strong regular l-fuzzy graphs

7
@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 1 | Issue – 5 | July-Aug 2017 Page: 503 ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume - 1 | Issue – 5 International Journal of Trend in Scientific Research and Development (IJTSRD) UGC Approved International Open Access Journal Strong Regular L-Fuzzy Graphs R. Seethalakshmi Saiva Bhanu Kshatriya College, Aruppukottai, Tamilnadu, India R.B. Gnanajothi V.V.Vanniaperumal College For Women, Virudhunagar, Tamilnadu, India ABSTRACT In this paper, the notion of regular and strong regular L-fuzzy graph is introduced. The conditions for strong regularity of L-fuzzy graphs on cycle and star graph are derived. Keywords: L-fuzzy graph, strong L-fuzzy graph, regular L-fuzzy graph, strong regular L-fuzzy graph AMS Classification: 05C72, 03E72 1. INTRODUCTION The first definition of fuzzy graph was proposed by Kaufmann [3] using fuzzy relations introduced by Zadeh[9]. The theory of fuzzy graphs was introduced by Azriel Rosenfeld [7] in 1975. Generalizing the notion of fuzzy sets, L. Goguen [2] introduced the notion of L-fuzzy sets. Pramada Ramachandran and Thomas [6] introduced the notion of L-fuzzy graphs and the degree of a vertex in a L-fuzzy graph. This motivated us to introduce the notion of regular L-fuzzy graphs and strong regular L-fuzzy graphs. Some preliminary, but primary work has been carried out. Comparison of set magic graphs and L-fuzzy structure introduces a new platform to work on fuzzy graph. 2. PRELIMINARIES Definition 2.1: [4] A fuzzy graph = ( , ) is a pair of functions ∢ β†’ [0,1] and : β†’ [0,1] with (,) ≀ () ∧ (),βˆ€ , ∈ , where V is a finite nonempty set and ∧ denote minimum. Definition 2.2: [4] The graph βˆ— = ( , ) is called the underlying crisp graph of the fuzzy graph G, where = { /() β‰  } and = {(, ) ∈ /(, ) β‰  0}. Definition 2.3: [5] A fuzzy graph = ( , ) is defined to be a strong fuzzy graph if (, ) = () ∧ (), βˆ€ (, ) ∈ .

Upload: ijtsrd

Post on 12-Aug-2019

0 views

Category:

Education


0 download

DESCRIPTION

In this paper, the notion of regular and strong regular L fuzzy graph is introduced. The conditions for strong regularity of L fuzzy graphs on cycle and star graph are derived. R. Seethalakshmi | R.B. Gnanajothi "Strong Regular L-Fuzzy Graphs" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-1 | Issue-5 , August 2017, URL: https://www.ijtsrd.com/papers/ijtsrd2333.pdf Paper URL: http://www.ijtsrd.com/mathemetics/applied-mathamatics/2333/strong-regular-l-fuzzy-graphs/r-seethalakshmi

TRANSCRIPT

Page 1: Strong Regular L-Fuzzy Graphs

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 1 | Issue – 5 | July-Aug 2017 Page: 503

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume - 1 | Issue – 5

International Journal of Trend in Scientific Research and Development (IJTSRD)

UGC Approved International Open Access Journal

Strong Regular L-Fuzzy Graphs

R. Seethalakshmi

Saiva Bhanu Kshatriya College,

Aruppukottai, Tamilnadu, India

R.B. Gnanajothi

V.V.Vanniaperumal College For Women,

Virudhunagar, Tamilnadu, India

ABSTRACT

In this paper, the notion of regular and strong regular L-fuzzy graph is introduced. The conditions for strong

regularity of L-fuzzy graphs on cycle and star graph are derived.

