structural(health(monitoringlu/cse520s/slides/shm.pdfclayton, e.h. (2006), “ frequency...

32
Structural Health Monitoring CSE 520S Fall 2011

Upload: others

Post on 25-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Structural  Health  Monitoring  

CSE  520S  Fall  2011  

Page 2: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Structural  Health  Monitoring  (SHM)    Problem:  detect  and  localize  damage  to  a  structure    Wireless  sensor  networks  (WSNs)  monitor  at  unprecedented  temporal  

and  spaCal  granulariCes  

  Key  Challenges:    Long-­‐term  monitoring    Rapid  on-­‐demand  analysis    Resource  and  energy  constraints  

 

2  

Page 3: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Centralized  Designs    Wisden  [Xu,  SenSys  2004]  

  Services  for  reliable  transmission  of  raw  data  

  Golden  Gate  Bridge  [Kim,  IPSN  2007]    46-­‐hop  network  deployed  along  Golden  Gate  Bridge  

  BriMon  [Chebrolu,  MobiSys  2008]    Trains  as  data  mules  

  Torre  Aquila  [CerioZ,  IPSN  2009]    Heterogeneous  sensors,  most  with  low  data  rate  

  Primarily  focus  on  data  transport  issues  

3  

Page 4: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Decentralized  Design  Principles    Raw  sensor  data  is  too  large  to  stream  back  to  the  

base  staCon    Damage  detecCon  is  too  complex  to  run  enCrely  

onboard  the  sensors  

  SoluCon:  decentralized  codesign    Select  an  algorithm  which  can  be  run  parCally  on  the  

motes    Send  back  (smaller!)  parCal  results  to  the  base  staCon  to  

complete  computaCon  

4  

Raw  Data  

Page 5: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Decentralized  System  Evolution    Damage  LocalizaCon  Assurance  Criterion  (DLAC)  

  No  collaboraCon  needed  among  nodes  =>  lightweight  network  architecture  

  Some  limitaCons  in  damage  detecCon  

  Flexibility-­‐Based  Methods    CollaboraCon  among  nodes  =>  more  complex  architecture,  but  

more  robust  damage  localizaCon    Even  more  energy  savings  through  sensor  selecCon  

5  

Page 6: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Damage  Localization  Assurance  Criterion  (DLAC)    Collect  vibraCon  data  and  use  to  idenCfy  structure’s  

natural  frequencies  [Messina,  J.  Sound  and  Vibra:on,  1998]    “Signature”  of  structure’s  health  

  Several  traits  useful  for  a  decentralized  system    No  data  exchanged  among  nodes    IniCal  stages  are  computaConally  inexpensive    Later  stages  have  much  smaller  inputs  (typically  <1%  of  iniCal  data  

set)  

6  

Page 7: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Vibration  Data  Input   Damage  LocalizaCon  Algorithm  

7  

0 1 2 3 4 5 6 7 8!2000

!1500

!1000

!500

0

500

1000

1500Time History WS2

Time(s)

Am

plit

ud

e

Page 8: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

0 10 20 30 40 50!20

0

20

40

60

80

100

120

140Power Spectrum WS2

Frequency (Hz)

Am

plit

ud

e(d

B)

FFT  +  Power  Spectrum  Analysis   Damage  LocalizaCon  Algorithm  

8  

Page 9: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Curve  Fitting   Damage  LocalizaCon  Algorithm  

9  

! "! #! $! %! &!!#!

!

#!

%!

'!

(!

"!!

"#!

"%!)*+,-./0,12-34.5/#

6-,73,819.:;<=

>40?@23A,:AB=

.

.

)*+,-./0,12-34

C3-D,.6@22@8E

Page 10: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

DLAC    A  mathemaCcal  model  of  the  

structure  is  created  offline    Used  to  predict  effect  of  structural  

damage  on  natural  frequencies  

  Natural  frequency  data  input:    Healthy  structure    Healthy  model  

   Model  damaged  at  different  

discrete  locaCons    (Possibly)  damaged  structure  

10  

Page 11: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

DLAC  Output   Damage  LocalizaCon  Algorithm  

11  

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DLAC WS2

Element Position

Highest  correlaCon  to  damage  at  LocaCon  5  

Page 12: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

D:    #  of  samples  P:    #  of  natural  freq.  (D  »  P)  

