structure and rearrangements of a modular pks

55
Some Metagenomics and…..The Structure and Rearrangements of a Modular PKS David H. Sherman University of Michigan, Life Sciences Institute, Dept. of Medicinal Chemistry

Upload: others

Post on 27-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structure and Rearrangements of a Modular PKS

Some Metagenomics and…..The

Structure and Rearrangements of a

Modular PKS

David H. Sherman

University of Michigan, Life Sciences Institute, Dept. of Medicinal Chemistry

Page 2: Structure and Rearrangements of a Modular PKS

Intriguing Biosynthetic Mechanisms

(R. Berlinck, R. Sarpong, R. Williams)

Notoamide A

(+)-versicolamide B

O

HNH

O

NNH

OO

O

HHN

O

NNH

OO

(-)-versicolamide B

O

HNH

O

NNH

O

O(-)-notoamide B

O

HHN

O

NNH

O

O

(+)-notoamide B

(+)-stephacidin A

O

H

NNH

O

HN O

O

H

NNH

O

HNO

(-)-stephacidin A

Marine Aspergil lus sp. Terrestrial Aspergi l lusversicolor

R S

S

1. Bicyclo [2.2.2] diazaoctane core

2. Indoxyl spiro-center

3. Enantiomeric assembly of the

fungal isoprenylated [2.2.2]

diazaoctane alkaloids

Finefield et al. Angew. Chem. Intl. Ed. 2012

Finefield. et al. J. Nat. Prod.. 2012

Page 3: Structure and Rearrangements of a Modular PKS

• Searching for new drug leads from marine microbes

• Culture previously unidentified bacteria and fungi from a variety of marine sources

• These organisms are grown in liquid culture

• Extracts are screened for bioactivity

• Extracts with interesting activity are purified to isolate the bioactive metabolite

Collection

Primary

Sources

Secondary

Isolation

Fermentation

Extraction

Bioassays & high-throughput screening

3

Traditional Discovery

Page 4: Structure and Rearrangements of a Modular PKS

Collection

High-throughput

sequencing

Bioinformatic assembly, chemical

probe synthesis, biochemical

validation

Heterologous

expression

Extraction

High-throughput structure elucidation

4

Emerging NP Discovery Model

• Explore new drug leads from unculturable marine microbial symbionts

• Assemble genomes and express biosynthetic systems from a variety of marine sources

• High throughput screening for bioactivity

• Pursue priority molecules for molecular probe development and drug discovery

Page 5: Structure and Rearrangements of a Modular PKS

ET-743: Elucidating the origin of a chemotherapeutic natural product

Page 6: Structure and Rearrangements of a Modular PKS

Marine Invertebrates are Rich Sources of Bioactive Compounds

• Potent natural products are thought to serve as a chemical defense for sessile invertebrates

• Many of these compounds are thought to be produced by bacterial symbionts

• Many symbionts remain incapable of being cultured in the laboratory.

• Culture-independent methods are needed

Page 7: Structure and Rearrangements of a Modular PKS

Ecteinascidia turbinata and ET-743• Mangrove tunicate

• Producer of chemotherapeutic ET-743 (Yondelis®)

• The drug is currently produced in a lengthy semi-synthetic process

• Thought to be produced by an uncultivable bacterial symbiont

Moss et. al. (2003) Marine Biology 143(1):99-110Pérez-Matos A, Rosado W, and Govind N (2007) Antonie van Leeuwenhoek 92(2):155-64

Page 8: Structure and Rearrangements of a Modular PKS

Ecteinascidia turbinata and ET-743

• Mangrove tunicate

• Producer of chemotherapeutic ET-743 (Yondelis®)

• The drug is currently produced in a lengthy semi-synthetic process

• Thought to be produced by an uncultivable bacterial symbiont

3. Saframycin Mx1 in Myxococcus xanthus4. Safracin in Pseudomonas fluorescens

1. ET-743 in E. frumentensis2. Saframycin A in S. lavendulae

Page 9: Structure and Rearrangements of a Modular PKS

Endoecteinascidia frumentensis: Producer of ET-743?