Keywords: L-fuzzy graph, strong L-fuzzy graph, regular L-fuzzy graph, strong regular L-fuzzy graph

AMS Classification: 05C72, 03E72

1. INTRODUCTION

The first definition of fuzzy graph was proposed by Kaufmann [3] using fuzzy relations introduced by

Zadeh[9]. The theory of fuzzy graphs was introduced by Azriel Rosenfeld [7] in 1975. Generalizing the notion

of fuzzy sets, L. Goguen [2] introduced the notion of L-fuzzy sets. Pramada Ramachandran and Thomas [6]

introduced the notion of L-fuzzy graphs and the degree of a vertex in a L-fuzzy graph. This motivated us to

introduce the notion of regular L-fuzzy graphs and strong regular L-fuzzy graphs. Some preliminary, but

primary work has been carried out. Comparison of set magic graphs and L-fuzzy structure introduces a new

platform to work on fuzzy graph.

2. PRELIMINARIES

Definition 2.1: [4] A fuzzy graph 𝐺 = ( 𝜎 , πœ‡ ) is a pair of functions 𝜎 ∢ 𝑉 β†’ [0,1] and πœ‡: 𝑉 𝑋 𝑉 β†’ [0,1]

with πœ‡(𝑒, 𝑣) ≀ 𝜎(𝑒) ∧ 𝜎(𝑣), βˆ€ 𝑒, 𝑣 ∈ 𝑉, where V is a finite nonempty set and ∧ denote minimum.

Definition 2.2: [4] The graph πΊβˆ— = ( 𝑉 , 𝐸 ) is called the underlying crisp graph of the fuzzy graph G, where

𝑉 = { 𝑒/𝜎(𝑒) β‰  π‘œ } and 𝐸 = {(𝑒, 𝑣) ∈ 𝑉 𝑋 𝑉 /πœ‡(𝑒, 𝑣) β‰  0}.

Definition 2.3: [5] A fuzzy graph 𝐺 = ( 𝜎 , πœ‡ ) is defined to be a strong fuzzy graph if

πœ‡(𝑒, 𝑣) = 𝜎(𝑒) ∧ 𝜎(𝑣), βˆ€ (𝑒, 𝑣) ∈ 𝐸.

Page 2: Strong Regular L-Fuzzy Graphs

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 1 | Issue – 5 | July-Aug 2017 Page: 504

Definition 2.4: [5] A fuzzy graph 𝐺 = ( 𝜎 , πœ‡ ) is defined to be a complete fuzzy graph if

πœ‡(𝑒, 𝑣) = 𝜎(𝑒) ∧ 𝜎(𝑣), βˆ€ 𝑒, 𝑣 ∈ 𝑉.

Definition 2.5: [5] Let 𝐺 = ( 𝜎 , πœ‡ ) be a fuzzy graph on πΊβˆ— = ( 𝑉 , 𝐸 ). The fuzzy degree of a node 𝑒 ∈ 𝑉 is

defined as (𝑓𝑑)(𝑒) = βˆ‘ πœ‡(𝑒, 𝑣)𝑒≠𝑣,π‘£βˆˆπ‘‰ . G is said to be regular fuzzy graph if each vertex has same fuzzy

degree. If (𝑓𝑑)(𝑣) = π‘˜, βˆ€ 𝑣 ∈ 𝑉, then G is said to be π‘˜ βˆ’regular fuzzy graph.

Definition 2.6: [6] Let (𝐿,∨,∧) be a complete lattice. A nonempty set V together with a pair of functions 𝜎 ∢

𝑉 β†’ 𝐿 and πœ‡: 𝑉 𝑋 𝑉 β†’ 𝐿 with πœ‡(𝑒, 𝑣) ≀ 𝜎(𝑒) ∧ 𝜎(𝑣), βˆ€ 𝑒, 𝑣 ∈ 𝑉, is called an L-fuzzy graph. It is denoted

by 𝐺𝐿 = (𝑉, 𝜎, πœ‡).

Definition 2.7: [6] Let 𝐺𝐿 = (𝑉, 𝜎, πœ‡) be an L-fuzzy graph. The L-fuzzy degree 𝑑𝐿(𝑒) of a vertex 𝑒 in 𝐺𝐿 is

defined as 𝑑𝐿(𝑒) = ⋁ πœ‡(𝑒, 𝑣)𝑒 βˆˆπ‘‰,𝑒≠𝑣 .

Definition 2.8 : [1] A graph G=(V,E) is said to have a set-magic labeling if its edges can be assigned distinct

subsets of a set X such that for every vertex u of G, the union of the subsets assigned to the edges incident at u

is X.