Data  Flow  Analysis   Damage  LocalizaCon  Algorithm  

12  

(1)  FFT  

(2)  Power  Spectrum  

(3)  Curve  FiZng  

(4)  DLAC  

D  Integers  

Healthy  Model   Damaged  LocaCon  

D  Floats  

D/2  Floats  

P  Floats  

Page 13: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Data  Flow  Analysis   Damage  LocalizaCon  Algorithm  

13  

(1)  FFT  

(2)  Power  Spectrum  

(3)  Curve  FiZng  

(4)  DLAC  Healthy  Model   Damaged  LocaCon  

8192  Bytes  

4096  Bytes  

D:    2048  P:    5    Integer:  2  bytes  Float:  4  bytes  

4096  Bytes  

20  Bytes  

EffecCve  compression  raCo  of  204:1  

Page 14: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Implementation    Hardware  plaoorm:  Intel/Crossbow  Imote2  +  ITS400  

sensor  board    13  –  416  MHz  XScale  CPU    32  MB  ROM,  32  MB  SDRAM    CC2420  802.15.4-­‐compliant  radio    3-­‐axis  accelerometer  on  sensor  board  

  Sosware  plaoorm:  TinyOS  1.1    243  KB  ROM,  71  KB  RAM  

14  

Page 15: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Evaluation:  Truss    5.6  m  steel  truss  structure  at  UIUC  

  Fourteen  0.4  m  long  bays,  siZng  on  four  rigid  supports  

  11  Imote2s  atached  to  frontal  pane  

15  

Wireless SensorTruss Frontal Panel

Fig 12. DLAC results for truss bay # 3

6.0 CONCLUSIONS

In this study a successful demonstration for an in-situ experimental validation of a

correlation-based decentralized damage detection technique using a wireless sensor network has

been performed. Structural damage was detected with sufficiently high correlation percentage in

two experimental structures independently of the damage hypothesis used in the sensitivity

matrix. On-board processing iMote2 capacities were exploited to reduce communication load

and make the application scalable within a wireless sensor network.

7.0 ACKNOWLEDGMENT S

Funding for this research is provided in part by the National Science Foundation; grant NSF

NeTS-NOSS Grant CNS-0627126, by Washington University in St. Louis. Additionally, the

authors would like to thank Prof. Bill Spencer and Shin-Ae Jang for the use of and assistance

with the experimental truss.

8.0 REFERENCES

Clayton, E.H. (2002), “Development of an Experimental Model for the Study of Infrastructure

Preservation”, Proceedings of the National Conference on Undergraduate Research,

Whitewater, Wisconsin.

Clayton, E.H., Koh, B.H., Xing, G., Fok, C.L., Dyke, S.J. and Lu, C. (2005), “Damage

Detection and Correlation-based Localization Using Wireless Mote Sensors”, Proceedings

of ’05 The 13Th

Mediterranean Conference on Control and Automation, Limassol, Cyprus.

Clayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart

Wireless Sensors”, Master of Science Thesis, Washington University in St. Louis.

1234567891011120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 3Y = 0.868

DLAC WS #32

Truss Central Bay Position

1234567891011120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 3Y = 0.864

DLAC WS #45

Truss Central Bay Position

1234567891011120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 3Y = 0.871

DLAC WS #67

Truss Central Bay Position

1234567891011120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 3Y = 0.873

DLAC WS #28

Truss Central Bay Position

1234567891011120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 3Y = 0.825

DLAC WS #35

Truss Central Bay Position

1234567891011120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 3Y = 0.865

DLAC WS #75

Truss Central Bay Position

Damage  correctly  localized  to  third  bay  

Page 16: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Latency  

0   2000   4000   6000   8000   10000   12000   14000  

Decentralized  

Centralized  

Latency  (ms)  

Sampling  ComputaCon  CommunicaCon  

EvaluaCon  

16  

Page 17: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Energy  Consumption  

0   1   2   3   4   5   6  

Decentralized  

Centralized  

Energy  consump3on  (J)  

Sampling  ComputaCon  CommunicaCon  

EvaluaCon  

17  

Page 18: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

DLAC:  Findings    Onboard  processing  reduces  latency  by  66%  and  energy  

consumpCon  by  71%    EffecCvely  localized  damage  to  discrete  locaCons  on  two  

structures  

  Results  indicate  the  power  of  holisCc  energy  management  

18  

G.  Hackmann,  F.  Sun,  N.  Castaneda,  C.  Lu,  and  S.  Dyke,  “A  HolisCc  Approach  to  Decentralized  Structural  Damage  LocalizaCon  Using  Wireless  Sensor  Networks”,  RTSS,  2008.    