1. ET-743 in E. frumentensis2. Saframycin A in S. lavendulae

3. Saframycin Mx1 in Myxococcus xanthus4. Safracin in Pseudomonas fluorescens

Rath CM et al. (2011) ACS Chem Biol

Page 10: Structure and Rearrangements of a Modular PKS

ET-743 Putative Biosynthetic Pathway

Rath CM et al. (2011) ACS Chem Biol

Page 11: Structure and Rearrangements of a Modular PKS

Metagenomic Sequencing Efforts

Tunicate

Page 12: Structure and Rearrangements of a Modular PKS

Metagenomic Sequencing Efforts

Tunicate

PacBio sequencing at UM core (1 kB library)

MDA single cell sequencing

Illumina and PacBio (10 kB) combined sequencing at JGI

X X X

Page 13: Structure and Rearrangements of a Modular PKS

Metagenomic Sequencing Efforts

Tunicate

PacBio sequencing at UM core (1 kB library)

MDA single cell sequencing X X Illumina Metagenomic Sequencing at JGI

Page 15: Structure and Rearrangements of a Modular PKS

Expanding the ET-743 Biosynthetic Gene Cluster

35 kb contig

428 kb contig

Page 16: Structure and Rearrangements of a Modular PKS

Name kb kd Blast ID Function

EtuA1 1.9 76.636 NRPS module C-A-T

EtuA2 1.3 167.313 NRPS module C(PS)-A-T-RE

EtuA3 5.4 210.893 NRPS dimodule FA-T-C-A-T

EtuD1 0.8 29.929 TatD Mg2+ depedent cytoplasmic DNase

EtuD2 0.8 36.693 DNA polymerase III delta prime subunit

EtuD3 0.7 25.232 DNA polymerase I 5'-3' exonuclease domain

EtuF1 1.3 43.122 Acetyl-CoA carboxylase biotin carboxylase subunit

EtuF2 0.5 17.098 Acetyl-CoA carboxylase biotin carboxylase subunit

EtuF3 1.8 87.021 Penicillin acylase

EtuH 0.4 18.42 Catechol hydroxylase

EtuM1 1.1 41.556 SAM dependent methyltransferase

EtuM2 0.7 25.554 SAM dependent O-methyltransferase

EtuN1 1.4 56.151 Asp/Glu-tRNA amidotransferase subunit B

EtuN2 1.4 43.367 Asp/Glu-tRNA amidotransferase subunit A

EtuN3 0.2 11.963 Asp/Glu-tRNA amidotransferase subunit C

EtuO 1.5 57.587 FAD dependent monoxygenase

EtuP1 2 76.412 Pyruvate dehydrogenase E1 component

EtuP2 1 42.531 Pyruvate dehydrogenase E2 component

EtuR1 0.9 32.435 Bacterial symbiont gene for protein found in host

EtuR2 0.3 13.328 Transcriptional regulator MerR family

EtuR3 0.4 15.575 DNA K suppressor protein

EtuT 0.8 35.189 Drug metabolite transporter superfamily protein

EtuU1 1.4 53.601 EtuP peptidase U62 modulator of DNA gyrase

EtuU2 0.5 20.221 Shikimate kinase I

EtuU3 0.3 14.111 Hypothetical protein

Gene Product Classification Designation

Pyruvate Dehydrogenase EtuP3

Methyltransferases

EtuM3, EtuM4, EtuM5,

EtuM6, EtuM7

Fatty acid biosynthesis EtuF4

Putative P450 EtuO2

Acytltransferase TBD

Drug Transport TBD

Phosphopantotheoylcysteine synthetase TBD

Page 17: Structure and Rearrangements of a Modular PKS

Origin of glycolic acid (EtuP1/P2/gene 287)

EtuP1 obtains α,β-dihydroxyethyl-Thiamine diphosphate (ThDP) from

a ketose phosphate (xylulose, fructose, or

sedoheptulose suggested)

Page 18: Structure and Rearrangements of a Modular PKS

Expanding the ET-743 Biosynthetic Gene Cluster

35 kb contig

428 kb contig

Page 19: Structure and Rearrangements of a Modular PKS

What we’re missing:1. Acetylation after EtuO 2. Thioether ring formation after EtuO 3. N-methylation 4. Transamination? 5. Methylene dioxybridge formation 6. Incorporation of tyrosine derivative

Have a candidate for acetylation Several methyltransferase candidates

Still digging for transamination candidate

EtuO2 is a candidate for methylene dioxybridge formation EtuA2 repeat Pictet-Spengler?