A graph is said to be a set-magic graph if it admits a set-magic labeling.

3. REGULAR L-FUZZY GRAPH

The above definition of degree in an L-fuzzy graph does not coincide with usual definition of degree in a fuzzy

graph. Any fuzzy graph can be treated as an L-fuzzy graph taking the lattice ( [0,1], ≀ ). Fuzzy degree of a

vertex 𝑒, denoted as 𝑓𝑑(𝑒), defined as the sum of πœ‡(𝑒, 𝑣), where 𝑒 ∈ 𝑉, 𝑒 β‰  𝑣.

For further discussion, L-fuzzy degree will be taken into account.

Definition 3.1: Let 𝐺𝐿 = (𝑉, 𝜎, πœ‡) be an L-fuzzy graph. 𝐺𝐿 is said to be a regular L-fuzzy graph if each vertex

has the same L-fuzzy degree. If 𝑑𝐿(𝑣) = π‘˜, βˆ€ 𝑣 ∈ 𝑉, for some π‘˜ ∈ 𝐿, then 𝐺𝐿 is called a π‘˜ βˆ’ regular L-fuzzy

graph.

Example 3.2 : Let 𝑆 = {π‘Ž, 𝑏, 𝑐} and L= β„˜(𝑆), the power set of 𝑆.

Then (𝐿, βŠ† ) is a complete lattice. Let 𝑉 = { 𝑣1 , 𝑣2 , 𝑣3, 𝑣4, 𝑣5 }

Define 𝜎: 𝑉 β†’ 𝐿 and πœ‡: 𝑉 𝑋 𝑉 β†’ 𝐿 by 𝜎(𝑣1 ) = {π‘Ž}, 𝜎(𝑣2 ) = {π‘Ž, 𝑏} = 𝜎(𝑣4 ),

𝜎(𝑣3 ) = 𝜎(𝑣5 ) = {π‘Ž, 𝑐} and

πœ‡(𝑣1, 𝑣2) = πœ‡(𝑣1, 𝑣3) = πœ‡(𝑣1, 𝑣4) = πœ‡(𝑣2, 𝑣3) = πœ‡(𝑣3, 𝑣5) = πœ‡(𝑣3, 𝑣4) = {π‘Ž}.

Then 𝑑𝐿(𝑒) = βˆ¨π‘£ βˆˆπ‘‰,𝑒≠𝑣 πœ‡(𝑒, 𝑣) = {π‘Ž}, βˆ€π‘’ ∈ 𝑉. Then 𝐺𝐿 = (𝑉, 𝜎, πœ‡) is a regular L-fuzzy graph.

Example 3.3 : Consider the set S and the complete lattice L= β„˜(𝑆) given as in Example 3.2.

Let 𝑉 = { 𝑣1 , 𝑣2 , 𝑣3}

Page 3: Strong Regular L-Fuzzy Graphs

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 1 | Issue – 5 | July-Aug 2017 Page: 505

Define 𝜎: 𝑉 β†’ 𝐿 and πœ‡: 𝑉𝑋 𝑉 β†’ 𝐿 by 𝜎(𝑣1 ) = {π‘Ž, 𝑏, 𝑐}, 𝜎(𝑣2 ) = {π‘Ž, 𝑏}, 𝜎(𝑣3 ) = {π‘Ž, 𝑏} and πœ‡(𝑣1, 𝑣2) = {𝑏},

πœ‡(𝑣2, 𝑣3) = {π‘Ž, 𝑏}, πœ‡(𝑣3, 𝑣1) = {π‘Ž}. Then 𝐺𝐿 = (𝑉, 𝜎, πœ‡) is a L-fuzzy graph.

Example 3.4 : Consider the set S and β„˜(𝑆) as given in example 3.2.

