structural and chemical characterization of soot particles · 2020. 3. 13. · 2 03-july-2015...

32
Structural and chemical characterization of soot particles C. Focsa, I. K. Ortega, B. Chazallon, Y. Carpentier, C. Irimiea, M. Ziskind, C. Pirim, A. R. Ikhenazene, F.X. Ouf, F. Salm, D. Delhaye, D. Gaffié, J. Yon, D. Ferry

Upload: others

Post on 02-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Structural and chemical characterization of soot particles

    C. Focsa, I. K. Ortega, B. Chazallon, Y. Carpentier, C. Irimiea, M. Ziskind, C. Pirim, A. R. Ikhenazene, F.X. Ouf, F. Salm, D. Delhaye, D. Gaffié, J. Yon, D. Ferry

  • Outline

    • Motivation & framework

    • Experimental techniques

    • Results

    • Conclusions

    03-july-2015 Cambridge Particle Meeting2

  • Motivation

    Carcinogenic potential

    Indirect effects,cloud formation

    Environmental pollution

    direct effects,radiation absorption

    CLIMATE EFFECTS

    HEALTH EFFECTS

    SOOT: unburned residue of the combustion process

    PAHs - adsorbed on the soot matrix

    03-july-2015 Cambridge Particle Meeting3

  • Framework

    • MERMOSE Project• Airplane soot

    • Laboratory surrogates

    • Project BIOTOX Project (Czech Republic, Russia)• Diesel and gasoline soot

    • Different blends, motors, driving cycles…

    • Field (road) collected samples (INERIS)

    • Amadeus-Egide project (Vienna TU, Austria)• Biogenic aerosols, ice nucleation properties

    • Secondary organic aerosols (ULCO, France)

    4 03-july-2015 Cambridge Particle Meeting

  • Framework

    • MERMOSE Project•Airplane soot•Laboratory surrogates

    • Project BIOTOX Project (Czech Republic, Russia)• Diesel and gasoline soot• Different blends, motors, driving cycles…• Field (road) collected samples (INERIS)

    • Amadeus-Egide project (Vienna TU, Austria)• Biogenic aerosols, ice nucleation properties

    • Secondary organic aerosols (ULCO, France)

    5 03-july-2015 Cambridge Particle Meeting

  • Project MERMOSE

    6

    • Different regimes• 30%

    • 70 %

    • 85 %

    • 100 %

    Mini-CASTSAM 146Combustion chamber (M1)

    PRELIMINARY RESULTS

    • Different regimes• 7%

    • 30%

    • 70 %

    • 71%

    • 85 %

    • 100 %

    • Set points Sample Propane

    (ml/min)Nitrogen(ml/min)

    Oxidation(l/min)

    Dilution(l/min)

    SP-1 60 0 1.5 20

    SP-2 60 0 1.15 20

    SP-3 60 0 1 20

    SP-A 50 200 1.2 2003-july-2015 Cambridge Particle Meeting

  • • Airplane engine soot• SaM146 campaign : Mermose project

    Four engine regimes: 30 %, 70%, 85%, 100%Sampled on quartz paper filters (Pallflex QAT-UP 2500)

    and Si wafers

    • Laboratory model soot• miniCAST soot - standard generator

    Propane fuel various oxidation air flowsSampled on quartz paper and borosilicate filters

    • Kerosene soot: laboratory diffusion flame (the same combustion conditions); sampled at different heights above the burner (HAB)

    Airplane

    CAST

    Kerosene flame

    Borosilicate filter

    Ignition flat flame:methane 1.14 sLmair 10.9 sLm;

    Diffusion flame: nitrogen 0.32 sLm,kerosene 180 g/h

    Analyzed samples (a few examples)

    7 03-july-2015 Cambridge Particle Meeting

  • Experimental techniques• Measured properties: structure and surface chemical composition

    • Techniques: Laser desorption/ionization mass spectrometry (L2MS), secondary ion mass spectrometry (SIMS) and Raman microscopy

    8

    L2MS RamanSIMS

    • High fragmentation

    • High mass resolution

    • Mapping, depth profiling

    • Controlled fragmentation

    • Ultra-sensitive to PAHs

    • Selective (laser ionization)

    • Non destructive

    • Structural information

    • Indirect chemical composition

    03-july-2015 Cambridge Particle Meeting

  • • Spectrum fit

    • G band, ordered graphite (lorenztian)

    • D1 band, disordered graphite,edges

    • D2 band, disordered graphite,layers (lorenztian)

    • D3 band, amorphous carbon (Gaussian

    • D4 band, highly disordered graphite

    • D1’ band, loosely bound PAHs (lorenztian)

