline Erasure Codes, T = 7

v0

p0

v1

p1

v2

p2

v3

p3

v4

p4

v5

p5

v6

p6

v7

p7

xi

v8

p8

v9

p9

v10

p10

v11

p11

v0,v1,v2,v3

Rate 1/2 Repetition Code, T = 8

u0

u-8

u1

u-7

u2

u-6

u3

u-5

u4

u-4

u5

u-3

u6

u-2

u7

u-1

xi

u8

u0

u9

u1

u10

u2

u11

u3

u0

u1

u2

u3

19/ 34

Page 35: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionB = 4, T = 8, R = T

T+B= 2

3

Rate 1/2 Baseline Erasure Codes, T = 7

v0

p0

v1

p1

v2

p2

v3

p3

v4

p4

v5

p5

v6

p6

v7

p7

xi

v8

p8

v9

p9

v10

p10

v11

p11

v0,v1,v2,v3

Rate 1/2 Repetition Code, T = 8

u0

u-8

u1

u-7

u2

u-6

u3

u-5

u4

u-4

u5

u-3

u6

u-2

u7

u-1

xi

u8

u0

u9

u1

u10

u2

u11

u3

u0

u1

u2

u3

19/ 34

Page 36: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionB = 4, T = 8, R = T

T+B= 2

3

u0u-8

u1u-7

u2u-6

u3u-5

u4u-4

u5u-3

u6u-2

u7u-1

u8u0

u9u1

u10u2

u11u3

v0p0

v1p1

v2p2

v3p3

v4p4

v5p5

v6p6

v7p7

v8p8

v9p9

v10p10

v11p11

vu

uu

v0

p0

v1

p1

v2

p2

v3

p3

v4

p4

v5

p5

v6

p6

v7

p7

v8

p8

v9

p9

v10

p10

v11

p11

u0

u-8

u1

u-7

u2

u-6

u3

u-5

u4

u-4

u5

u-3

u6

u-2

u7

u-1

u8

u0

u9

u1

u10

u2

u11

u3

u

v

u

u

R= u+v3u+v

=12

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

xi

si

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

sixi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3

xi

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

si

v0,v1,v2,v3 u0 u1 u2 u3

xi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3 u0 u

1u2

u3

s0

s1

s2

s3

xi

u

v

u

R= u+v2 u+v

=23

Encoding:

1 Source Splitting: si = (ui,vi), ui ∈ FBq , vi ∈ FT−B

q

2 Erasure Code on vi: Generate vi → (vi,pi) where pi ∈ FBq is obtained from a

m-MDS code.

3 Repetition Code on ui: Repeat the ui symbols with a shift of T

4 Merging: Combine the repeated ui’s with the pi’s

5 Rate: R = TT+B

20/ 34

Page 37: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionB = 4, T = 8, R = T

T+B= 2

3

u0u-8

u1u-7

u2u-6

u3u-5

u4u-4

u5u-3

u6u-2

u7u-1

u8u0

u9u1

u10u2

u11u3

v0p0

v1p1

v2p2

v3p3

v4p4

v5p5

v6p6

v7p7

v8p8

v9p9

v10p10

v11p11

vu

uu

v0

p0

v1

p1

v2

p2

v3

p3

v4

p4

v5

p5

v6

p6

v7

p7

v8

p8

v9

p9

v10

p10

v11

p11

u0

u-8

u1

u-7

u2

u-6

u3

u-5

u4

u-4

u5

u-3

u6

u-2

u7

u-1

u8

u0

u9

u1

u10

u2

u11

u3

u

v

u

u

R= u+v3u+v

=12

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

xi

si

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

sixi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3

xi

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

si

v0,v1,v2,v3 u0 u1 u2 u3

xi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3 u0 u

1u2

u3

s0

s1

s2

s3

xi

u

v

u

R= u+v2 u+v

=23

Encoding:

1 Source Splitting: si = (ui,vi), ui ∈ FBq , vi ∈ FT−B

q

2 Erasure Code on vi: Generate vi → (vi,pi) where pi ∈ FBq is obtained from a

m-MDS code.

