strong convergence theorems of modified ishikawa iterative...

19
Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2011, Article ID 549364, 18 pages doi:10.1155/2011/549364 Research Article Strong Convergence Theorems of Modified Ishikawa Iterative Method for an Infinite Family of Strict Pseudocontractions in Banach Spaces Phayap Katchang, 1 Wiyada Kumam, 2 Usa Humphries, 2 and Poom Kumam 2 1 Department of Mathematics and Statistics, Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Tak, Tak 63000, Thailand 2 Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand Correspondence should be addressed to Poom Kumam, [email protected] Received 15 December 2010; Accepted 14 March 2011 Academic Editor: Vittorio Colao Copyright q 2011 Phayap Katchang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We introduce a new modified Ishikawa iterative process and a new W-mapping for comput- ing fixed points of an infinite family of strict pseudocontractions mapping in the framework of q-uniformly smooth Banach spaces. Then, we establish the strong convergence theorem of the proposed iterative scheme under some mild conditions. The results obtained in this paper extend and improve the recent results of Cai and Hu 2010, Dong et al. 2010, Katchang and Kumam 2011 and many others in the literature. 1. Introduction Let E be a real Banach space with norm · and C a nonempty closed convex subset of E. Let E be the dual space of E, and let ·, · denotes the generalized duality pairing between E and E . For q> 1, the generalized duality mapping J q : E 2 E is defined by J q x f E : x, f x q , f x q1 , 1.1 for all x E. In particular, if q 2, the mapping J J 2 is called the normalized duality mapping and J q x x q2 J 2 x for x / 0. It is well known that if E is smooth, then J q is single-valued, which is denoted by j q .

Upload: others

Post on 04-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing CorporationInternational Journal of Mathematics and Mathematical SciencesVolume 2011, Article ID 549364, 18 pagesdoi:10.1155/2011/549364

Research ArticleStrong Convergence Theorems of ModifiedIshikawa Iterative Method for an Infinite Family ofStrict Pseudocontractions in Banach Spaces

Phayap Katchang,1 Wiyada Kumam,2 Usa Humphries,2and Poom Kumam2

1 Department of Mathematics and Statistics, Faculty of Science and Agricultural Technology,Rajamangala University of Technology Lanna Tak, Tak 63000, Thailand

2 Department of Mathematics, Faculty of Science, King Mongkut’s University ofTechnology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand

Correspondence should be addressed to Poom Kumam, [email protected]

Received 15 December 2010; Accepted 14 March 2011

Academic Editor: Vittorio Colao

Copyright q 2011 Phayap Katchang et al. This is an open access article distributed under theCreative Commons Attribution License, which permits unrestricted use, distribution, andreproduction in any medium, provided the original work is properly cited.

We introduce a new modified Ishikawa iterative process and a new W-mapping for comput-ing fixed points of an infinite family of strict pseudocontractions mapping in the framework ofq-uniformly smooth Banach spaces. Then, we establish the strong convergence theorem of theproposed iterative scheme under some mild conditions. The results obtained in this paper extendand improve the recent results of Cai and Hu 2010, Dong et al. 2010, Katchang and Kumam 2011and many others in the literature.

1. Introduction

Let E be a real Banach space with norm ‖ · ‖ and C a nonempty closed convex subset of E. LetE∗ be the dual space of E, and let 〈·, ·〉 denotes the generalized duality pairing between E andE∗. For q > 1, the generalized duality mapping Jq : E → 2E

∗is defined by

Jq(x) ={f ∈ E∗ :

⟨x, f

⟩= ‖x‖q,∥∥f∥∥ = ‖x‖q−1

}, (1.1)

for all x ∈ E. In particular, if q = 2, the mapping J = J2 is called the normalized duality mappingand Jq(x) = ‖x‖q−2J2(x) for x /= 0. It is well known that if E is smooth, then Jq is single-valued,which is denoted by jq.

Page 2: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

2 International Journal of Mathematics and Mathematical Sciences

A mapping T : C → C is called nonexpansive if

∥∥Tx − Ty∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (1.2)

We use F(T) to denote the set of fixed points of T ; that is, F(T) = {x ∈ C : Tx = x}.T is said to be a λ-strict pseudocontraction in the terminology of Browder and Petryshyn

[1] if there exists a constant λ > 0 and for some jq(x − y) ∈ Jq(x − y) such that

⟨Tx − Ty, jq

(x − y

)⟩ ≤ ∥∥x − y∥∥q − λ

∥∥(I − T)x − (I − T)y∥∥q

, ∀x, y ∈ C. (1.3)

T is said to be a strong pseudocontraction if there exists k ∈ (0, 1) such that

⟨Tx − Ty, jq

(x − y

)⟩ ≤ k‖x − y‖q, ∀x, y ∈ C. (1.4)

Remark 1.1 (see [2]). Let T be a λ-strict pseudocontraction in a Banach space. Let x ∈ C andp ∈ F(T). Then,

∥∥Tx − p∥∥ ≤

(1 +

1λ1/q−1

)∥∥x − p∥∥. (1.5)

Recall that a self mapping f : C → C is contraction on C if there exists a constantα ∈ (0, 1) and x, y ∈ C such that

∥∥f(x) − f(y)∥∥ ≤ α

∥∥x − y∥∥. (1.6)

We use ΠC to denote the collection of all contractions on C. That is, ΠC = {f | f : C →C a contraction}. Note that each f ∈ ΠC has a unique fixed point in C.

Very recently, Cai and Hu [3] also proved the strong convergence theorem in Banachspaces. They considered the following iterative algorithm:

x1 = x ∈ C chosen arbitrarily,

yn = PC

[βnxn +

(1 − βn

) N∑i=i

η(n)i Tixn

],

xn+1 = αnγf(xn) + γnxn +((1 − γn

)I − αnA

)yn, ∀n ≥ 1,

(1.7)

where Ti is a non-self-λi-strictly pseudocontraction, f is a contraction, and A is a stronglypositive linear bounded operator.

Page 3: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

International Journal of Mathematics and Mathematical Sciences 3

Dong et al. [2] proved the sequence {xn} converges strongly in Banach spaces undercertain appropriate assumptions and used the Wn mapping defined by (1.11). Let thesequences {xn} be generated by

x0 = x ∈ C chosen arbitrarily,

yn = δnxn + (1 − δn)Wnxn,

xn+1 = αnf(xn) + βnxn + γnWnyn, ∀n ≥ 0.