Page 20: Structure and Rearrangements of a Modular PKS

From Clusters to Genomes

• Do we have the complete genome?

• What could the genome tell us about this organism

– Direct bacterial link to ET-743 production

– Endosymbiosis

– Cultivation

– Host and symbiont evolution

Page 21: Structure and Rearrangements of a Modular PKS

ESOM puts bacterial DNA into distinct bins

Sunit Jain

Page 22: Structure and Rearrangements of a Modular PKS

ESOM puts bacterial DNA into distinct bins

Sunit Jain

Page 23: Structure and Rearrangements of a Modular PKS

An Ideal ESOM Map

Sunit Jain

Page 24: Structure and Rearrangements of a Modular PKS

Bin 1

Bin 2More

Bins

Sunit Jain

Page 25: Structure and Rearrangements of a Modular PKS

ET

CyanoMore Bins

Sunit Jain

Page 26: Structure and Rearrangements of a Modular PKS

Combining Sequenced Samples

Page 27: Structure and Rearrangements of a Modular PKS

Combining Sequenced Samples

Page 28: Structure and Rearrangements of a Modular PKS

Combining Sequenced Samples

Page 29: Structure and Rearrangements of a Modular PKS

General Genome Comparison

Organism Type GenomeSize

GC Content Coding % Pseudogenes

Endoecteinascidia frumentensisSuspected Endosymbiont 1.263 23.29 90.76 22 (in progress)

Coxiella burnetiiIntracellular Pathogen 2.033 42.60 87.81 83

Francisella novicidaIntracellular Pathogen 1.9 32.24 89.88 --

Rickettsiella grylliIntracellular Pathogen 1.561 37.93 89.63 --

Fangia hongkongensisFree living 2.693 37.94 91.42 --

Buchnera aphidicolaEndosymbiont 0.64 26.29 86.53 --

Wigglesworthia glossinidia Endosymbiont 0.72 25.22 87.95 --

Page 30: Structure and Rearrangements of a Modular PKS

General Genome Comparison

Organism Type GenomeSize

Coding % GC Content Pseudogenes

Endoecteinascidia frumentensisSuspected Endosymbiont 1.263 90.76 23.29 22 (in progress)

Coxiella burnetiiIntracellular Pathogen 2.033 87.81 42.60 83

Francisella novicidaIntracellular Pathogen 1.9 89.88 32.24 --

Rickettsiella grylliIntracellular Pathogen 1.561 89.63 37.93 --

Fangia hongkongensisFree living 2.693 91.42 37.94 --

Buchnera aphidicolaEndosymbiont 0.64 86.53 26.29 --

Wigglesworthia glossinidia Endosymbiont 0.72 87.95 25.22 --

Organism Type GenomeSize

Coding % GC Content Pseudogenes

Mycobacterium leprae TN

Intracellular Pathogen(Actinobacteria)

3.268 74.52 57.8 --

Rickettsia prowazekii Breinl

Intracellular Pathogen(Alphaproteobacteria)

1.109 76.76 29.01 --

Candidatus Endolissoclinum faulkneriL5

Endosymbiont(Alphaproteobacteria)

1.51 57% ~35% --

Page 31: Structure and Rearrangements of a Modular PKS

Summary

• Expanded the ~35 kB ET-743 biosynthetic gene cluster to a > 400 kB scaffold that contains additional (dispersed) biosynthetic genes.

• Sequence assembly resulted in a single bin representing majority of genome for ET-743 producing organism.

• Genome is completely annotated and analysis is underway.

• Previous studies combined with new genomic evidence suggest E. frumentensis is a novel endosymbiont undergoing genome reduction with its tunicate host.