3 Repetition Code on ui: Repeat the ui symbols with a shift of T

4 Merging: Combine the repeated ui’s with the pi’s

5 Rate: R = TT+B

20/ 34

Page 38: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionB = 4, T = 8, R = T

T+B= 2

3

u0u-8

u1u-7

u2u-6

u3u-5

u4u-4

u5u-3

u6u-2

u7u-1

u8u0

u9u1

u10u2

u11u3

v0p0

v1p1

v2p2

v3p3

v4p4

v5p5

v6p6

v7p7

v8p8

v9p9

v10p10

v11p11

vu

uu

v0

p0

v1

p1

v2

p2

v3

p3

v4

p4

v5

p5

v6

p6

v7

p7

v8

p8

v9

p9

v10

p10

v11

p11

u0

u-8

u1

u-7

u2

u-6

u3

u-5

u4

u-4

u5

u-3

u6

u-2

u7

u-1

u8

u0

u9

u1

u10

u2

u11

u3

u

v

u

u

R= u+v3u+v

=12

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

xi

si

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

sixi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3

xi

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

si

v0,v1,v2,v3 u0 u1 u2 u3

xi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3 u0 u

1u2

u3

s0

s1

s2

s3

xi

u

v

u

R= u+v2 u+v

=23

Encoding:

1 Source Splitting: si = (ui,vi), ui ∈ FBq , vi ∈ FT−B

q

2 Erasure Code on vi: Generate vi → (vi,pi) where pi ∈ FBq is obtained from a

m-MDS code.

3 Repetition Code on ui: Repeat the ui symbols with a shift of T

4 Merging: Combine the repeated ui’s with the pi’s

5 Rate: R = TT+B

20/ 34

Page 39: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionB = 4, T = 8, R = T

T+B= 2

3

u0u-8

u1u-7

u2u-6

u3u-5

u4u-4

u5u-3

u6u-2

u7u-1

u8u0

u9u1

u10u2

u11u3

v0p0

v1p1

v2p2

v3p3

v4p4

v5p5

v6p6

v7p7

v8p8

v9p9

v10p10

v11p11

vu

uu

v0

p0

v1

p1

v2

p2

v3

p3

v4

p4

v5

p5

v6

p6

v7

p7

v8

p8

v9

p9

v10

p10

v11

p11

u0

u-8

u1

u-7

u2

u-6

u3

u-5

u4

u-4

u5

u-3

u6

u-2

u7

u-1

u8

u0

u9

u1

u10

u2

u11

u3

u

v

u

u

R= u+v3u+v

=12

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

xi

si

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

sixi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3

xi

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

si

v0,v1,v2,v3 u0 u1 u2 u3

xi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3 u0 u

1u2

u3

s0

s1

s2

s3

xi

u

v

u

R= u+v2 u+v

=23

Encoding:

1 Source Splitting: si = (ui,vi), ui ∈ FBq , vi ∈ FT−B

q

2 Erasure Code on vi: Generate vi → (vi,pi) where pi ∈ FBq is obtained from a

m-MDS code.

3 Repetition Code on ui: Repeat the ui symbols with a shift of T

4 Merging: Combine the repeated ui’s with the pi’s

5 Rate: R = TT+B

20/ 34

Page 40: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionB = 4, T = 8, R = T

T+B= 2

3

u0u-8

u1u-7

u2u-6

u3u-5

u4u-4

u5u-3

u6u-2

u7u-1

u8u0

u9u1

u10u2

u11u3

v0p0

v1p1

v2p2

v3p3

v4p4

v5p5

v6p6

v7p7

v8p8

v9p9

v10p10

v11p11

vu

uu

v0

p0

v1

p1

v2

p2

v3

p3

v4

p4

v5

p5

v6

p6

v7

p7

v8

p8

v9

p9

v10

p10

v11

p11

u0

u-8

u1

u-7

u2

u-6

u3

u-5

u4

u-4

u5

u-3

u6

u-2

u7

u-1

u8

u0

u9

u1

u10

u2

u11

u3

u

v

u

u

R= u+v3u+v

=12

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

xi

si

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

sixi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3

xi

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

si

v0,v1,v2,v3 u0 u1 u2 u3

xi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3 u0 u

1u2

u3

s0

s1

s2

s3

xi

u

v

u

R= u+v2 u+v

=23

Encoding:

1 Source Splitting: si = (ui,vi), ui ∈ FBq , vi ∈ FT−B

q

2 Erasure Code on vi: Generate vi → (vi,pi) where pi ∈ FBq is obtained from a

m-MDS code.