(1.8)

On the other hand, Katchang and Kumam [4, 5] introduced the following newmodified Ishikawa iterative process for computing fixed points of an infinite familynonexpansive mapping in the framework of Banach spaces; let the sequences {xn} begenerated by

x0 = x ∈ C chosen arbitrarily,

zn = γnxn +(1 − γn

)Wnxn,

yn = βnxn +(1 − βn

)Wnzn,

xn+1 = αnγf(x) + (I − αnA)yn, ∀n ≥ 0,

(1.9)

where f is a contraction, A is a strongly positive linear bounded self-adjoint operator, andWn mapping (see [6, 7]) is defined by

Un,n+1 = I,

Un,n = λnTnUn,n+1 + (1 − λn)I,

Un,n−1 = λn−1Tn−1Un,n + (1 − λn−1)I,

...

Un,k = λkTkUn,k+1 + (1 − λk)I,

Un,k−1 = λk−1Tk−1Un,k + (1 − λk−1)I,

...

Un,2 = λ2T2Un,3 + (1 − λ2)I,

Wn = Un,1 = λ1T1Un,2 + (1 − λ1)I,

(1.10)

where T1, T2, . . . is an infinite family of nonexpansive mappings of C into itself and λ1, λ2, . . .is real numbers such that 0 ≤ λn ≤ 1 for every n ∈ N. In 2010, Cho [8] considered andproved the strong convergence of the implicit iterative process for an infinite family of strictpseudocontractions in an arbitrary real Banach space.

Page 4: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

4 International Journal of Mathematics and Mathematical Sciences

In this paper, motivated and inspired by Cai and Hu [9], we consider the mappingWn

defined by

Un,n+1 = I,

Un,n = tnTn,nUn,n+1 + (1 − tn)I,

...

Un,k = tkTn,kUn,k+1 + (1 − tk)I,

Un,k−1 = tk−1Tn,k−1Un,k + (1 − tk−1)I,

...

Un,2 = t2Tn,2Un,3 + (1 − t2)I,

Wn = Un,1 = t1Tn,1Un,2 + (1 − t1)I,

(1.11)

where t1, t2, . . . are real numbers such that 0 ≤ tn ≤ 1. Tn,k = θn,kSk + (1 − θn,k)I, where Sk is aλk-strict pseudocontraction of C into itself and θn,k ∈ (0, μ], μ = min{1, {qλ/Cq}1/q−1}, whereλ = inf λk for all k ∈ N. By Lemma 2.3, we know that Tn,k is a nonexpansive mapping, andtherefore, Wn is a nonexpansive mapping. We note that the W-mapping (1.10) is a specialcase of aW-mapping (1.11)when θn,k = θk is constant for all n ≥ 1.

Throughout this paper, we will assume that inf λi > 0, 0 < tn ≤ b < 1 for all n ∈ N and{θn,k} satisfies

(H1) θn,k ∈ (0, μ], μ = min{1, infi{qλi/Cq}1/q−1} for all k ∈ N,

(H2) |θn+1,k − θn,k| ≤ an for all n ∈ N and 1 ≤ k ≤ n, where {an} satisfies∑∞

n=1 an < ∞.

The hypothesis (H2) secures the existence of limn→∞θn,k for all k ∈ N. Set θ1,k :=limn→∞θn,k for all k ∈ N. Furthermore, we assume that

(H3) θ1,k > 0 for all k ∈ N.

It is obvious that θ1,k satisfy (H1). Using condition (H3), from Tn,k = θn,kSk+(1−θn,k)I,we define mappings T1,kx := limn→∞Tn,kx = θ1,kSkx + (1 − θ1,k)x for all x ∈ C.

Our results improve and extend the recent ones announced by Cai and Hu [3],Dong et al. [2], Katchang and Kumam [4, 5], and many others.

2. Preliminaries

Recall that U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be uniformly convex if, for anyε ∈ (0, 2], there exists δ > 0 such that for any x, y ∈ U, ‖x −y‖ ≥ ε implies ‖(x +y)/2‖ ≤ 1− δ.It is known that a uniformly convex Banach space is reflexive and strictly convex (see also[10]). A Banach space E is said to be smooth if the limit limt→ 0(‖x + ty‖ − ‖x‖)/t exists for allx, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly for x, y ∈ U.

Page 5: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

International Journal of Mathematics and Mathematical Sciences 5

In a smooth Banach space, we define an operator A as strongly positive if there existsa constant γ > 0 with the property

〈Ax, J(x)〉 ≥ γ‖x‖2, ‖aI − bA‖ = sup‖x‖≤1

|〈(aI − bA)x, J(x)〉| a ∈ [0, 1], b ∈ [−1, 1], (2.1)

where I is the identity mapping and J is the normalized duality mapping.If C and D are nonempty subsets of a Banach space E such that C is a nonempty

closed convex and D ⊂ C, then a mapping Q : C → D is sunny [11, 12] provided thatQ(x + t(x −Q(x))) = Q(x) for all x ∈ C and t ≥ 0 whenever x + t(x −Q(x)) ∈ C. A mappingQ : C → C is called a retraction if Q2 = Q. If a mapping Q : C → C is a retraction, thenQz = z for all z in the range of Q. A subset D of C is said to be a sunny nonexpansive retractof C if there exists a sunny nonexpansive retraction Q of C onto D. A sunny nonexpansiveretraction is a sunny retraction, which is also nonexpansive. Sunny nonexpansive retractionsplay an important role in our argument. They are characterized as follows [11, 12]: if E is asmooth Banach space, then Q : C → D is a sunny nonexpansive retraction if and only if thereholds the inequality

⟨x −Qx, J

(y −Qx

)⟩ ≤ 0, ∀x ∈ C, y ∈ D. (2.2)

We need the following lemmas for proving our main results.

Lemma 2.1 (see [13]). In a Banach space E, the following holds:

∥∥x + y∥∥2 ≤ ‖x‖2 + 2

⟨y, j

(x + y

)⟩, ∀x, y ∈ E, (2.3)

where j(x + y) ∈ J(x + y).