• We have preliminary insights into possible reasons the organism has resisted cultivation.

Page 32: Structure and Rearrangements of a Modular PKS

Sequencing Pathway annotation DNA fragments for assembly of entire pathwayA.PCR from metagenomeB.Synthetic double stranded DNA

Invitrogen GeneArt® Strings™:; 1000bp at $149

IDT gBlocks™; 500bp at $99

Gibson Assembly

plasmid

DNA fragments

Bacterial artificial chromosome (BAC)

Plasmid assembly A

Plasmid assembly BAssembled pathway Plasmid assembly C

Sample

Metagenomicextraction

Heterologousexpression

Page 33: Structure and Rearrangements of a Modular PKS
Page 34: Structure and Rearrangements of a Modular PKS

Streptomyces venezuelae ATCC 15439

Page 35: Structure and Rearrangements of a Modular PKS

The Methymycin and Pikromycin Biosynthetic

Gene Cluster

0 10 20 30 40 50 60 (kb)

pLZ51

pLZ62

pLZ71

pLZ82

pME43

pLZ81

pLZ78

pLZ4

pLZ56

pikAI pikAII pikAIII pikAIVpikR1pikR2

desVIII desVII desVI desV desIV desIII desII desIdesR

A B CR

pikAV pikC pikD

D

Xue et al., PNAS, 1998; Gene, 2000

Page 36: Structure and Rearrangements of a Modular PKS

pikC pikR des (pikB)

I II III IVR1

R2

V C DIIIIIIIVVVIVIIVIII R

pikDpikA

The Macrolide Pathways of

Streptomyces venezuelae

O

O

O

O OHO

NMe2

Me

O

O

O O

O OHO

NMe2

Me O

O

O O

O OHO

NMe2

Me

OH

O

O

O

O OHO

NMe2

Me

R1

R2

O

O

O O

OH

O

O

O

OH

narbonolide

1 malonyl-CoA +5 methylmalonyl-CoA

pikA

pikB (des)pikA

pikB (des)

YC-17

narbomycin

pikC

pikC

10-deoxymethynolide

pikromycin

methymycin (R1=OH, R2=H)neomethymycin (R1=H, R2=OH)

1 malonyl-CoA +6 methylmalonyl-CoA

novamethymycin (R1=OH, R2=OH)

Xue et al., Chem. Biol. 1998; Wilson et al., J. Bact. 2001

Page 37: Structure and Rearrangements of a Modular PKS

Pikromycin Pathway Studies

• Pathway characterization

• Sugar pathway engineering and

glycosylation

• Chain elongation, channeling and release

• Docking domain interactions

• Polyketide termination and cyclization

• Hydroxylation/C-H functionalization

• Structural analysis during complete catalytic

cycle (Cryo Electron Microscopy)

Page 38: Structure and Rearrangements of a Modular PKS

module 0 module 1 module 2 module 3 module 4 module 5 module 6

PikAI PikAII PikAIII PikAIV

KSQ

AT

ACP KSAT KR

ACP KS

ATMKR

ACP

DHKS

AT KR*

ACP KS

ATKR

ACP

ER

DHKS

AT KR

ACPKS

AT

ACP TE

Starter unit Extender units

(2S)-Methylmalonyl-CoA (2S)-Methylmalonyl-CoA Malonyl-CoA 1 X 5 X 1 X

10-Deoxymethynolide

(10-DML)

Narbonolide (NBL)

467-481 883-915

1361-14031479-1492

1519-1543dimerizationhelices

dockinghelix

dockinghelix

1-38

1544-1562

AT5 KR5

ACP5

KS5

Xue et al., PNAS, 1998; Gene, 2000; Dutta, Whicher et al., 2014

Page 39: Structure and Rearrangements of a Modular PKS

Mechanism of Modular Type I Polyketide Synthases (PKS)

KS

S

O

Me

AT ACP

CoA-S

O

Me

AT

CoA-S

O

OH

O

Me

KRACP

SH S

O

Me

KS

SH

KS ATKR

ACP

S

O

Me

OH

Me

NADPH

S

O

Me

OH

Me

KS etc.