3 Repetition Code on ui: Repeat the ui symbols with a shift of T

4 Merging: Combine the repeated ui’s with the pi’s

5 Rate: R = TT+B

20/ 34

Page 41: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionB = 4, T = 8, R = T

T+B= 2

3

u0u-8

u1u-7

u2u-6

u3u-5

u4u-4

u5u-3

u6u-2

u7u-1

u8u0

u9u1

u10u2

u11u3

v0p0

v1p1

v2p2

v3p3

v4p4

v5p5

v6p6

v7p7

v8p8

v9p9

v10p10

v11p11

vu

uu

v0

p0

v1

p1

v2

p2

v3

p3

v4

p4

v5

p5

v6

p6

v7

p7

v8

p8

v9

p9

v10

p10

v11

p11

u0

u-8

u1

u-7

u2

u-6

u3

u-5

u4

u-4

u5

u-3

u6

u-2

u7

u-1

u8

u0

u9

u1

u10

u2

u11

u3

u

v

u

u

R= u+v3u+v

=12

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

xi

si

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

sixi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3

xi

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

si

v0,v1,v2,v3 u0 u1 u2 u3

xi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3 u0 u

1u2

u3

s0

s1

s2

s3

xi

u

v

u

R= u+v2 u+v

=23

Encoding:

1 Source Splitting: si = (ui,vi), ui ∈ FBq , vi ∈ FT−B

q

2 Erasure Code on vi: Generate vi → (vi,pi) where pi ∈ FBq is obtained from a

m-MDS code.

3 Repetition Code on ui: Repeat the ui symbols with a shift of T

4 Merging: Combine the repeated ui’s with the pi’s

5 Rate: R = TT+B

20/ 34

Page 42: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionB = 4, T = 8, R = T

T+B= 2

3

u0u-8

u1u-7

u2u-6

u3u-5

u4u-4

u5u-3

u6u-2

u7u-1

u8u0

u9u1

u10u2

u11u3

v0p0

v1p1

v2p2

v3p3

v4p4

v5p5

v6p6

v7p7

v8p8

v9p9

v10p10

v11p11

vu

uu

v0

p0

v1

p1

v2

p2

v3

p3

v4

p4

v5

p5

v6

p6

v7

p7

v8

p8

v9

p9

v10

p10

v11

p11

u0

u-8

u1

u-7

u2

u-6

u3

u-5

u4

u-4

u5

u-3

u6

u-2

u7

u-1

u8

u0

u9

u1

u10

u2

u11

u3

u

v

u

u

R= u+v3u+v

=12

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

xi

si

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

sixi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3

xi

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

si

v0,v1,v2,v3 u0 u1 u2 u3

xi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3 u0 u

1u2

u3

s0

s1

s2

s3

xi

u

v

u

R= u+v2 u+v

=23

Encoding:

1 Source Splitting: si = (ui,vi), ui ∈ FBq , vi ∈ FT−B

q

2 Erasure Code on vi: Generate vi → (vi,pi) where pi ∈ FBq is obtained from a

m-MDS code.

3 Repetition Code on ui: Repeat the ui symbols with a shift of T

4 Merging: Combine the repeated ui’s with the pi’s

5 Rate: R = TT+B

20/ 34

Page 43: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionB = 4, T = 8, R = T