Lemma 2.2 (see [14]). Let E be a real q-uniformly smooth Banach space, then there exists a constantCq > 0 such that

∥∥x + y∥∥q ≤ ‖x‖q + q

⟨y, jqx

⟩+ Cq

∥∥y∥∥q, ∀x, y ∈ E. (2.4)

In particular, if E be a real 2-uniformly smooth Banach space with the best smooth constant K, thenthe following inequality holds:

∥∥x + y∥∥2 ≤ ‖x‖2 + 2

⟨y, jx

⟩+ 2

∥∥Ky∥∥2

, ∀x, y ∈ E. (2.5)

The relation between the λ-strict pseudocontraction and the nonexpansive mappingcan be obtained from the following lemma.

Lemma 2.3 (see [15]). LetC be a nonempty convex subset of a real q-uniformly smooth Banach spaceE and S : C → C a λ-strict pseudocontraction. For α ∈ (0, 1), one defines Tx = (1 − α)x + αSx.Then, as α ∈ (0, μ], μ = min{1, {qλ/Cq}1/q−1}, T : C → C is nonexpansive such that F(T) = F(S),where Cq is the constant in Lemma 2.2.

Page 6: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

6 International Journal of Mathematics and Mathematical Sciences

ConcerningWn, we have the following lemmas, which are important to prove themainresults.

Lemma 2.4 (see [2]). Let C be a nonempty closed convex subset of a q-uniformly smooth and strictlyconvex Banach space E. Let Si, i = 1, 2, . . ., be a λi-strict pseudocontraction from C into itself such that∩∞n=1F(Sn)/= ∅, and let inf λi > 0. Let tn, n = 1, 2, . . ., be real numbers such that 0 < tn ≤ b < 1 for

any n ≥ 1. Assume that the sequence {θn,k} satisfies (H1) and (H2). Then, for every x ∈ C and k ∈ N,the limit limn→∞Un,kx exists.

Using Lemma 2.4, we define the mappings U1,k andW : C → C as follows:

U1,kx := limn→∞

Un,kx,

Wx := limn→∞

Wnx = limn→∞

Un,1x,(2.6)

for all x ∈ C. Such W is called the W-mapping generated by S1, S2, . . . , t1, t2, . . . andθn,k, for all n ∈ N and 1 ≤ k ≤ n.

Lemma 2.5 (see [2]). Let {xn} be a bounded sequence in a q-uniformly smooth and strictly convexBanach space E. Under the assumptions of Lemma 2.4, it holds

limn→∞

‖Wnxn −Wxn‖ = 0. (2.7)

Lemma 2.6 (see [2]). Let C be a nonempty closed convex subset of a q-uniformly smooth and strictlyconvex Banach space E. Let Si, i = 1, 2, . . ., be a λi-strict pseudocontraction from C into itself suchthat ∩∞

n=1F(Sn)/= ∅, and let inf λi > 0. Let tn, n = 1, 2, . . ., be real numbers such that 0 < tn ≤ b < 1for any n ≥ 1. Assume that the sequence {θn,k} satisfies (H1)–(H3). Then, F(W) = ∩∞

n=1F(Sn).

Lemma 2.7 (see [16]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − αn)an + δn, n ≥ 0, (2.8)

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)∑∞

n=1 αn = ∞,

(ii) lim supn→∞δn/αn ≤ 0 or∑∞

n=1 |δn| < ∞.

Then, limn→∞an = 0.

Lemma 2.8 (see [17]). Let {xn} and {yn} be bounded sequences in a Banach spaceX, and let {βn} bea sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose that xn+1 = (1 − βn)yn +βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1−yn‖−‖xn+1−xn‖) ≤ 0. Then, limn→∞‖yn−xn‖ =0.

Lemma 2.9 (see [3]). Assume thatA is a strong positive linear bounded operator on a smooth Banachspace E with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then, ‖I − ρA‖ ≤ 1 − ργ .

Page 7: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

International Journal of Mathematics and Mathematical Sciences 7

3. Main Results

In this section, we prove a strong convergence theorem.

Theorem 3.1. Let E be a real q-uniformly smooth and strictly convex Banach space which admitsa weakly sequentially continuous duality mapping J from E to E∗. Let C be a nonempty closed andconvex subset of E which is also a sunny nonexpansive retraction of E such that C + C ⊂ C. Let Abe a strongly positive linear bounded operator on E with coefficient γ > 0 such that 0 < γ < γ/α,and let f be a contraction of C into itself with coefficient α ∈ (0, 1). Let Si, i = 1, 2, . . ., be λi-strict pseudocontractions from C into itself such that ∩∞

n=1F(Sn)/= ∅ and inf λi > 0. Assume that thesequences {αn}, {βn}, {γn}, and {δn} in (0, 1) satisfy the following conditions:

(i)∑∞

n=0 αn = ∞; and limn→∞αn = 0,

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

(iii) limn→∞|γn+1 − γn| = 0,

(iv) limn→∞|δn+1 − δn| = 0,

(v) δn(1 + γn) − 2γn > a for some a ∈ (0, 1),

and the sequence {θn,k} satisfies (H1)–(H3). Then, the sequence {xn} generated by

x0 ∈ C chosen arbitrarily,

zn = δnxn + (1 − δn)Wnxn,

yn = γnxn +(1 − γn

)Wnzn,

xn+1 = αnγf(xn) + βnxn +((1 − βn

)I − αnA

)yn, ∀n ≥ 0

(3.1)

converges strongly to x∗ ∈ ∩∞n=1F(Sn), which solves the following variational inequality:

⟨γf(x∗) −Ax∗, J

(p − x∗)⟩ ≤ 0, ∀f ∈ ΠC, p ∈

∞⋂n=1

F(Sn). (3.2)

Proof. By (i), we may assume, without loss of generality, that αn ≤ (1 − βn)‖A‖−1 for all n.Since A is a strongly positive bounded linear operator on E and by (2.1), we have

‖A‖ = sup{|〈Ax, J(x)〉| : x ∈ E, ‖x‖ = 1}. (3.3)

Observe that

⟨((1 − βn

)I − αnA

)x, J(x)

⟩= 1 − βn − αn〈Ax, J(x)〉≥ 1 − βn − αn‖A‖≥ 0, ∀x ∈ E.

(3.4)

Page 8: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

8 International Journal of Mathematics and Mathematical Sciences

This shows that (1 − βn)I − αnA is positive. It follows that

∥∥(1 − βn)I − αnA

∥∥ = sup{∣∣⟨((1 − βn

)I − αnA

)x, J(x)

⟩∣∣ : x ∈ E, ‖x‖ = 1}

= sup{1 − βn − αn〈Ax, J(x)〉 : x ∈ E, ‖x‖ = 1

}

≤ 1 − βn − αnγ.