Let 𝑉 = { 𝑣1 , 𝑣2 , 𝑣3, 𝑣4, 𝑣5 }

Define 𝜎: 𝑉 β†’ 𝐿 and πœ‡: 𝑉𝑋 𝑉 β†’ 𝐿 by

𝜎(𝑣1 ) = {π‘Ž}, 𝜎(𝑣2 ) = {π‘Ž, 𝑏}, 𝜎(𝑣3 ) = {π‘Ž, 𝑐}, 𝜎(𝑣4 ) = {π‘Ž, 𝑏, 𝑐}, 𝜎(𝑣5 ) = {𝑏, 𝑐} and

πœ‡(𝑣1, 𝑣2) = πœ‡(𝑣2, 𝑣3) = πœ‡(𝑣1, 𝑣3) = πœ‡(𝑣1, 𝑣4) = {π‘Ž},

πœ‡(𝑣3, 𝑣5) = {𝑐}, πœ‡(𝑣3, 𝑣4) = {π‘Ž, 𝑐}, πœ‡(𝑣4, 𝑣5) = {𝑏, 𝑐}

Then 𝐺𝐿 = (𝑉, 𝜎, πœ‡) is a non-regular L-fuzzy graph.

Remark : In general, an L-fuzzy graph, 𝐺𝐿 = (𝑉, 𝜎, πœ‡), where πœ‡ is a constant function, is a regular L-fuzzy graph.

Theorem 3.5 : Any set magic graph admits a regular L-fuzzy graph structure.

Proof : Let G=(V,E) be a set magic graph. Then G admits a set magic labeling l.

That is , the edges of G can be assigned distinct subsets of a set X such that for every vertex u of G, union of

subsets assigned to the edges incident at u is X.

Let L= β„˜(𝑋), the power set of 𝑋. Then (𝐿, βŠ† ) is a complete lattice.

Define 𝜎: 𝑉 β†’ 𝐿 and πœ‡: 𝐸 β†’ 𝐿 as follows:

𝜎(𝑣) = 𝑋, βˆ€ 𝑣 ∈ 𝑉 and πœ‡(𝑒) = 𝑙(𝑒), for all edges 𝑒 of G and 𝑙(𝑒) ∈ 𝐿.

Since, 𝑙(𝑒) βŠ† 𝑋, πœ‡(𝑒) ≀ 𝜎(𝑒) ∧ 𝜎(𝑣), for all 𝑒 = (𝑒, 𝑣) ∈ 𝐸.

Then, 𝐺𝐿 = (𝑉, 𝜎, πœ‡) is an L-fuzzy graph.

For all u ∈ 𝑉, 𝑑𝐿(𝑒) = ⋁ πœ‡(𝑒, 𝑣)π‘£βˆˆπ‘‰,𝑣≠𝑒

= ⋁ πœ‡(𝑒)𝑒=(𝑒,𝑣),𝑣≠𝑒

= ⋁ 𝑙(𝑒)𝑒=(𝑒,𝑣),𝑣≠𝑒

=X, (since l is a set magic labeling)

Hence, 𝐺𝐿 is a regular L-fuzzy graph.

Page 4: Strong Regular L-Fuzzy Graphs

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 1 | Issue – 5 | July-Aug 2017 Page: 506

4. STRONG REGULAR L-FUZZY GRAPH

Definition 4.1 : An L-fuzzy graph 𝐺𝐿 = (V, Οƒ, ΞΌ) is said to be a strong regular L-fuzzy graph if πœ‡(𝑒, 𝑣) = 𝜎(𝑒) ∧

𝜎(𝑣), for all edges (u,v) of 𝐺𝐿 and the L-fuzzy degree 𝑑𝐿(𝑣) is constant, for all 𝑣 ∈ 𝑉.

Example 4.2 : Let 𝑆 = {π‘Ž, 𝑏, 𝑐} and L= β„˜(𝑆), the power set of 𝑆. Then (𝐿, βŠ† ) is a complete lattice. Let 𝑉 =

{ 𝑣1 , 𝑣2 , 𝑣3, 𝑣4 }

Define 𝜎: 𝑉 β†’ 𝐿 by 𝜎(𝑣1 ) = 𝜎(𝑣3 ) = {π‘Ž, 𝑏, 𝑐}, 𝜎(𝑣2 ) = 𝜎(𝑣4 ) = {π‘Ž, 𝑏} and

πœ‡(𝑣1, 𝑣2) = πœ‡(𝑣2, 𝑣3) = πœ‡(𝑣3, 𝑣4) = πœ‡(𝑣4, 𝑣1) = {π‘Ž, 𝑏, 𝑐}.