T+B= 2

3

u0u-8

u1u-7

u2u-6

u3u-5

u4u-4

u5u-3

u6u-2

u7u-1

u8u0

u9u1

u10u2

u11u3

v0p0

v1p1

v2p2

v3p3

v4p4

v5p5

v6p6

v7p7

v8p8

v9p9

v10p10

v11p11

vu

uu

v0

p0

v1

p1

v2

p2

v3

p3

v4

p4

v5

p5

v6

p6

v7

p7

v8

p8

v9

p9

v10

p10

v11

p11

u0

u-8

u1

u-7

u2

u-6

u3

u-5

u4

u-4

u5

u-3

u6

u-2

u7

u-1

u8

u0

u9

u1

u10

u2

u11

u3

u

v

u

u

R= u+v3u+v

=12

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

xi

si

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

sixi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3

xi

u

v

u

R= u+v2 u+v

=23

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

p4+u-4

p0+u-8

p1+u-7

p2+u-6

p3+u-5

p5+u-3

p6+u-2

p7+u-1

p8+u0

p9+u1

p10+u2

p11+u3

si

v0,v1,v2,v3 u0 u1 u2 u3

xi

uv

u

R= uv2uv

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

si

v0,v1,v2,v3 u0 u

1u2

u3

s0

s1

s2

s3

xi

u

v

u

R= u+v2 u+v

=23

Encoding:

1 Source Splitting: si = (ui,vi), ui ∈ FBq , vi ∈ FT−B

q

2 Erasure Code on vi: Generate vi → (vi,pi) where pi ∈ FBq is obtained from a

m-MDS code.

3 Repetition Code on ui: Repeat the ui symbols with a shift of T

4 Merging: Combine the repeated ui’s with the pi’s

5 Rate: R = TT+B

20/ 34

Page 44: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Revisiting Martinian-Sundberg ConstructionBurst Erasure Channel, R = T

T+B

1 Source Splitting: si = (ui,vi), ui ∈ FBq , vi ∈ FT−B

q

2 Erasure Code on vi: Generate vi → (vi,pi) where pi ∈ FBq is obtained from a

m-MDS code.

3 Repetition Code on ui: Repeat the ui symbols with a shift of T

4 Merging: Combine the repeated ui’s with the pi’s

21/ 34

Page 45: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Robust Extension: C(N,B,W ) ChannelLayered Code Design

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

xi

u

v

u

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11 lq

0

Burst-Erasure Streaming Code: (ui,vi,pi + ui−T )

Erasure Code: qi =∑M

t=1 ui−t ·Hut , qi ∈ Fl

q

Concatenation: (ui,vi,pi + ui−T ,qi)

R =T

T +B + l

22/ 34

Page 46: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Robust Extension: C(N,B,W ) ChannelLayered Code Design

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

xi

u

v

u

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11 lq

0

Recovery from Isolated Losses

(ui,qi) =⇒ Recover ui

(vi,pi) =⇒ Recover vi(1− u

l + u

)(T + 1) ≥ N

Attains the lower bound.22/ 34

Page 47: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Robust Extension: C(N,B,W ) ChannelLayered Code Design

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

xi

u

v

u

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11 lq

0

u0u2

Recovery from Isolated Losses

(ui,qi) =⇒ Recover ui

(vi,pi) =⇒ Recover vi(1− u

l + u

)(T + 1) ≥ N

Attains the lower bound.22/ 34

Page 48: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Robust Extension: C(N,B,W ) ChannelLayered Code Design

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

p4

+u-4

p0

+u-8

p1

+u-7

p2

+u-6

p3

+u-5

p5

+u-3

p6

+u-2

p7

+u-1

p8

+u0

p9

+u1

p10

+u2

p11

+u3

xi

u

v

u

v0v2

Recovery from Isolated Losses

(ui,qi) =⇒ Recover ui

(vi,pi) =⇒ Recover vi(1− u

l + u

)(T + 1) ≥ N

Attains the lower bound.22/ 34

Page 49: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Back to Diagonally InterleavingBadr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To Appear 2015)

Field Size of mMDS: exponentially in T .Alternative MiDAS Construction: Diagonally Interleaved MDSCodes (satisfy Thm. 1)Field Size Θ(T 3)Slight increase in error probability due to weaker partialrecovery.