(3.5)

First, we show that {xn} is bounded. Let p ∈ ∩∞n=1F(Sn). By the definition of {zn}, {yn},

and {xn}, we have

∥∥zn − p∥∥ =

∥∥δnxn + (1 − δn)Wnxn − p∥∥

≤ δn∥∥xn − p

∥∥ + (1 − δn)∥∥Wnxn − p

∥∥

≤ δn∥∥xn − p

∥∥ + (1 − δn)∥∥xn − p

∥∥

=∥∥xn − p

∥∥,

(3.6)

and from this, we have

∥∥yn − p∥∥ =

∥∥γnxn +(1 − γn

)Wnzn − p

∥∥

≤ γn∥∥xn − p

∥∥ +(1 − γn

)∥∥Wnzn − p∥∥

≤ γn∥∥xn − p

∥∥ +(1 − γn

)∥∥zn − p∥∥

≤ γn∥∥xn − p

∥∥ +(1 − γn

)∥∥xn − p∥∥

=∥∥xn − p

∥∥.

(3.7)

It follows that

∥∥xn+1 − p∥∥ =

∥∥αnγf(xn) + βnxn +((1 − βn

)I − αnA

)yn − p

∥∥

=∥∥αn

(γf(xn) −Ap

)+ βn

(xn − p

)+((1 − βn

)I − αnA

)(yn − p

)∥∥

≤ αn

∥∥γf(xn) −Ap∥∥ + βn

∥∥xn − p∥∥ +

(1 − βn − αnγ

)∥∥yn − p∥∥

≤ αn

∥∥γf(xn) −Ap∥∥ + βn

∥∥xn − p∥∥ +

(1 − βn − αnγ

)∥∥xn − p∥∥

≤ αn

∥∥γf(xn) − γf(p)∥∥ + αn

∥∥γf(p) −Ap∥∥ +

(1 − αnγ

)∥∥xn − p∥∥

≤ αnγα∥∥xn − p

∥∥ + αn

∥∥γf(p) −Ap∥∥ +

(1 − αnγ

)∥∥xn − p∥∥

=(1 − (

γ − γα)αn

)∥∥xn − p∥∥ +

(γ − γα

)αn

∥∥γf(p) −Ap∥∥

γ − γα

≤ max

{∥∥x1 − p∥∥,

∥∥γf(p) −Ap∥∥

γ − γα

}.

(3.8)

Page 9: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

International Journal of Mathematics and Mathematical Sciences 9

By induction on n, we obtain ‖xn − p‖ ≤ max{‖x0 − p‖, ‖γf(p) −Ap‖/γ − γα‖} for every n ≥ 0and x0 ∈ C, then {xn} is bounded. So, {yn}, {zn}, {Ayn}, {Wnxn}, {Wnzn}, and {f(xn)} arealso bounded.

Next, we claim that ‖xn+1 − xn‖ → 0 as n → ∞. Let x ∈ C and p ∈ ∩∞n=1F(Sn).

Fix k ∈ N for any n ∈ N with n ≥ k, and since Tn,k and Un,k are nonexpansive, we have‖Tn,kx − p‖ ≤ ‖x − p‖ and ‖Un,kx − p‖ ≤ ‖x − p‖, respectively. From (1.5), it follows that‖Skx − p‖ ≤ (1 + (1/λ1/q−1k ))supn‖x − p‖. We can set

M1 = infi

⎛⎝2 +

1

λ1/q−1i

⎞⎠sup

n

∥∥xn − p∥∥ < ∞,

M2 = infi

⎛⎝2 +

1

λ1/q−1i

⎞⎠sup

n

∥∥zn − p∥∥ < ∞.

(3.9)

From (1.11), we have

‖Wn+1xn −Wnxn‖ = ‖Un+1,1xn −Un,1xn‖= ‖t1Tn+1,1Un+1,2xn + (1 − t1)xn − t1Tn,1Un,2xn − (1 − t1)xn‖= t1‖Tn+1,1Un+1,2xn − Tn,1Un,2xn‖= t1‖(θn+1,1S1 + (1 − θn+1,1))Un+1,2xn − Tn,1Un,2xn‖= t1‖(θn,1S1 + (1 − θn,1))Un+1,2xn

−Tn,1Un,2xn + (θn+1,1 − θn,1)(S1Un+1,2xn −Un+1,2xn)‖≤ t1‖Tn,1Un+1,2xn − Tn,1Un,2xn‖ + t1|θn+1,1 − θn,1|‖S1Un+1,2xn −Un+1,2xn‖≤ t1‖Un+1,2xn −Un,2xn‖ + t1|θn+1,1 − θn,1|M1

≤ t1‖Un+1,2xn −Un,2xn‖ + t1anM1

...

≤n∏i=1

ti‖Un+1,n+1xn −Un,n+1xn‖ + anM1

n∑j=1

j∏i=1

ti

≤n∏i=1

ti‖tn+1Tn+1,n+1xn + (1 − tn+1)xn − xn‖ + anM1b

1 − b

≤n+1∏i=1

ti‖Tn+1,n+1xn − xn‖ + anM1b

1 − b

≤(bn+1 + an

b

1 − b

)M1,

(3.10)

Page 10: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

10 International Journal of Mathematics and Mathematical Sciences

for all n ≥ 0. Similarly, we also have ‖Wn+1zn −Wnzn‖ ≤ (bn+1 +an(b/(1−b)))M2 for all n ≥ 0.We compute that