Page 19: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Flexibility-­‐Based  Methods    Structures  flex  slightly  when  a  force  is  applied      Structural  weakening  =>  decreased  sCffness    Flexibility  acts  as  a  “signature”  of  the  structure’s  health  

  Two  flexibility-­‐based  methods  of  interest    Beam-­‐like  structures:  Angles-­‐Between-­‐String-­‐and-­‐Horizon  

flexibility  method  (ASHFM)  [Duan,  J.  Structural  Engineering  and  Mechanics  09]  

  Truss-­‐like  structures:  Axial  Strain  flexibility  method  (ASFM)  [Yan,  J.  Smart  Structures  and  Systems  09]  

19  

θ  

Page 20: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Network  Architecture    Sensors  form  physically-­‐

colocated  groups    Group  members  collect  raw  

vibraCon  data  and  process  into  power  spectrum  data  

  Group  leaders  collect  corresponding  power  spectrum  data  from  children,  correlaCng  into  modal  parameters  (natural  frequencies  +  mode  shapes)  

20  

Base  Sta3on  

Group  Leader  

Group  Leader  

Group  Member  

Group  Member  

Group  Member  

Group  Member  

Group  Member  

Page 21: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Network  Architecture    Base  sta3on  collects  modal  

parameters  from  group  leaders,  completes  processing  into  structural  flexibility  

  Output  is  compared  against  “baseline”  output  from  healthy  structure  

  Differences  in  flexibility  can  be  used  to  detect  and  localize  damage  

21  

Base  Sta3on  

Group  Leader  

Group  Leader  

Group  Member  

Group  Member  

Group  Member  

Group  Member  

Group  Member  

Page 22: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Standard  Data  Flow  

22  

Sensing  

FFT  

Power  Spectrum  

Cross  Spectral  Density  

Singular  Value  DecomposiCon  

2  x  D  ints  

D  floats  

Group  Leader  

Flexibility  

Base  StaCon  

D  matrices  

Group  Member  

D  floats   P  natural  frequencies  +  

mode  shapes  

D:    #  of  samples  P:    #  of  natural  freq.  (D  »  P)  

Page 23: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Enhanced  Distributed  Data  Flow  

23  

Sensing  

FFT  

Power  Spectrum  

2  x  D  ints  

D  floats  

Peak  Picking  

D  floats  

Cross  Spectral  Density  

Singular  Value  DecomposiCon  

Group  Leader  

Flexibility  

Base  StaCon  

P  matrices  

P  natural  frequencies  +  mode  shapes  

P  floats  

Group  Member  

D:    #  of  samples  P:    #  of  natural  freq.  (D  »  P)  

Page 24: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Multi-­‐Resolution  Damage  Localization    Under  ASHFM  and  ASFM,  only  a  handful  of  sensors  are  

needed  to  detect  damage    As  more  sensors  are  added,  localizaCon  gets  more  fine-­‐

grained    Significant  energy  savings  by  exploiCng  localized  nature  of  

flexibility-­‐based  approach  

24  

Page 25: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Evaluation:  Simulated  Truss    SimulaCon  of  UIUC  truss  structure  

  Simulated  sensor  data  generated  in  MATLAB  and  injected  into  live  applicaCon  using  “fake”  sensor  driver    Intact  data  set:  no  damages    Damaged  data  set:  three  members  reduced  on  les  side  of  truss,  

four  on  right  side  

  Result:  Level  1  idenCfied  damage  on  both  halves  of  truss;  Level  2  localized  damage  correctly  to  all  seven  members  

25  

Page 26: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Evaluation:  Simulated  Truss    Codesigned  architecture  reduces  

communicaCon  latency  from  esCmated  87  s  to  0.21  s  

  78.9%  of  energy  atributable  to  synchronizaCon  and  sensing  

  Compare  to  theoreCcal  supply  of  20,250  J  from  3x  AAA  bateries  

26  

Group  Member  

SynchronizaCon   12.1  J  

Sensing   23.0  J  

ComputaCon   9.28  J  

CommunicaCon   0.08  J  

Group  Leader  

SynchronizaCon   16.2  J  

Sensing   21.2  J  

ComputaCon   8.52  J  

CommunicaCon   0.76  J  

G.  Hackmann,  W.  Guo,  G.  Yan,  C.  Lu,  and  S.  Dyke,  “Cyber-­‐Physical  Codesign  of  Distributed  Structural  Health  Monitoring  With  Wireless  Sensor  Networks”,  ICCPS,  2010.  