    Schmid et al., Anal. Chem. 2011

    Raman Microscopy

    • Excitation Wavelength• 514 nm

    • 785 nm

    • 50x objective, ~2 µm spot

    03-july-2015 Cambridge Particle Meeting9

  • SaM146 soot structure, Raman + complementary analyses (NEXAFS, HR-TEM)

    TEY-NEXAFS

    03-july-2015 Cambridge Particle Meeting10

  • mini-CAST soot

    D1’ band, loosely bond PAHs (Carpentier et al. A&A,548, 2012)

    TEY-NEXAFS

    03-july-2015 Cambridge Particle Meeting11

  • crystallite size, Raman vs TEM

    • TEM

    𝐿𝑎 𝑛𝑚 = (2.4 10−10)λ𝑙𝑎𝑠𝑒𝑟

    4 ( 𝐼𝑑𝐼𝑔)

    −1

    • RAMAN

    Layer edgesPerfectGraphite

    Layer surface

    Amorphuscarbon

    Disordedgraphite, polyenes

    Sample Size

    30% 2.67 ± 0.30 nm

    70% 2.85 ± 0.58 nm

    85% 2.73 ± 0.45 nm

    100% 3.06 ± 0.53 nm

    03-july-2015 Cambridge Particle Meeting12

  • Raman fluorescence link to OC/TC

    03-july-2015 Cambridge Particle Meeting13

  • Sample

    Desorption

    Ionization

    Detection

    Laser Desorption (LD) :

    • IR OPO, = 2.5 4 µm, 10 ns, 10 Hz, Emax= 20 mJ/pulse

    • Nd:YAG (1w – 4w), 10 ns, 10 Hz, Emax= 0.1 – 1 J/pulse

    Laser Ionisation (LI) :

    • 4th harmonic Nd:YAG, = 266 nm, 10 ns, 10 Hz, Emax= 100 mJ/pulse

    • Tunable dye laser (225 – 900 nm, REMPI), 10 ns, 10 Hz

    • NEW 118 nm source (9th harmonic Nd:YAG)

    Detection :

    Reflectron Time-of-Flight Mass Spectrometer(ReTOF-MS)

    Chemical composition … L2MS

    HAP SootIce (doped)

    Laser Desorption / Laser Ionization / Time-of-Flight Mass Spectrometry

    03-july-2015 Cambridge Particle Meeting14

  • L2MS Performances

    Mass detected typically up to 800 Th (for soot)

    Mass resolution ~1000

    High sensitivity to PAHs … LOD ~ 10 attomol per laser shot (~10-6 ML)

    thanks to the resonant absorption at 266 nm (REMPI)

    Control the fragmentation degree

    Control the desorption depth

    (Semi)quantitative approach possible

    through external standard calibration,

    ionization cross section corrections

    Pyrene / activated carbon,

    9.52∙10-8 mol/g, 600 m2/g

    Faccinetto et al.,

    Combust. Flame, 158, 227 (2011)

    Environ. Sci. Technol. 2015, submitted

    03-july-2015 Cambridge Particle Meeting15

  • • Alkyl-PAHs

    50 100 150 200 250 300

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    91

    165

    228

    244

    120

    170

    1461

    06 192

    276132

    178

    1561

    42

    128

    118

    104

    92

    262

    78

    248

    234

    230

    220

    216

    202

    206

    189

    No

    rma

    lize

    d in

    ten

    sity

    m/z IVECO 1500 rpm hot TQ36 B30

    Cn+6

    H2n+6

    Cn-benzene

    Cn+8

    H2n+8

    Cn-styrene

    Cn+10

    H2n+8

    Cn-naphthalene

    Cn+14

    H2n+10

    Cn-anthracene/phenanthrene

    Cn+16

    H2n+10

    Cn-pyrene/fluoranthene

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Diesel IVECO

    engine exhaust (TQ36)

    alkylphenanthrene series

    alkylpyrene series

    50 100 150 200 250 300 350

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    No

    rma

    lize

    d in

    ten

    sity

    Gasoline

    engine exhaust (KR12)

    No

    rma

    lize

    d in

    ten

    sity

    m/z

    03-july-2015 Cambridge Particle Meeting16

    L2MS

    Chemical composition, diesel and gasoline soot (PRELIMINARY)

    BIOTOX Project

  • 0,0

    0,5

    1,0

    0,0

    0,5

    1,0

    50 100 150 200 250 300 350 400

    0,0

    0,5

    1,0

    THE38_70%x 75

    x 75

    No

    rma

    lize

    d in

    ten

    sity

    THE37_85%

    x 75

    m/z (amu)

    THE36_100%

    TOF-SIMS

    Chemical composition, Mass spectrometry

    • PAH and derivatives, aliphatic, organo-sulfates, metals, …

    • PCA, mass defect (SIMS … high resolution)

    Thermo-optical analysis, Sunset Lab, protocol IMPROVE (FX Ouf, IRSN)

    03-july-2015 Cambridge Particle Meeting17

    SaM 146

    Airplane soot, SaM 146 campaign

  • m/z

    I [a

    .u.]