‖zn+1 − zn‖ = ‖(δn+1xn+1 + (1 − δn+1)Wn+1xn+1) − (δnxn + (1 − δn)Wnxn)‖

≤ (1 − δn+1)‖Wn+1xn+1 −Wn+1xn‖ + |δn+1 − δn|‖xn −Wn+1xn‖ + δn+1‖xn+1 − xn‖

+ (1 − δn)‖Wn+1xn −Wnxn‖

≤ (1 − δn+1)‖xn+1 − xn‖ + |δn+1 − δn|‖Wn+1xn − xn‖ + δn+1‖xn+1 − xn‖

+ (1 − δn)‖Wn+1xn −Wnxn‖

= ‖xn+1 − xn‖ + |δn+1 − δn|‖Wn+1xn − xn‖ + (1 − δn)‖Wn+1xn −Wnxn‖

≤ ‖xn+1 − xn‖ + |δn+1 − δn|‖Wn+1xn − xn‖ + ‖Wn+1xn −Wnxn‖

≤ ‖xn+1 − xn‖ + |δn+1 − δn|‖Wn+1xn − xn‖ +(bn+1 + an

b

1 − b

)M1,

(3.11)

and∥∥yn+1 − yn

∥∥ =∥∥(γn+1xn+1 +

(1 − γn+1

)Wn+1zn+1

) − (γnxn +

(1 − γn

)Wnzn

)∥∥

=∥∥γn+1xn+1 +

(1 − γn+1

)Wn+1zn+1 −

(1 − γn+1

)Wn+1zn +

(1 − γn+1

)Wn+1zn

−γnxn −(1 − γn

)Wnzn −

(1 − γn

)Wn+1zn +

(1 − γn

)Wn+1zn − γn+1xn + γn+1xn

∥∥

=∥∥(1 − γn+1

)(Wn+1zn+1 −Wn+1zn) +

(γn − γn+1

)Wn+1zn + γn+1(xn+1 − xn)

+(γn+1 − γn

)xn +

(1 − γn

)(Wn+1zn −Wnzn)

∥∥

≤ (1 − γn+1

)‖Wn+1zn+1 −Wn+1zn‖ +∣∣γn+1 − γn

∣∣‖xn −Wn+1zn‖ + γn+1‖xn+1 − xn‖

+(1 − γn

)‖Wn+1zn −Wnzn‖≤ (

1 − γn+1)‖zn+1 − zn‖ +

∣∣γn+1 − γn∣∣‖Wn+1zn − xn‖ + γn+1‖xn+1 − xn‖

+ ‖Wn+1zn −Wnzn‖

≤ (1 − γn+1

)(‖xn+1 − xn‖ + |δn+1 − δn|‖Wn+1xn − xn‖ +(bn+1 + an

b

1 − b

)M1

)

+∣∣γn+1 − γn

∣∣‖Wn+1zn − xn‖ + γn+1‖xn+1 − xn‖ +(bn+1 + an

b

1 − b

)M2

≤ ‖xn+1 − xn‖ + |δn+1 − δn|‖Wn+1xn − xn‖ +∣∣γn+1 − γn

∣∣‖Wn+1zn − xn‖

+ 2(bn+1 + an

b

1 − b

)M,

(3.12)

Page 11: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

International Journal of Mathematics and Mathematical Sciences 11

where M = infi(2 + (1/λ1/q−1i ))supn(‖xn − p‖ + ‖zn − p‖) < ∞. Observe that we put ln =(xn+1 − βnxn)/1 − βn, then

xn+1 =(1 − βn

)ln + βnxn, ∀n ≥ 0. (3.13)

Now, we have

‖ln+1 − ln‖ =

∥∥∥∥∥αn+1γf(xn+1) +

((1 − βn+1

)I − αn+1A

)yn+1

1 − βn+1− αnγf(xn) +

((1 − βn

)I − αnA

)yn

1 − βn

∥∥∥∥∥

=

∥∥∥∥∥αn+1γf(xn+1)

1 − βn+1+

(1 − βn+1

)yn+1

1 − βn+1− αn+1Ayn+1

1 − βn+1−αnγf(xn)

1 − βn−

(1 − βn

)yn

1 − βn+αnAyn

1 − βn

∥∥∥∥∥

=∥∥∥∥

αn+1

1 − βn+1

(γf(xn+1) −Ayn+1

)+

αn

1 − βn

(Ayn − γf(xn)

)+ yn+1 − yn

∥∥∥∥

≤ αn+1

1 − βn+1

∥∥γf(xn+1) −Ayn+1∥∥ +

αn

1 − βn

∥∥Ayn − γf(xn)∥∥ +

∥∥yn+1 − yn

∥∥

≤ αn+1

1 − βn+1

∥∥γf(xn+1) −Ayn+1∥∥ +

αn

1 − βn

∥∥Ayn − γf(xn)∥∥

+ ‖xn+1 − xn‖ + |δn+1 − δn|‖Wn+1xn − xn‖ +∣∣γn+1 − γn

∣∣‖Wn+1zn − xn‖

+ 2(bn+1 + an

b

1 − b

)M.

(3.14)

Therefore, we have

‖ln+1 − ln‖ − ‖xn+1 − xn‖ ≤ αn+1

1 − βn+1

∥∥γf(xn+1) −Ayn+1∥∥ +

αn

1 − βn

∥∥Ayn − γf(xn)∥∥

+ |δn+1 − δn|‖Wn+1xn − xn‖ +∣∣γn+1 − γn

∣∣‖Wn+1zn − xn‖

+ 2(bn+1 + an

b

1 − b

)M.

(3.15)

From the conditions (i)–(iv), (H2), 0 < b < 1 and the boundedness of {xn}, {f(xn)}, {Ayn},{Wnxn}, and {Wnzn}, we obtain

lim supn→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0. (3.16)

It follows from Lemma 2.8 that limn→∞‖ln − xn‖ = 0. Noting (3.13), we see that

‖xn+1 − xn‖ =(1 − βn

)‖ln − xn‖ −→ 0, (3.17)

Page 12: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

12 International Journal of Mathematics and Mathematical Sciences

as n → ∞. Therefore, we have

limn→∞

‖xn+1 − xn‖ = 0. (3.18)

We also have ‖yn+1 − yn‖ → 0 and ‖zn+1 − zn‖ → 0 as n → ∞. Observing that

∥∥xn − yn

∥∥ ≤ ‖xn − xn+1‖ +∥∥xn+1 − yn

∥∥

≤ ‖xn − xn+1‖ + αn

∥∥γf(xn) −Ayn

∥∥ + βn∥∥xn − yn

∥∥,(3.19)

it follows that

(1 − βn

)∥∥xn − yn

∥∥ ≤ ‖xn − xn+1‖ + αn

∥∥γf(xn) −Ayn

∥∥. (3.20)

By the conditions (i), (ii), (3.18), and the boundedness of {xn}, {f(xn)}, and {Ayn}, we obtain

limn→∞

∥∥xn − yn

∥∥ = 0. (3.21)

Consider∥∥yn −Wnzn

∥∥ =∥∥γnxn +

(1 − γn

)Wnzn −Wnzn

∥∥ = γn‖xn −Wnzn‖,‖zn − xn‖ = ‖δnxn + (1 − δn)Wnxn − xn‖ = (1 − δn)‖Wnxn − xn‖.