1 2 3 4 5 6 7 8 9 10x 10ï3

10ï5

10ï4

¡

Loss

Pro

babi

lity

Gilbert Channel ï (_,`) = (10ï5,0.1), Simulation Length = 108, T = 50, Rate = 50/99 5 0.51

StronglyïMDS (N= B = 25)(51,26) MDS (N = B = 25)MSïSMDS (N,B) = (1,49)MSïMDS (N,B) = (1,49)PRCïSMDS (6,N,B) = (47,5,39)PRCïMDS (6,N,B) = (48,5,38)

23/ 34

Page 50: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

(Packet-Level) Distance and Span Properties

Packet Level Column Distance: dT

dT = min[s0,...,sT ]s0 6=0

wt

[s0 . . . sT]G0 G1 . . . GT

0 G0 . . . GT−1...

. . ....

0 . . . G0

Packet-Level Column Span: cT

cT = min[s0,...,sT ]s0 6=0

span

[s0 . . . sT]G0 G1 . . . GT

0 G0 . . . GT−1...

. . ....

0 . . . G0

24/ 34

Page 51: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

(Packet-Level) Column-Distance & Column-Span TradeoffBadr-Patil-Khisti-Tan-Apostolopoulos (To Appear T-IT 2015)

Theorem

Consider a C(N,B,W ) channel with delay T and W ≥ T + 1. Astreaming code is feasible over this channel if and only if itsatisfies: dT ≥ N + 1 and cT ≥ B + 1

Theorem

For any rate R convolutional code and any T ≥ 0 theColumn-Distance dT and Column-Span cT satisfy the following:(

R

1−R

)cT + dT ≤ T + 1 +

1

1−R

There exists a rate R code (MiDAS Code) over a sufficiently largefield that satisfies:(

R

1−R

)cT + dT ≥ T +

1

1−R

25/ 34

Page 52: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

(Packet-Level) Column-Distance & Column-Span TradeoffBadr-Patil-Khisti-Tan-Apostolopoulos (To Appear T-IT 2015)

Theorem

Consider a C(N,B,W ) channel with delay T and W ≥ T + 1. Astreaming code is feasible over this channel if and only if itsatisfies: dT ≥ N + 1 and cT ≥ B + 1

Theorem

For any rate R convolutional code and any T ≥ 0 theColumn-Distance dT and Column-Span cT satisfy the following:(

R

1−R

)cT + dT ≤ T + 1 +

1

1−R

There exists a rate R code (MiDAS Code) over a sufficiently largefield that satisfies:(

R

1−R

)cT + dT ≥ T +

1

1−R

25/ 34

Page 53: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Summary of Distance/Span Metrics

Table : Column Distance and Column Span Metrics

Packet Level Symbol Level

Col. dT ≤ (1−R)(T + 1) + 1 dj ≤ (n− k)(j + 1) + 1Distance (Gluesing-Luerssen et. al. 06)

Col. cT ≤ min(1−RR , 1

)T + 1 cj≤(n− k)(j + 1+bn−kk jc)+1

Span (Martinian-Sundberg ’04) (Badr ’14)

Trade-(

R1−R

)cT+dT ≤ T+ 1

1−R+1 Open Problem

off Approximate Optimality

26/ 34

Page 54: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Multicast Streaming CodesBadr-Khisti-Martinian (JSAC 2011) Badr-Khisti-Lui (IT Trans. 2015)

Src. StreamEncoder

B1

B2

X[i]Decoder 1

Decoder 2

Delay = T1

Delay = T2

Burst ErasureBroadcast Channel

Motivation

Common Source Stream, Multiple Receivers

B1 < B2

Receiver 1 : Good Channel State

Receiver 2: Weaker Channel State

Delay adapts to Channel State

27/ 34

Page 55: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Multicast Streaming CodesBadr-Khisti-Martinian (JSAC 2011) Badr-Khisti-Lui (IT Trans. 2015)

Src. StreamEncoder

B1

B2

X[i]Decoder 1

Decoder 2

Delay = T1

Delay = T2

Burst ErasureBroadcast Channel

Column-Span

A streaming code is feasible on the (B1, T1, B2, T2) multicastchannel if and only if:

cT1 ≥ B1 + 1

cT2 ≥ B2 + 1

27/ 34

Page 56: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Diversity Embedded Streaming Codes: DE-SCoBadr-Khisti-Martinian (JSAC, March 2011)

Src. StreamEncoder

B1

B2

X[i]Decoder 1

Decoder 2

Delay = T1

Delay = T2

Burst ErasureBroadcast Channel

Theorem

There exists a {(B1, T1), (B2, T2)} multicast streaming code ofrate R = T1

T1+B1provided

T2 ≥ T ?2 ,

B2

B1T1+B1.

