strong-field electromagnetic tests of general relativistic ...luthier/vincent/pdf/apc2012.pdf ·...

39
Context Rossby non-Kerr Strong-field electromagnetic tests of general relativistic effects Frédéric VINCENT 1 1 Nicolaus Copernicus Astronomical Center, Warsaw 1/38 Frédéric VINCENT GR strong-field tests

Upload: others

Post on 07-Nov-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Context Rossby non-Kerr

    Strong-field electromagnetic tests of generalrelativistic effects

    Frédéric VINCENT1

    1Nicolaus Copernicus Astronomical Center, Warsaw

    1/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    1 A new era of observations

    2 Rossby wave instability for high frequency QPOs

    3 Ray-tracing simulations in non-Kerr spacetime

    4 Conclusion

    2/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    GRAVITY (2014)EHT (2015)

    LOFT (2020)

    A new era of strong-field GR observations

    GRAVITY : probe the Galactic center quasi-periodicoscillations (QPOs)EHT : image the silhouette of a black holeLOFT : probe X-ray binaries QPOs

    3/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    GC flare light curve (Hamaus+09)

    Fréquence

    DSP

    GRS1915+105 power spectrum (Remillard+06)

    First strong-field probe : QPOs

    Observations :light curve / power spectrum / rms / astrometry...

    4/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Synchrotron

    Magneticfield

    BH

    Rotating HotSpot

    Hot spot model for GC flaresRossby wave instability model

    (Credit : P. Varniere)

    Epicyclic resonance model (Török 05)

    First strong-field probe : QPOsModel :Hot spot, MHD instability, epicyclic resonance, jets...

    5/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    First strong-field probe : QPOs

    Probably no model is able of reproducing ALL observedconstraintsEven reproducing a few is not easy...Goal : discriminate some models by showing they cannotaccount for some observables

    My interestGRAVITY, LOFT : sharp precision in infrared astrometry /X-ray timingGoal : develop observable exclusive predictions foralternative QPO models

    6/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Geometrically thin disk, GYOTO simulation

    Second strong-field probe : SilhouetteBH silhouette = due to photons orbiting close to the event horizon onthe observer’s sky.

    Silhouette apparent angular size depends on BH spin.

    7/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Second strong-field probe : Silhouette

    Perfect ‘astrophysics-unpolluted’ probe of strong-field GRWill be different for different metrics (Kerr, or non-Kerr)

    My interestEHT : sharp angular resolution at Sgr A* and M87Goal : develop silhouette computations for alternativemetrics

    My main toolStrong-field⇒ ray-tracing (http://gyoto.obspm.fr/)

    → Vincent, Paumard, Gourgoulhon, Perrin, Class. Quantum Grav. 28, 225011 (2011)

    8/38 Frédéric VINCENT GR strong-field tests

    http://gyoto.obspm.fr/

  • Context Rossby non-Kerr

    Outline of this talkQPOs :→ first ray-traced observation simulations in the context ofRossby wave instability QPO modelSilhouette :→ first ray-traced observation simulations in non-Kerrspacetime

    9/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    1 A new era of observations

    2 Rossby wave instability for high frequency QPOs

    3 Ray-tracing simulations in non-Kerr spacetime

    4 Conclusion

    10/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    rr0

    Κ

    1.2 1.4 1.6 1.8 2.00

    1

    2

    3

    4

    5

    rr0

    L

    Rossby wave instabilityTriggered where the inverse vortensityL = ΣΩ/2κ2 × p/Σγ shows an extremum→ extremum of Σ (density bump)→ extremum of κ (epicyclic frequency bump)

    11/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Meheut+10

    Credit : P. Varniere

    Rossby wave instabilityVortices develop at the extremum location rextDensity waves extend on both sides of rextr > rext ⇒ wave faster than gas rotationr < rext ⇒ wave slower than gas rotation→ Spiral wave

    12/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Credit : P. VarniereVincent+12