(3.22)

It follows that

‖xn −Wnxn‖ ≤ ∥∥xn − yn

∥∥ +∥∥yn −Wnzn

∥∥ + ‖Wnzn −Wnxn‖≤ ∥∥xn − yn

∥∥ + γn‖xn −Wnzn‖ + ‖zn − xn‖≤ ∥∥xn − yn

∥∥ + γn‖xn −Wnxn‖ + γn‖Wnxn −Wnzn‖ + ‖zn − xn‖≤ ∥∥xn − yn

∥∥ + γn‖xn −Wnxn‖ +(1 + γn

)‖zn − xn‖=

∥∥xn − yn

∥∥ + γn‖xn −Wnxn‖ +(1 + γn

)(1 − δn)‖Wnxn − xn‖.

(3.23)

This implies that

(δn

(1 + γn

) − 2γn)‖Wnxn − xn‖ ≤ ∥∥xn − yn

∥∥. (3.24)

From the condition (v) and (3.21), we get

limn→∞

‖Wnxn − xn‖ = 0. (3.25)

On the other hand,

‖Wxn − xn‖ ≤ ‖Wxn −Wnxn‖ + ‖Wnxn − xn‖. (3.26)

Page 13: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

International Journal of Mathematics and Mathematical Sciences 13

From the boundedness of {xn} and using (2.7), we have ‖Wxn − Wnxn‖ → 0 as n → ∞. Itfollows that

limn→∞

‖Wxn − xn‖ = 0. (3.27)

Next, we prove that

lim supn→∞

⟨γf(x∗) −Ax∗, J(xn − x∗)

⟩ ≤ 0, (3.28)

where x∗ = limt→ 0xt with xt being the fixed point of contraction x �→ tγf(x) + (1 − tA)Wx.Noticing that xt solves the fixed point equation xt = tγf(xt) + (1 − tA)Wxt, it follows that

‖xt − xn‖ =∥∥(I − tA)(Wxt − xn) + t

(γf(xt) −Axn

)∥∥. (3.29)

It follows from Lemma 2.1 that

‖xt − xn‖2 =∥∥(I − tA)(Wxt − xn) + t

(γf(xt) −Axn

)∥∥2

≤ (1 − γt

)2‖Wxt − xn‖2 + 2t⟨γf(xt) −Axn, J(xt − xn)

=(1 − γt

)2‖Wxt −Wxn +Wxn − xn‖2 + 2t⟨γf(xt) −Axn, J(xt − xn)

≤ (1 − γt

)2[‖Wxt −Wxn‖2 + 2〈Wxn − xn, J(Wxt − xn)〉]

+ 2t⟨γf(xt) −Axn, J(xt − xn)

≤ (1 − γt

)2[‖xt − xn‖2 + 2‖Wxn − xn‖‖Wxt − xn‖]+ 2t

⟨γf(xt) −Axn, J(xt − xn)

≤ (1 − γt

)2[‖xt − xn‖2 + 2‖Wxn − xn‖(‖xt − xn‖ + ‖Wxn − xn‖)]

+ 2t⟨γf(xt) −Axn, J(xt − xn)

=(1 − 2γt +

(γt

)2)‖xt − xn‖2 + 2(1 − γt

)2‖Wxn − xn‖(‖xt − xn‖ + ‖Wxn − xn‖)

+ 2t⟨γf(xt) −Axt, J(xt − xn)

⟩+ 2t〈Axt −Axn, J(xt − xn)〉,

(3.30)

where

fn(t) = 2(1 − γt

)2‖Wxn − xn‖(‖xt − xn‖ + ‖Wxn − xn‖) −→ 0 as n −→ ∞. (3.31)

Since A is linearly strong and positive and using (2.1), we have

〈Axt −Axn, J(xt − xn)〉 = 〈A(xt − xn), J(xt − xn)〉 ≥ γ‖xt − xn‖2. (3.32)

Page 14: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

14 International Journal of Mathematics and Mathematical Sciences

Substituting (3.32) in (3.30), we have

⟨Axt − γf(xt), J(xt − xn)

⟩ ≤(

γ2t2

− γ

)‖xt − xn‖2 + 1

2tfn(t) + 〈Axt −Axn, J(xt − xn)〉

≤(γt

2− 1

)〈Axt −Axn, J(xt − xn)〉

+12tfn(t) + 〈Axt −Axn, J(xt − xn)〉

=γt

2〈Axt −Axn, J(xt − xn)〉 + 1

2tfn(t).

(3.33)

Letting n → ∞ in (3.33) and noting (3.31) yield that

lim supn→∞

⟨Axt − γf(xt), J(xt − xn)

⟩ ≤ t

2M3, (3.34)

whereM3 > 0 is a constant such thatM3 ≥ γ〈Axt −Axn, J(xt −xn)〉 for all t ∈ (0, 1) and n ≥ 0.Taking t → 0 from (3.34), we have

lim supt→ 0

lim supn→∞

⟨Axt − γf(xt), J(xt − xn)

⟩ ≤ 0. (3.35)

On the other hand, we have

⟨γf(x∗) −Ax∗, J(xn − x∗)

⟩=

⟨γf(x∗) −Ax∗, J(xn − x∗)

− ⟨γf(x∗) −Ax∗, J(xn − xt)

⟩+⟨γf(x∗) −Ax∗, J(xn − xt)

− ⟨γf(x∗) −Axt, J(xn − xt)

⟩+⟨γf(x∗) −Axt, J(xn − xt)

− ⟨γf(xt) −Axt, J(xn − xt)

⟩+⟨γf(xt) −Axt, J(xn − xt)

=⟨γf(x∗) −Ax∗, J(xn − x∗) − J(xn − xt)

+ 〈Axt −Ax∗, J(xn − xt)〉+⟨γf(x∗) − γf(xt), J(xn − xt)

⟩+⟨γf(xt) −Axt, J(xn − xt)

⟩,

(3.36)

which implies that

lim supn→∞

⟨γf(x∗) −Ax∗, J(xn − x∗)

⟩ ≤ lim supn→∞

⟨γf(x∗) −Ax∗, J(xn − x∗) − J(xn − xt)

+ ‖A‖‖xt − x∗‖lim supn→∞

‖xn − xt‖

+ γα‖x∗ − xt‖lim supn→∞

‖xn − xt‖

+ lim supn→∞

⟨γf(xt) −Axt, J(xn − xt)

⟩.