T ?2 is the minimum such threshold.

28/ 34

Page 57: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Multicast Streaming CapacityBadr-Khisti-Lui (IT Trans. 2015)

Assume w.l.o.g. B2 ≥ B1

T1

T2

(B1, B2)

B1 + B2

B2

E

C B

D

A

Region Capacity

A

B

C

D

E Partial Characterization

22

2

BTT+

21

1

BTT+

11

1

BTT+

212

12

BBTBT+−

T2=T1+B1

T2=T1

111

22 BT

BBT +=

DE-SCo

SCo

29/ 34

Page 58: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Network StreamingMahmood-Badr-Khisti (ISIT 2015)

Channel Input: xt ∈ (FqM )n (Extension Field)

Channel Matrix: At ∈ Fqn×n (Base Field)

Chanel Output yt = xtAt

Delay constraint T

st = ft(y0, . . . ,yt+T )

30/ 34

Page 59: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Network StreamingMahmood-Badr-Khisti (ISIT 2015)

Column Sum Rank:

dR(j, C) = min(x0,...,xj)∈C

s0 6=0

j∑t=0

rank φ(xt) ≤ (n− k)(j + 1) + 1

Theorem

Within the interval [0, T ] the source symbol s0 is recoverable attime t = T if and only if

T∑j=0

rankdef Aj < dR(T, C)

Construction of Maximum-Sum-Rank (MSR) convolutional codes.

31/ 34

Page 60: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

MSR Code ConstructionMahmood-Badr-Khisti (ISIT 2015)

T constructed using the approach in (Almeida-Napp-Pinto’13)

T=

T0 T1 . . . Tm

T0 . . . Tm−1. . .

...T0

,Tj =

α[nj] . . . α[n(j+1)−1]

α[nj+1] . . . α[n(j+1)]

.... . .

...

α[n(j+1)−1] . . . α[n(j+2)−2]

T0 T1 . . . Tm

T0 . . . Tm−1. . .

...T0

A0

A1

. . .

Am

=

F0,0 F1,1 . . . Fm,m

F0,1 . . . Fm−1,m. . .

...F0,m

Theorem

Let T be the above construction with α ∈ Fq[n(m+2)−1] that is

primitive and normal. Then TA[0,m] is super-regular when allrank(At) = n for all At.

32/ 34

Page 61: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Other Extensions

Field Size Constraints: Diagonally Interleaved Codes(Badr-Khisti-Tan-Apostolopoulos 2014)

Mismatched Streaming Codes (Patil-Badr-Khisti-Tan Asilomar2013)

Partial Recovery Streaming Codes(Badr-Khisti-Tan-Apostolopoulos JSTSP 2014)

Multiple Erasure Bursts (Li-Khisti-Girod Asilomar 2011) -Interleaved Low-Delay Codes

Multiple Links (Lui-Badr-Khisti CWIT 2011) - Layered codingfor burst erasure channels

Multiple Source Streams with Different Decoding Delays (Lui(Unpublished) 2011) - Embedded Codes

Other Results

Leong-Ho (ISIT 2012), Leong-Qureshi-Ho (ISIT 2013), N.Adler and Y. Cassuto (ISIT 2015)

33/ 34

Page 62: Streaming Codes for Channels with Burst and Isolated Losses · Streaming Codes with Burst & Isolated Erasures Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (To

Conclusions

Real-Time Communication over Channels with Burst and IsolatedErasures

Sliding Window Erasure Channel Model

MiDAS Codes: Near Optimal Distance/Span Tradeoff

Layering Approach

Distance and Span Metrics

Future Work

Systems Theoretic Approach (e.g. Dual Codes for MiDASCodes)

Analysis of probabilistic channels

Several open problems!

34/ 34