    Rossby wave instabilityNumber of vortices = number of spiral arms = modenumber mThe dominant mode evolves from m >≈ 1 to m = 1Different modes can coexist

    13/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Rossby Wave Instability model of QPOsTagger&Varniere 2006 proposed RWI to account for HFQPOs in microquasarsAccretion disk around BH are very unstable to RWIparticularly if B 6= 0, β ≈ 1Coexistence of modes is a natural explanation for 2 :3resonanceAnother instability, close to RWI, the Accretion EjectionInstability, can account for LF QPOsThe two instabilities can coexist (thus explaining bothtypes of QPOs)

    Need for RWI observation simulations !

    14/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Simulated 2D disk imageBeaming : approaching side strongly enhancedHigh order imagesDifferent emission times for different photons

    15/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    −0.45

    0.45timpact

    i=5°

    TISCO

    TISCO −0.45

    0.45TISCO

    TISCO

    timpact

    i=85°

    observer

    Simulated 2D disk image

    Different emission times for different photonsEffect depending on inclinationLensing of photons by BH→ concentrate ‘behind’ the BHConsequence : more time slices of data needed at higherinclinationHowever : beaming moderates this effect

    16/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    0 5 10

    0.9

    1.0

    1.1

    t / tISCO

    Norm

    aliz

    ed flu

    x

    0 5 100

    2

    4

    6

    8

    t / tISCO

    Dis

    pers

    ion (%

    )

    2keV

    85°

    45°

    Simulated 2D light curvesRadiative process = blackbodyRWI able of modulating flux at a few percent levelModulation increasing with inclination (beaming)

    17/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    0 5 10

    0.9

    1.0

    1.1

    t / tISCO

    Norm

    aliz

    ed flu

    x

    Simulated 2D light curves : mode analysisTime sampling allows to see mode evolutionThis is a prediction of the model, to compare withobservations

    18/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    0 5 10 15

    0.9

    1.0

    1.1

    t / tISCO

    Nor

    mal

    ized

    flux

    t / tISCO

    Nor

    mal

    ized

    flux

    t / tISCO

    Nor

    mal

    ized

    flux

    0 5 10 15 0

    2

    4

    6

    8

    t / tISCO

    Dis

    pers

    ion (

    %)

    t / tISCO

    Dis

    pers

    ion (

    %)

    t / tISCO

    Dis

    pers

    ion (

    %)

    Simulated 3D light curves

    RWI exists at 3D : Meheut et al. (2010)Radiative process = bremsstrahlungRWI still able of modulating flux at a few percent level

    19/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    0 5 10 15

    0.9

    1.0

    1.1

    t / tISCO

    Nor

    mal

    ized

    flux

    t / tISCO

    Nor

    mal

    ized

    flux

    t / tISCO

    Nor

    mal

    ized

    flux

    Simulated 3D light curves : mode analysis

    Coarser time sampling, but mode evolution still visible

    20/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Section conclusionRWI able to modulate the ray-traced light curve at 2D and3DMode evolution is visible on the light curveUse this signature to test the model with LOFT ?

    → Vincent, Meheut, Varniere, Paumard, 2012, submitted to A&A,accepted providing minor modifs.

    21/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Perspectives : oscillating torus model

    0 1 2

    1.00

    1.02

    1.04

    Number of periods (2*π/ωθ)

    Vertical deformation

    Nor

    mal

    ized

    flux

    Mazur+12 (in prep.)

    In progress : the oscillating torus model

    Epicyclic oscillations of a slender torus

    Light curves under construction...

    → collab. with G. Mazur, M. Abramowicz (at CAMK)To be compared with RWI predictions

    Can LOFT discriminate ?