(3.37)

Page 15: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

International Journal of Mathematics and Mathematical Sciences 15

Noticing that J is norm-to-norm uniformly continuous on bounded subsets of C, itfollows from (3.35) that

lim supn→∞

⟨γf(x∗) −Ax∗, J(xn − x∗)

⟩= lim sup

t→ 0lim supn→∞

⟨γf(x∗) −Ax∗, J(xn − x∗)

⟩ ≤ 0. (3.38)

Therefore, we obtain that (3.28) holds.Finally, we prove that xn → x∗ as n → ∞. Now, from Lemma 2.1, we have

‖xn+1 − x∗‖2 = ∥∥αnγf(xn) + βnxn +[(1 − βn

)I − αnA

]yn − x∗∥∥2

=∥∥[(1 − βn

)I − αnA

](yn − x∗) + αn

(γf(xn) −Ax∗) + βn(xn − x∗)

∥∥2

≤ (1 − βn − αnγ

)2∥∥yn − x∗∥∥2 + 2⟨αn

(γf(xn) −Ax∗) + βn(xn − x∗), J(xn+1 − x∗)

=(1 − βn − αnγ

)2∥∥yn − x∗∥∥2 + 2⟨αn

(γf(xn) −Ax∗), J(xn+1 − x∗)

+ 2βn〈xn − x∗, J(xn+1 − x∗)〉

=(1 − βn − αnγ

)2∥∥yn − x∗∥∥2 + 2αnγ⟨f(xn) − f(x∗), J(xn+1 − x∗)

+ 2αn

⟨γf(x∗) −Ax∗, J(xn+1 − x∗)

⟩+ 2βn〈xn − x∗, J(xn+1 − x∗)〉

≤ (1 − βn − αnγ

)2‖xn − x∗‖2 + αnγα(‖xn+1 − x∗‖2 + ‖xn − x∗‖2

)

+ 2αn

⟨γf(x∗) −Ax∗, J(xn+1 − x∗)

⟩+ βn

(‖xn+1 − x∗‖2 + ‖xn − x∗‖2

)

=[(1 − βn − αnγ

)2 + αnγα + βn]‖xn − x∗‖2 + (

αnγα + βn)‖xn+1 − x∗‖2

+ 2αn

⟨γf(x∗) −Ax∗, J(xn+1 − x∗)

⟩,

(3.39)

and consequently,

‖xn+1 − x∗‖2 ≤(1 − βn − αnγ

)2 + αnγα + βn

1 − αnγα − βn‖xn − x∗‖2

+2αn

1 − αnγα − βn

⟨γf(x∗) −Ax∗, J(xn+1 − x∗)

=

[1 − 2αn

(γ − γα

)

1 − αnγα − βn

]‖xn − x∗‖2 + β2n + 2βnαnγ + α2

nγ2

1 − αnγα − βn‖xn − x∗‖2

+2αn

1 − αnγα − βn

⟨γf(x∗) −Ax∗, J(xn+1 − x∗)

=

[1 − 2αn

(γ − γα

)

1 − αnγα − βn

]‖xn − x∗‖2 + 2αn

(γ − γα

)

1 − αnγα − βn

×[β2n + 2βnαnγ + α2

nγ2

2αn

(γ − γα

) M4 +1

γ − γα

⟨γf(x∗) −Ax∗, J(xn+1 − x∗)

⟩],

(3.40)

Page 16: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

16 International Journal of Mathematics and Mathematical Sciences

where M4 is an appropriate constant such that M4 ≥ supn≥0‖xn − x∗‖2. Setting cn = 2αn(γ −γα)/(1 − αnγα − βn) and bn = (β2n + 2βnαnγ + α2

nγ2)/(2αn(γ − γα))M4 + (1/(γ − γα))〈γf(x∗) −

Ax∗, J(xn+1 − x∗)〉, then we have

‖xn+1 − x∗‖2 ≤ (1 − cn)‖xn − x∗‖2 + cnbn. (3.41)

By (3.28), (i) and applying Lemma 2.7 to (3.41), we have xn → x∗ as n → ∞. This completesthe proof.

Corollary 3.2. Let E be a real q-uniformly smooth and strictly convex Banach space which admitsa weakly sequentially continuous duality mapping J from E to E∗. Let C be a nonempty closed andconvex subset of E which is also a sunny nonexpansive retraction of E such that C + C ⊂ C. Let Abe a strongly positive linear bounded operator on E with coefficient γ > 0 such that 0 < γ < γ/α,and let f be a contraction of C into itself with coefficient α ∈ (0, 1). Let Si, i = 1, 2, . . ., be λi-strict pseudocontractions from C into itself such that ∩∞

n=1F(Sn)/= ∅ and inf λi > 0. Assume that thesequences {αn}, {βn}, {γn}, and {δn} in (0, 1) satisfy the following conditions:

(i)∑∞

n=0 αn = ∞; and limn→∞ αn = 0,

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

(iii) limn→∞|γn+1 − γn| = 0,

(iv) limn→∞|δn+1 − δn| = 0,

(v) δn(1 + γn) − 2γn > a for some a ∈ (0, 1),

and the sequence {θn} satisfies (H1). Then, the sequence {xn} generated by

x0 ∈ C chosen arbitrarily,

zn = δnxn + (1 − δn)Wnxn,

yn = γnxn +(1 − γn

)Wnzn,

xn+1 = αnγf(xn) + βnxn +((1 − βn

)I − αnA

)yn, ∀n ≥ 0

(3.42)

converges strongly to x∗ ∈ ∩∞n=1F(Sn), which solves the following variational inequality:

⟨γf(x∗) −Ax∗, J

(p − x∗)⟩ ≤ 0, ∀f ∈ ΠC, p ∈

∞⋂n=1

F(Sn). (3.43)

Corollary 3.3. Let E be a real q-uniformly smooth and strictly convex Banach space which admitsa weakly sequentially continuous duality mapping J from E to E∗. Let C be a nonempty closed andconvex subset of E which is also a sunny nonexpansive retraction of E such that C + C ⊂ C. LetA be a strongly positive linear bounded operator on E with coefficient γ > 0 such that 0 < γ <γ/α, and let f be a contraction of C into itself with coefficient α ∈ (0, 1). Let Si, i = 1, 2, . . ., be anonexpansive mapping from C into itself such that ∩∞

n=1F(Sn)/= ∅ and inf λi > 0. Assume that thesequences {αn}, {βn}, {γn}, and {δn} in (0, 1) satisfy the following conditions:

(i)∑∞

n=0 αn = ∞; and limn→∞ αn = 0,

Page 17: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

International Journal of Mathematics and Mathematical Sciences 17

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

(iii) limn→∞|γn+1 − γn| = 0,

(iv) limn→∞|δn+1 − δn| = 0,

(v) δn(1 + γn) − 2γn > a for some a ∈ (0, 1).