Then 𝐺𝐿 = (𝑉, 𝜎, πœ‡) is a strong regular L-fuzzy graph.

Example 4.3 : If 𝜎 and πœ‡ are constants in a L-fuzzy graph𝐺𝐿 , then 𝐺𝐿 is strong regular L-fuzzy graph.

Remark : If 𝐺𝐿 is a strong regular L-fuzzy graph, then 𝐺𝐿 is a regular L-fuzzy graph. However, the converse

need not be true, in general. This is seen from Example 3.3.

Note In [8], it has been proved that no fuzzy graph on a star graph with at least two spokes is strong regular.

But in case of L-fuzzy graph, there exist a strong regular L-fuzzy structure on star graph.

Example 4.3 : Let L= {1,2,3}. (𝐿, ≀ ) is a complete lattice. Let 𝑉 = { 𝑣, 𝑣1 , 𝑣2 , 𝑣3, 𝑣4 }

Define 𝜎: 𝑉 β†’ 𝐿 by 𝜎(𝑣 ) = 1, 𝜎(𝑣1 ) = 1, 𝜎(𝑣2 ) = 2, 𝜎(𝑣3 ) = 3, 𝜎(𝑣4 ) = 4

and πœ‡(𝑣, 𝑣𝑖) = 1, 𝑖 = 1,2,3,4. Then, 𝑑𝐿(𝑣1 ) = 𝑑𝐿(𝑣2 ) = 𝑑𝐿(𝑣3 ) = 𝑑𝐿(𝑣4) = 1.

Hence, 𝐺𝐿 = (𝑉, 𝜎, πœ‡) is a strong regular L-fuzzy graph on a star graph.

Example 4.4 :Let 𝑆 = {π‘Ž, 𝑏,c} and L= β„˜(𝑆), the power set of 𝑆. (𝐿, βŠ† ) is a lattice.

1. Let = { 𝑣1 , 𝑣2 , 𝑣3, 𝑣4 }.

Define 𝜎: 𝑉 β†’ 𝐿 by 𝜎(𝑣1 ) = {π‘Ž, 𝑏}, 𝜎(𝑣2 ) = {π‘Ž}, 𝜎(𝑣3 ) = {π‘Ž, 𝑐}, 𝜎(𝑣4 ) = {π‘Ž} and

πœ‡(𝑣1, 𝑣2) = πœ‡(𝑣2, 𝑣3) = πœ‡(𝑣3, 𝑣4) = πœ‡(𝑣4, 𝑣1) = {π‘Ž}.

Then, 𝐺𝐿 = (𝑉, 𝜎, πœ‡) is strong regular L-fuzzy graph.

2. Let = { 𝑣, 𝑣1 , 𝑣2 , 𝑣3, 𝑣4 }. Define 𝜎: 𝑉 β†’ 𝐿 by

𝜎(𝑣1 ) = {π‘Ž, 𝑏, 𝑐}, 𝜎(𝑣2 ) = {π‘Ž}, 𝜎(𝑣3 ) = {π‘Ž, 𝑐}, 𝜎(𝑣4 ) = {π‘Ž, 𝑏}, 𝜎(𝑣 ) = {π‘Ž}

and πœ‡(𝑣, 𝑣1) = πœ‡(𝑣, 𝑣2) = πœ‡(𝑣, 𝑣3) = πœ‡(𝑣, 𝑣4) = {π‘Ž}.

Then, 𝐺𝐿 = (𝑉, 𝜎, πœ‡) is a strong regular L-fuzzy graph.

Theorem 4.5 Let 𝐺𝐿 = (𝑉, 𝜎, πœ‡) be the L-fuzzy graph.

1. If the underlying graph πΊπΏβˆ— is a cycle and if πœ‡ is a constant say k, for all edges (u,v) and 𝜎(𝑒) β‰₯ π‘˜, for

all 𝑒 ∈ 𝑉, then 𝐺𝐿 is a strong regular L-fuzzy graph.