    22/38 Frédéric VINCENT GR strong-field tests

    MovieOscilTorusVertical.mpgMedia File (video/mpeg)

  • Context Rossby non-Kerr

    Perspectives : GC flares

    Synchrotron

    Magneticfield

    BH

    Rotating HotSpot

    −40 −20 0

    −20

    0

    20

    x (µas)

    y (µ

    as)

    Vincent+11

    In progress : astrometric signatures of flare models

    Done : astrometric signature of hot spot model as observed byGRAVITY

    In progress : astrometric signature for RWI, jet models

    → collab. with P. Varniere, F. Casse, T. Paumard, G. Perrin(at APC + LESIA)

    Can GRAVITY discriminate ?

    23/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    1 A new era of observations

    2 Rossby wave instability for high frequency QPOs

    3 Ray-tracing simulations in non-Kerr spacetime

    4 Conclusion

    24/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    74 5 3+1 decomposition of Einstein equation

    5.2 Coordinates adapted to the foliation

    5.2.1 Definition

    The system (5.17)+(5.20)+(5.21) is a system of tensorial equations. In order to trans-form it into a system of partial differential equations (PDE), one must introduce co-ordinates on the spacetime manifold M , which we have not done yet. Coordinatesadapted to the foliation (Σt)t∈R are set in the following way. On each hypersurfaceΣt one introduces some coordinate system (xi) = (x1,x2,x3). If this coordinate sys-tem varies smoothly between neighbouring hypersurfaces, then (xα) = (t,x1,x2,x3)constitutes a well-behaved coordinate system on M . We shall call (xi) = (x1,x2,x3)the spatial coordinates.

    Let us denote by (∂∂∂ α) = (∂∂∂ t ,∂∂∂ i) the natural basis of Tp(M ) associated with thecoordinates (xα), i.e. the set of vectors

    ∂∂∂ t :=∂∂ t

    (5.23)

    ∂∂∂ i :=∂

    ∂xi, i ∈ {1,2,3}. (5.24)

    Notice that the vector ∂∂∂ t is tangent to the lines of constant spatial coordinates, i.e.the curves of M defined by (x1 = K1,x2 = K2,x3 = K3), where K1, K2 and K3 arethree constants (cf. Fig. 5.1). We shall call ∂∂∂ t the time vector.

    Remark 5.5. ∂∂∂ t is not necessarily a timelike vector. This will be discussed furtherbelow [Eqs. (5.32)-(5.34)].

    Fig. 5.1 Coordinates (xi) on the hypersurfaces Σt : each line xi = const cuts across the foliation(Σt)t∈R and defines the time vector ∂∂∂ t and the shift vector βββ of the spacetime coordinate system(xα ) = (t,xi).

    Source : Gourgoulhon 2012, 3+1 Formalism in General Relativity, Springer

    3+1 formalismGoal : ray-tracing in any numerical metric (not only Kerr !)Numerical relativity speaks 3+1 formalism : foliatingspacetime in 3D hypersurface, parameterized by t

    25/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Ray-tracing in non-Kerr spacetimesGYOTO can handle any numerical metricIt should be given in the 3+1 formalismi.e. GYOTO needs lapse, shift, extrinsic curvature at anypointThe metric can be non-stationary, non-axially-symmetric,non-asymptotically-flat, etc...

    Why doing this ?

    Possibility to handle spacetimes much more diversifiedthan (nearly-)Kerr spacetime, to which all ray-tracing codesare constrained

    26/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    3+1 geodesic equation4D geodesic equation :

    d2Xα

    dλ2+ 4Γαµν

    dXµ

    dλdX ν

    dλ= 0 (1)

    3+1 equivalent :

    dX i

    dt= NV i − βi , (2a)

    dV i

    dt= NV j

    [V i(∂j ln N − Kjk V k

    )+ 2K i j −

    3Γijk Vk]− γ ij∂j N − V j∂jβi . (2b)

    → Vincent, Gourgoulhon, Novak, Class. Quantum Grav. 29, 245005 (2012)

    27/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    200 400 600 8000.

    1.

    2.

    3.