Page 27: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Preliminary  Test   Full-­‐Scale  Truss  

27  

Image  source:  Zhuoxiong  Sun,  Purdue  University  

Page 28: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Test  Results:  Full-­‐Scale  Truss  

  Two  levels  of  damage  localizaCon  

  Level  1:  localized  damage  to  bay  9  

  Level  2:  localized  damage  to  element  42  

28  

2 3 4 5 6 7 8 910 20 3132 420

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10−6

Truss Element Number

AS F

lexi

bilit

y D

amag

e In

dica

tor

Page 29: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Conclusion    Codesign  approach  integrates  two  SHM  methods  with  

efficient  distributed  compuCng  architectures    Mul:-­‐level  search  strategy  only  acCvates  sensors  in  area  of  

interest;  many  sensors  remain  asleep    Shown  to  localize  damage  to  real  beam  and  truss  

structures  

  Long-­‐term  goal:  a  general  codesign  framework  for  integrated  sensing  and  control  

 

29  

Page 30: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Papers    G.  Hackmann,  F.  Sun,  N.  Castaneda,  C.  Lu,  and  S.  Dyke,  

A  HolisCc  Approach  to  Decentralized  Structural  Damage  LocalizaCon  Using  Wireless  Sensor  Networks,  IEEE  Real-­‐Time  Systems  Symposium  (RTSS'08),  December  2008.    

  G.  Hackmann,  W.  Guo,  G.  Yan,  C.  Lu  and  S.  Dyke,  Cyber-­‐Physical  Codesign  of  Distributed  Structural  Health  Monitoring  with  Wireless  Sensor  Networks,  ACM/IEEE  InternaConal  Conference  on  Cyber-­‐Physical  Systems  (ICCPS'10),  April  2010.  

 

30  

Page 31: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science
Page 32: Structural(Health(Monitoringlu/cse520s/slides/shm.pdfClayton, E.H. (2006), “ Frequency Correlation-based Structural Health Monitoring with Smart Wireless Sensors”, Master of Science

Evaluation:  Cantilever  Beam    2.75  m  x  7.6  cm  x  0.6  cm  steel  beam  in  

Structural  Control  and  Earthquake  Engineering  Lab  

  Damage  simulated  at  three  locaCons  by  ataching  a  steel  bar  

  7  Imote2s  atached  at  equidistant  locaCons  

32  0.6

6 m

1.3

5 m

1.9

m

2.7

5 m

Wireless Sensor

Damage Location

damage case by applying a hammer strike along the weaker bending axis. Results reported using

the entire network are depicted in Figs. 6, 7 and 8 where corresponding identified natural

frequencies and DLAC measurements are introduced for each damage scenario. DLAC values

determined at sensors along the length of the beam are provided. Values close to unity indicate

damage location. The entire network report successful damage detection results for all damage

scenarios with correlation measurements greater than 90% at the damaged positions. Recall

experimental damage positions D1, D2 and D3 are associated with elements 5, 10 and 14,

respectively. Despite consistency in the results, some of the sensors report correlation

measurements greater than 50% for some of the element positions. As explained previously,

results of correlation-based methods may not be unique. Frequency change vectors associated

with one damage location could be potentially the same as those obtained with several

combinations of damage location when reduced numbers of modes are used. Therefore, the

inclusion of more modes is expected to clarify the results by concentrating the correlation

measurements around one damage location. Note that these results are obtained with a damage

hypothesis of only 67% of the actual damage. Two additional damage hypotheses are

implemented to test the DLAC performance off-line using different damage assumptions and

acceleration records previously obtained for debugging purposes. New sensitivities matrices and

corresponding frequency change vectors were developed with a prescribed analytical damages

equivalent to 200% and 33% of the actual damage. Results showed the same tendencies and

consistency, and were also successful for all damage scenarios with high correlation

measurements.

Fig 6. DLAC results for element position # 5

0 10 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 5

Y = 0.94

DLAC WS1

Element Position

0 10 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 5

Y = 0.971

DLAC WS2

Element Position

0 10 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 5

Y = 0.972

DLAC WS3

Element Position

0 10 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 5

Y = 0.955

DLAC WS4

Element Position

0 10 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 5

Y = 0.964

DLAC WS5

Element Position

0 10 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 5

Y = 0.965

DLAC WS6

Element Position

0 10 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 5

Y = 0.97

DLAC WS7

Element Position

Damage  correctly  localized  in  all  three  trials