2. If the underlying graph πΊπΏβˆ— is a star graph with 𝑉 = { 𝑣, 𝑣1, 𝑣2, … . . 𝑣𝑛} and

if 𝜎(𝑣) ≀ 𝜎(𝑣𝑖), βˆ€π‘– = 1,2,3, … . . 𝑛 and πœ‡(𝑣, 𝑣𝑖) = 𝜎(𝑣), for all the edges (𝑣, 𝑣𝑖), then

𝐺𝐿 is a strong regular L-fuzzy graph.

Page 5: Strong Regular L-Fuzzy Graphs

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 1 | Issue – 5 | July-Aug 2017 Page: 507

Proof

1. Let πœ‡ = constant = k(say).

Since, 𝜎(𝑒) β‰₯ π‘˜, for all 𝑒 ∈ 𝑉, 𝜎(𝑒) ∧ 𝜎(𝑣) β‰₯ π‘˜ = πœ‡(𝑒, 𝑣).

From the definition of L-fuzzy graph, πœ‡(𝑒, 𝑣) ≀ 𝜎(𝑒) ∧ 𝜎(𝑣).

Then, πœ‡(𝑒, 𝑣) = 𝜎(𝑒) ∧ 𝜎(𝑣).

Also, 𝑑𝐿(𝑒) = ⋁𝑒 βˆˆπ‘‰,𝑒≠𝑣 πœ‡(𝑒, 𝑣) = ⋁𝑒 βˆˆπ‘‰,𝑒≠𝑣 π‘˜ = π‘˜, βˆ€π‘’ ∈ 𝑉.

Hence, 𝐺𝐿 is strong regular L-fuzzy graph.

2. Let 𝜎(𝑣) ≀ 𝜎(𝑣𝑖), βˆ€π‘– = 1,2,3, … . . 𝑛.

Therefore, 𝜎(𝑣𝑖) ∧ 𝜎(𝑣) ≀ 𝜎(𝑣) = πœ‡(𝑣, 𝑣𝑖).

From the definition of L-fuzzy graph, πœ‡(𝑣, 𝑣𝑖) ≀ 𝜎(𝑣𝑖) ∧ 𝜎(𝑣).

Hence, πœ‡(𝑣, 𝑣𝑖) = 𝜎(𝑣) ∧ 𝜎(𝑣𝑖), βˆ€π‘– = 1,2,3, … . . 𝑛.

Now, 𝑑𝐿(𝑣𝑖 ) = ⋁𝑣 βˆˆπ‘‰ πœ‡(𝑣𝑖 , 𝑣), βˆ€π‘– = 1,2,3, … . . 𝑛.

= ∨ 𝜎(𝑣)

= 𝜎(𝑣)

and 𝑑𝐿(𝑣 ) = ⋁𝑣𝑖 βˆˆπ‘‰ πœ‡(𝑣, 𝑣𝑖 ), βˆ€π‘– = 1,2,3, … . . 𝑛.

= ∨ 𝜎(𝑣)

= 𝜎(𝑣)

Thus, 𝐺𝐿 is strong regular L-fuzzy graph.

Theorem 4.6 : For any strong regular L-fuzzy graph 𝐺𝐿 = (𝑉, 𝜎, πœ‡) whose crisp graph πΊπΏβˆ— is a path, πœ‡ is a

constant function.

Proof Let 𝑉 = { 𝑣0 , 𝑣1 , 𝑣2, … … . , 𝑣𝑛 }. 𝐸(πΊπΏβˆ— ) = {𝑣0𝑣1, 𝑣1𝑣2, 𝑣2𝑣3 , … … … . . , π‘£π‘›βˆ’1𝑣𝑛 }

𝜎(𝑣𝑖 ) = 𝑏𝑖, π‘“π‘œπ‘Ÿ 𝑖 = 0,1,2, … … … . 𝑛 and

πœ‡(π‘£π‘–βˆ’1, 𝑣𝑖) = π‘Žπ‘– , for 𝑖 = 1,2, … … … . 𝑛, where π‘Žπ‘– , 𝑏𝑖 ∈ (𝐿, ≀)