    10−5

    t (M)

    Err

    or

    Ke

    rr a

    na

    lytica

    l /

    nu

    me

    rica

    l

    Kerr testIntegration of one geodesic in analytical / numerical KerrThis geodesic goes very close to the BHPlotted : relative error→ nice agreement

    28/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    0

    0.15

    Stationary neutron starsMetrics computed by the CoCoNuT codeNeutron stars either non-rotating or rotating at 716 HzEmission : blackbody at 106 K

    29/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Collapsing neutron star

    Metrics of collapsing non-rotating neutron star computedby CoCoNuTNon-stationary metric, still axially-symetricMetric fields are 3rd-order interpolated in timeGeodesics either hit the star’s surface, or accumulate nearthe event horizonEmission at star’s surface assumed to be still blackbodyGYOTO computes the successive images...

    30/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Non-rotating collapsing neutron star

    0

    0.02

    31/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Some non-trivial effectsThe angular size of the image does not vary muchHowever, the radius of the star varies a lot (factor ≈ 2.5)The image appears much bigger than in flat spacetime !Reason : BH lensingPhotons are emitted at different timesThat’s why the horizon appears first at the centerThe radius of the star at emission is different for differentphotons...This effect will become probably very important whenrealistic emission is taken into account

    32/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Section conclusionThis is the first example of ray-tracing computation in anon-Kerr spacetimeInterest of stationary NS ray-tracing : compute realisticlight curves, with realistic atmosphere (on-going)→ collab. with M. Bejger, P. Haensel, A. Rozanska, L.Zdunik (at CAMK)Collapsing neutron star case is interesting in terms ofspacetime visualization mainlyCan be used for visualizing other kind of spacetimes

    33/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Perspective : Boson starsFeinblum&McKinley (1968) ; Kaup (1968) ;Ruffini&Bonazzola (1969)Boson star = assembly of interacting spin-0 bosonssubject to gravityEquations of this system : Einstein equations +Klein-Gordon equationFor a non-rotating boson star, the solution is matched toSchwarzschild at some r ≡ rBS, with MSch ≡ MBSThe mass MBS can take values from NS typical masses toSMBH masses

    34/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Perspective : Boson starsPerspective of EHT : 0.1 angular Schwarzschild radiusprecision at GC...... is it possible to distinguish a Kerr BH from a rotatingboson star by imaging the silhouette ?Near future : ray-tracing computation by GYOTO in anumerically computed boson star spacetime→ collab. with C. Somé, O. Straub, E. Gourgoulhon (atLUTH)

    35/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    1 A new era of observations

    2 Rossby wave instability for high frequency QPOs

    3 Ray-tracing simulations in non-Kerr spacetime

    4 Conclusion

    36/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    ConclusionNew era of observations : access to the vicinity of thehorizon of a BH→ GRAVITY (2014), EHT (2015), LOFT (2020)Needed : accurate observation simulations of strong-fieldphenomena

    First probe of strong-field GR : QPOsRWI is able of modulating the flux at a few % levelMode evolution signature in the light curve→ Compare this mode signature to other models→ Use astrometric signature of GC flares

    37/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Conclusion

    Second probe of strong-field GR : SilhouettePure gravitation signatureGYOTO allows to compute a non-BH silhouetteStrongest alternative to BH : boson stars→ Compare a BH silhouette with a boson star silhouette→ Also at hand : compare a BH silhouette with a non-GRBH silhouette

    Thanks for your attention !

    38/38 Frédéric VINCENT GR strong-field tests

  • Context Rossby non-Kerr

    Conclusion

    Second probe of strong-field GR : SilhouettePure gravitation signatureGYOTO allows to compute a non-BH silhouetteStrongest alternative to BH : boson stars→ Compare a BH silhouette with a boson star silhouette→ Also at hand : compare a BH silhouette with a non-GRBH silhouette

    Thanks for your attention !

    38/38 Frédéric VINCENT GR strong-field tests

    A new era of observationsRossby wave instability for high frequency QPOsRay-tracing simulations in non-Kerr spacetime