AT

KRACP

S

O

CO2H

Me -CO2

KS

SH

ATKR

ACP

S

O

Me

O

Me

LOAD MODULE 1

1

Propionyl CoA

Methylmalonyl CoA

MODULE 1

2 3

MODULE 1

MODULE 1

4

MODULE 2

1) The AT of the loading module loads the KS of module 1 with propionyl CoA

5

2) The ACP is loaded with methyl malonyl CoA by the AT of module 1

3) Decarboxylation and attack on the KS-bound propionate gives the extended -ketothioester

4) The KR reduces the -ketothioester

5) No more reductive modules are present, so the chain is transferred to module 2

Page 40: Structure and Rearrangements of a Modular PKS

Chemoenzymatic Synthesis

Hansen et al. JACS 135(30):11232-11238 (2013)

This methodology delivered both macrolide antibiotic classes in 13 steps

(longest linear sequence) from commercially available (R)-Roche ester in >10%

overall yields.

Page 41: Structure and Rearrangements of a Modular PKS

Structure and Molecular Dynamics of a Complete Modular PKS

Page 42: Structure and Rearrangements of a Modular PKS

Electron Cryo-Microscopy (Cyro EM)

Freeze Sample

Imaging

Pick

Particles/proce

ss images

Image Stack

Initial modelRefined model

Refine Reconstruction

Yiorgo Skiniotis, Somnath

Dutta

Page 43: Structure and Rearrangements of a Modular PKS

Employed Cryo EM and different combinations

of substrates to trap PikAIII in each state

State 1

Resting state

holo-PikAIII

State 2

MM-PikAIII

State 5

β-hydroxyhexaketide-

PikAIII

State 4

β-Ketohexaketide-

PikAIII

State 3a

Upstream ACP

fusion

State 3b

Pentaketide

Page 44: Structure and Rearrangements of a Modular PKS

Holo-PikAIII

Cryo Electron Microscopy

Dutta et al., 2014; Whicher et al., 2014

Structure and Molecular Dynamics of a Complete Modular PKS

Page 45: Structure and Rearrangements of a Modular PKS

Chemoenzymatic Synthesis

Hansen et al. JACS 135(30):11232-11238 (2013)

This methodology delivered both macrolide antibiotic classes in 13 steps

(longest linear sequence) from commercially available (R)-Roche ester in >10%

overall yields.

Page 46: Structure and Rearrangements of a Modular PKS

Current substrate panel

PhS

O O OH

conserve C1-7 vary C8-11

PhS

O O OH

PhS

O O OH

PhS

O O OH

PhS

O O OH

PhS

O O OH

PhS

O O OH

PhS

O O OH

PhS

O O OH

PhS

O O OH

PhS

O O NH2

PhS

O O NHMe

stereoisomers truncations amino

Page 47: Structure and Rearrangements of a Modular PKS

First analogs with PikAIII-TE

66%

<5%

32%

14%

23%

ND

PikAIII-TE

Enzymatic reaction conditions: 1 mM pentaketide, 20 mM MM-NAC, 0.1 mM NADP+, 2.5 mM G6P, 0.5 unit/mL G6PDH, and 1 μM purified PikAIII-TE. 4hrs RT

Page 48: Structure and Rearrangements of a Modular PKS

Pentaketide Epimer AnalysisO

O

O

OH

S

O O OH

O

O

O

OH

S

O O OH

O

O

O

OH

S

O O OH

O

O

O

OH

S

O O OH

PikAIII-TE

66%

5%

8%

13%

Page 49: Structure and Rearrangements of a Modular PKS

Question: How do we improve PKS catalysis with unnatural substrates?