Since, 𝐺𝐿 is a strong regular L-fuzzy graph, we have

π‘Ž1 = π‘˜. π‘Žπ‘– ∨ π‘Žπ‘–+1 = π‘˜, π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … … … 𝑛 βˆ’ 2, π‘Žπ‘› = π‘˜, π‘€β„Žπ‘’π‘Ÿπ‘’ π‘˜ ∈ 𝐿 -----------------------(1)

π‘π‘–βˆ’1 ∧ 𝑏𝑖 = π‘Žπ‘–, π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … … … 𝑛 ------------------------------------------------(2)

(1) β‡’ π‘Žπ‘– ≀ π‘˜, 𝑖 = 1,2, … … … . , 𝑛 -----------------------------------------------------(3)

Also (2) β‡’ π‘Žπ‘– ≀ π‘π‘–βˆ’1 π‘Žπ‘›π‘‘ π‘Žπ‘– ≀ 𝑏𝑖, 𝑖 = 1,2, … … … . , 𝑛

β‡’ (π‘Ž1 ≀ 𝑏0, π‘Ž1 ≀ 𝑏1), (π‘Ž2 ≀ 𝑏1, π‘Ž2 ≀ 𝑏2), … … … , (π‘Žπ‘› ≀ π‘π‘›βˆ’1, π‘Žπ‘› ≀ 𝑏𝑛)

β‡’ (π‘Ž1 ≀ 𝑏0), (π‘Ž1, π‘Ž2 ≀ 𝑏1), (π‘Ž2 ≀ 𝑏2, π‘Ž3 ≀ 𝑏2), … … … , (π‘Žπ‘›βˆ’1 ≀ 𝑏𝑛, π‘Žπ‘› ≀ 𝑏𝑛), (π‘Žπ‘› ≀ 𝑏𝑛)

Page 6: Strong Regular L-Fuzzy Graphs

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 1 | Issue – 5 | July-Aug 2017 Page: 508

β‡’ π‘˜ ≀ 𝑏0, π‘Žπ‘– ∨ π‘Žπ‘–+1 ≀ 𝑏𝑖 , 𝑖 = 1,2, … … … , 𝑛 βˆ’ 1, π‘˜ ≀ 𝑏𝑛.

β‡’ π‘˜ ≀ 𝑏0, π‘˜ ≀ 𝑏𝑖, 𝑖 = 1,2, … … … , 𝑛 βˆ’ 1, π‘˜ ≀ 𝑏𝑛.

β‡’ π‘˜ ≀ 𝑏0, π‘π‘–βˆ’1 ∧ 𝑏𝑖, 𝑖 = 1,2, … … … , 𝑛.

β‡’ π‘˜ ≀ π‘Žπ‘–, π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … … … , 𝑛 ---------------------------------------------(4)

Equations (3) and (4) β‡’, π‘Žπ‘– = π‘˜, π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … … … , 𝑛.

Hence, πœ‡ is a constant function.

Theorem 4.7 : For any strong regular L-fuzzy graph 𝐺𝐿 = (𝑉, 𝜎, πœ‡) whose crisp graph πΊπΏβˆ— is a cycle, πœ‡ is a

constant function.

Proof Let 𝑉 = { 𝑣1 , 𝑣2, … … . , 𝑣𝑛 }. 𝐸(πΊπΏβˆ— ) = { 𝑣1𝑣2, 𝑣2𝑣3 , … … … . . , π‘£π‘›βˆ’1𝑣𝑛, 𝑣𝑛𝑣1 }

𝜎(𝑣𝑖 ) = 𝑏𝑖, π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … … … . 𝑛 and (𝑣𝑖, 𝑣𝑖+1) = π‘Žπ‘– , for 𝑖 = 1,2, … … … . 𝑛, where

𝑣𝑛+1 = 𝑣1 π‘Žπ‘›π‘‘ π‘Žπ‘– , 𝑏𝑖 ∈ (𝐿, ≀)