    SP2

    202

    202 L2MS

    SIMS

    SIMS2 zones

    L2MS4 zones

    Chemical composition, CAST soot: L2MS & SIMS

    03-july-2015 Cambridge Particle Meeting18

  • Mo4On-

    Chemical composition, Heavy metals in airplane soot samples

    SiO2- ; Mo2O6

    - ; HSO4-

    Fe+ ; Si+; Na+

    • Molybdenum • Iron

    03-july-2015 Cambridge Particle Meeting19

  • Chemical composition, diesel and gasoline soot

    • Sulfur containing compounds

    03-july-2015 Cambridge Particle Meeting20

    BIOTOX Project (PRELIMINARY)

  • Preliminary Ice nucleation studies

    Preliminary results:

    • Ice nucleation properties of CAST soot particles depend on the collection set-point• Soot aging influence … ?• Link to structure & chemical composition …

    03-july-2015 Cambridge Particle Meeting21

  • Conclusions

    • Airplane soot from both campaigns (SaM 146 & M1) have similar structure … independent of engine regime ?

    • High OC at low engine regime … MS total PAH as good indicator of OC/TC … also fluorescence ?

    • Higher amount of sulfur in M1 samples compared to SaM146 … link to combustion geometry?

    • Heavy metals in oil droplets … coming from engine gear ?

    • Starting ice nucleation studies on airplane soot and surrogates

    • Best surrogate for airplane soot is obtained using CAST SP-1 working point … low/high engine regime … mimicked properties ?

    03-july-2015 Cambridge Particle Meeting22

  • Thanks for your attention

  • Conclusions, chemical composition

    • Airplane samples present a relatively low amount of PAHs, When compared to CAST, SP-1 set point is closer to airplane samples in PAHs distribution

    • SAM 146 samples present lower amounts of sulfur than M1 samples, CAST samples present negligible amounts of sulfur

    • Heavy metals are found in SAM 146 samples, but seems associated with oil droplets, and most likely are coming from motor gear

    03-july-2015 Cambridge Particle Meeting20

  • Motivation

    03-july-2015 Cambridge Particle Meeting

  • Chemical composition, diesel and gasoline soot (PRELIMINARY)

    • Alkyl-PAHs

    50 100 150 200 250 300

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    91

    165

    228

    244

    120

    170

    1461

    06 192

    276132

    178

    1561

    42

    128

    118

    104

    92

    262

    78

    248

    234

    230

    220

    216

    202

    206

    189

    No

    rma

    lize

    d in

    ten

    sity

    m/z IVECO 1500 rpm hot TQ36 B30

    Cn+6

    H2n+6

    Cn-benzene

    Cn+8

    H2n+8

    Cn-styrene

    Cn+10

    H2n+8

    Cn-naphthalene

    Cn+14

    H2n+10

    Cn-anthracene/phenanthrene

    Cn+16

    H2n+10

    Cn-pyrene/fluoranthene

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Diesel IVECO

    engine exhaust (TQ36)

    alkylphenanthrene series

    alkylpyrene series

    50 100 150 200 250 300 350

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    No

    rma

    lize

    d in

    ten

    sity

    Gasoline

    engine exhaust (KR12)

    No

    rma

    lize

    d in

    ten

    sity

    m/z

    03-july-2015 Cambridge Particle Meeting17

  • 15-june-2015 AT2105-Tampere27

    Chemical composition, CAST soot: L2MS & Raman

  • Spectrum interpretation

    15-june-2015 AT2105-Tampere28

    G band• Characteristic of crystalline

    graphite/graphene

    • G band intensity decreases when the number of defect increases

  • Spectrum interpretation

    D1 band• Ring breathing forbidden by symmetry in

    crystalline graphite

    • Presence of defects breaks the symmetry, allowing the observation of this mode

    • Intensity increases with defects until a limit

    Eckmann et al. , Nano Letters, 12, 2012

  • Spectrum interpretation

    D2 band• Mode related to edge carbons

    • D2 band intensity proportional to the number of edge carbons, thus related to vacancy defects

  • Spectrum interpretation

    D3 band• Traditionally associated with amorphous

    carbon

    • Might be related to graphitic carbon as well

    • Associated with small crystalline domains

  • Spectrum interpretation

    D4 band• Mode related to impurities not to graphite

    layers (independent of defects)

    • In our case, D4 most likely correspond to polyen chains attached to the edge of graphite crystallites

    • Only found in soot and char