KS-KetoSynthaseAT-Acyl TransferaseKR-KetoReductaseACP-Acyl Carrier ProteinTE-ThioEsterase

Page 50: Structure and Rearrangements of a Modular PKS

Thioesterase Enzyme Mechanism

• Pik TE catalysis is facilitated via Ser148-His268-Asp176 triad

His

ACP

SH

TE

Ser

AspO

O

NN H

O

O

O

Me

Me

OH

Me

Me

O

Me

OH

His

ACP

SH

TE

Ser

AspO

O

N

NH

O

O

OO

O

Me

Me

HMe

Me

HO

Me Me

O

O

Me

O

Me

MeMe

OHMe

O

His

ACP

O

O

Me

Me

OH

Me

Me

O

Me

OH

S

TE

Ser

AspO

O

N

N HO

H

His

ACP

SH

TE

Ser

AspO

O

NN H

O

O

O

Me

Me

OH

Me

Me

O

Me

OH

His

ACP

SH

TE

Ser

AspO

O

N

NH

O

O

OO

O

Me

Me

HMe

Me

HO

Me Me

O

O

Me

O

Me

MeMe

OHMe

O

His

ACP

O

O

Me

Me

OH

Me

Me

O

Me

OH

S

TE

Ser

AspO

O

N

N HO

H

HisHis

ACPACP

O

O

MeMe

MeMe

OHOH

MeMe

MeMe

O

MeMe

OHOH

S

TETE

SerSer

AspAspO

O

N

N HO

H

Page 51: Structure and Rearrangements of a Modular PKS

Pikromycin TE with Diphenylphosphonate

Pentaketide

Akey et al., Nature Chem. Biol. 2006

Page 52: Structure and Rearrangements of a Modular PKS

Insights into Macrolactonization

“creating the curl”

His268

Thr77

Gln183

Ser148

Ala217 Ala221

Hydrophilic Barrier

Anchor Point

Akey et al., Nature Chem. Biol. 2006

Page 53: Structure and Rearrangements of a Modular PKS

New Biosynthetic Challenges

O

OOO

O O

O O

O

O

H

O

OH

HH

H

HH

H

H

HH

H

H

HH

H

HH

O

O

O

O O

O

O

O O

O

O

O O

H

OH

OH

H

H

H

H

H

H

H

H

H

H

HH

H

H

H

H

H

H

H H

H

OH

OH

OH

HO

O

O

O

O

OO

OO

O

OO O

O O

O

O

O

O

O

OHOH

O

OO

O

O

O

O

OHO

S

O

O

O

O

O

O

OH

OHOS

OH

OH

OH OOH

O

H

HO OH

H

HO

HH

H HOH

H H HOH

HOH

O OHO

H H H H H

HO

H

H

OH

OHHHH

OH

OH OHH

H

HOH

H

OHH

HO

H

H

H

H

H

H

HO

H

H

H

H

OH

H

H

HH

OHH

H

H

H H HHOH

5

6

7

HO

O O

O

O

O

O

O

O

OH

HO

OH

8

Page 54: Structure and Rearrangements of a Modular PKS

Acknowledgements Sherman LaboratoryMichael-Marie SchofieldDrishti KaulDr. Fengan Yu Dr. Joe ChemlerPam ShultzShamilya Williams

Former Sherman Lab membersDr. Chris RathDr. Tyler NuscaDr. George Chlipala

Joint Genomics Institute Tijana Glavina del Rio (Illumina/PacBio)Susannah Tringe (Illumina/PacBio)Tanja Woyke (Single Cell)

Center for Chemical Genomics Martha J. LarsenTom McQuade

Collaborating LabsDr. Greg Dick & LabDr. Phillip Hanna & LabDr. Robert Williams & Lab (CSU)Dr. Xiaoxia (Nina) Lin & Lab

Tunicate CollectionsErich Bartels at Mote Marine Labs

Support

ICBG – Costa RicaNSF Graduate Research Fellowship ProgramCellular Biotechnology Training Program Rackham Graduate Student Research GrantsRackham International Research Award

Page 55: Structure and Rearrangements of a Modular PKS

Acknowledgements

University of Michigan

• Doug Hansen

• Dr. Joe Chemler

• Dr. Alison Narayan

• Dr. Courtney Aldrich

• Dr. Brian Beck

• Dr. Somnath Dutta

• Jon Whicher

• Wendy Hale

• NIH grant GM078553

• Hans W. Vahlteich Professorship

• U-M College of Pharmacy

Prof. Yiorgo Skiniotis Prof. Janet Smith

Prof. Kicki Hakansson