Since, 𝐺𝐿 is a strong regular L-fuzzy graph, we have

π‘Ž1 = π‘˜. π‘Žπ‘– ∨ π‘Žπ‘–+1 = π‘˜, π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … … … 𝑛 βˆ’ 1, π‘€β„Žπ‘’π‘Ÿπ‘’ π‘˜ ∈ 𝐿 -----------------------(1)

𝑏𝑖 ∧ 𝑏𝑖+1 = π‘Žπ‘–, π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … … … 𝑛 , 𝑠𝑖𝑛𝑐𝑒 𝑣𝑛+1 = 𝑣1, 𝑏𝑛+1 = 𝑏1-------------------(2)

(1) β‡’ π‘Žπ‘– ≀ π‘˜, 𝑖 = 1,2, … … … . , 𝑛 -----------------------------------------------------(3)

Also (2) β‡’ π‘Žπ‘– ≀ 𝑏𝑖 π‘Žπ‘›π‘‘ π‘Žπ‘– ≀ 𝑏𝑖+1, 𝑖 = 1,2, … … … . , 𝑛

β‡’ (π‘Ž1 ≀ 𝑏1, π‘Ž1 ≀ 𝑏2), (π‘Ž2 ≀ 𝑏2, π‘Ž2 ≀ 𝑏3), … … … , (π‘Žπ‘› ≀ 𝑏𝑛, π‘Žπ‘› ≀ 𝑏𝑛+1 = 𝑏1)

β‡’ (π‘Ž1 ≀ 𝑏1), (π‘Ž1, π‘Ž2 ≀ 𝑏2), (π‘Ž2, π‘Ž3 ≀ 𝑏3), … … … , (π‘Žπ‘›βˆ’1, π‘Žπ‘› ≀ 𝑏𝑛)

β‡’ π‘˜ ≀ 𝑏1, π‘Žπ‘– ∨ π‘Žπ‘–+1 ≀ 𝑏𝑖+1, 𝑖 = 1,2, … … … , 𝑛 βˆ’ 1

β‡’ π‘˜ ≀ 𝑏1, π‘˜ ≀ 𝑏𝑖+1, 𝑖 = 1,2, … … … , 𝑛 βˆ’ 1

β‡’ π‘˜ ≀ 𝑏𝑖 ∧ 𝑏𝑖+1, 𝑖 = 1,2, … … … , 𝑛.

β‡’ π‘˜ ≀ π‘Žπ‘–, π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … … … , 𝑛 ---------------------------------------------(4)

Page 7: Strong Regular L-Fuzzy Graphs

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 1 | Issue – 5 | July-Aug 2017 Page: 509

Equations (3) and (4) β‡’, π‘Žπ‘– = π‘˜, π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … … … , 𝑛.

Hence, πœ‡ is a constant function.

REFERENCES

1) Acharya B D, Set valuations of a graph and their applications, MRI Lecture Notes in Applied

Mathematics, No 2, Mehta Research Intitute, Allahabad, 1983.

2) Goguen. J. A, L-Fuzzy sets, J. Math. Anal.Appl. 18, (1967), 145 - 174.

3) Kaufmann, Introduction a la theorie des sous - ensembles flous, Elements theoriques de base, Parisi Masson et cie

1976.

4) Morderson, J.N, Nair, P.S, Fuzzy Graphs and Fuzzy Hyper Graphs, Physics - verlag, Heidelberg (2000)

5) Nagoorgani, A and Chandrasekaran V.T, A First Look at Fuzzy Graph Theory(2010)

6) Pramada Ramachandran, Thomas K V, On Isomorphism of L-Fuzzy graphs, Annals of Fuzzy Mathematics and

Informatics, Vol 11, No 2(February 2016), pp 301-313

7) Rosenfeld A, Fuzzygraphs In : Zadeh, L.A. Fu, K.S.Shimura, M (Eds), Fuzzy sets and their Applications

(Academic Press, Newyark) pp.77-95(1975).

8) Seethalakshmi R and Gnanajothi R.B, On Strong regular fuzzy graph, International Journal of Mathematical

Sciences and Engineering Applications, ISSN 0973-9424, Vol 6 No.1( January 2012),pp 161-173.

9) Zadeh L.A. Similarity relations and fuzzy ordering Information sciences 971; 3(2): 177-200.