Then, the sequence {xn} generated by

x0 ∈ C chosen arbitrarily,

zn = δnxn + (1 − δn)Wnxn,

yn = γnxn +(1 − γn

)Wnzn,

xn+1 = αnγf(xn) + βnxn +((1 − βn

)I − αnA

)yn, ∀n ≥ 0

(3.44)

converges strongly to x∗ ∈ ∩∞n=1F(Sn), which solves the following variational inequality:

⟨γf(x∗) −Ax∗, J

(p − x∗)⟩ ≤ 0, ∀f ∈ ΠC, p ∈

∞⋂n=1

F(Sn). (3.45)

Remark 3.4. Theorem 3.1, Corollaries 3.2, and 3.3, improve and extend the correspondingresults of Cai and Hu [3], Dong et al. [2], and Katchang and Kumam [4, 5] in the followingsenses.

(i) For the mappings, we extend the mappings from an infinite family of nonexpansivemappings to an infinite family of strict pseudocontraction mappings.

(ii) For the algorithms, we propose newmodified Ishikawa iterative algorithms, whichare different from the ones given in [2–5] and others.

Acknowledgments

The authors would like to thank The National Research Council of Thailand (NRCT)and the Faculty of Science KMUTT for financial support. Furthermore, they also wouldlike to thank the National Research University Project of Thailand’s Office of the HigherEducation Commission for financial support (NRU-CSEC Project no. 54000267). Finally, theyare grateful for the reviewers for the careful reading of the paper and for the suggestionswhich improved the quality of this work.

References

[1] F. E. Browder and W. V. Petryshyn, “Construction of fixed points of nonlinear mappings in Hilbertspace,” Journal of Mathematical Analysis and Applications, vol. 20, pp. 197–228, 1967.

[2] Q.-L. Dong, S. He, and F. Su, “Strong convergence of an iterative algorithm for an infinite family ofstrict pseudo-contractions in Banach spaces,” Applied Mathematics and Computation, vol. 216, no. 3, pp.959–969, 2010.

[3] G. Cai and C. S. Hu, “Strong convergence theorems of a general iterative process for a finite familyof λi-strict pseudo-contractions in q-uniformly smooth Banach spaces,” Computers &Mathematics withApplications, vol. 59, no. 1, pp. 149–160, 2010.

Page 18: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

18 International Journal of Mathematics and Mathematical Sciences

[4] P. Katchang and P. Kumam, “Strong convergence of the modified Ishikawa iterative methodfor infinitely many nonexpansive mappings in Banach spaces,” Computers & Mathematics withApplications, vol. 59, no. 4, pp. 1473–1483, 2010.

[5] P. Katchang and P. Kumam, “Corrigendum to “Strong convergence of the modified Ishikawa iterativemethod for infinitely many nonexpansive mappings in Banach spaces” [Comput. Math. Appl. 59(2010) 1473-1483],” Computers & Mathematics with Applications, vol. 61, no. 1, p. 148, 2011.

[6] K. Shimoji and W. Takahashi, “Strong convergence to common fixed points of infinite nonexpansivemappings and applications,” Taiwanese Journal of Mathematics, vol. 5, no. 2, pp. 387–404, 2001.

[7] W. Takahashi, “Weak and strong convergence theorems for families of nonexpansive mappings andtheir applications,” Annales Universitatis Mariae Curie-Skłodowska. Sectio A, vol. 51, no. 2, pp. 277–292,1997.

[8] Y. J. Cho, S. M. Kang, and X. Qin, “Strong convergence of an implicit iterative process for an infinitefamily of strict pseudocontractions,” Bulletin of the KoreanMathematical Society, vol. 47, no. 6, pp. 1259–1268, 2010.

[9] G. Cai and C. S. Hu, “Strong convergence theorems of modified Ishikawa iterative process with errorsfor an infinite family of strict pseudo-contractions,”Nonlinear Analysis: Theory, Methods & Applications,vol. 71, no. 12, pp. 6044–6053, 2009.

[10] W. Takahashi, Nonlinear Functional Analysis: Fixed Point Theory and Its Applications, YokohamaPublishers, Yokohama, Japan, 2000.

[11] R. E. Bruck Jr., “Nonexpansive projections on subsets of Banach spaces,” Pacific Journal of Mathematics,vol. 47, pp. 341–355, 1973.

[12] S. Reich, “Asymptotic behavior of contractions in Banach spaces,” Journal of Mathematical Analysis andApplications, vol. 44, pp. 57–70, 1973.

[13] S.-S. Chang, “On Chidume’s open questions and approximate solutions of multivalued stronglyaccretive mapping equations in Banach spaces,” Journal of Mathematical Analysis and Applications, vol.216, no. 1, pp. 94–111, 1997.

[14] H. K. Xu, “Inequalities in Banach spaces with applications,” Nonlinear Analysis: Theory, Methods &Applications, vol. 16, no. 12, pp. 1127–1138, 1991.

[15] H. Zhang and Y. Su, “Strong convergence theorems for strict pseudo-contractions in q-uniformlysmooth Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 9, pp. 3236–3242, 2009.

[16] H. K. Xu, “An iterative approach to quadratic optimization,” Journal of Optimization Theory andApplications, vol. 116, no. 3, pp. 659–678, 2003.

[17] T. Suzuki, “Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter non-expansive semigroups without Bochner integrals,” Journal of Mathematical Analysis and Applications,vol. 305, no. 1, pp. 227–239, 2005.

Page 19: Strong Convergence Theorems of Modified Ishikawa Iterative ...downloads.hindawi.com/journals/ijmms/2011/549364.pdf · 2 International Journal of Mathematics and Mathematical Sciences

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of