study of ieeejasan/articulo_iit.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g....

13
I NGENI ERÍ A I nvest i gaci ón y Tecnol ogí a VIII . 1. 45- 57, 2007 (artículo arbitrado) A P e r f o r ma n c e S t u d y o f t h e I EEE 802.11 g P H Y a n d M AC L a y e r s o v e r H e t e r o g e n e o u s a n d H o mo g e n e o u s WL ANs L. Villaseñor - Gonlez, C. Por t illo- J iménez y J . Sánchez- Gar cía El e c t r o ni c s a nd Te l e c o mmuni c a t i o ns De pa r t me nt CICESE Re s e a r c h Ce nt e r , Ens e nada, Baja Cali f o r nia E-mails : l uisvi @c i c e s e .mx, c port ill @c i c e s e .mx, jasa n@c i c e s e .mx ( Rec i bi do: ener o de 2006; ac ept ado: j uni o de 2006) Resumen Las redes locales inalámbricas (WLANs) basadas en el estándar 802.11 se han extendido con mucho éxito dentro de una gran variedad de ambientes, incluyendo el hogar, las oficinas y las corporaciones. Iniciando con la introducción del estándar 802.11, a la fecha se han propuesto y aprobado diversas extensiones por la IEEE, éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY) y de control de acceso al medio (MAC) del estándar IEEE 802.11g. El estándar 802.11g opera en la banda de frecuencia de los 2.4 GHz y es compat ible con el estándar 802.11b. Por lo tanto, resulta de gran interés presentar un estudio relacionado con el desempeño de las capas PHY y MAC que se utilizan en 802.11g, incluyendo el desempeño de los modos de operación de la capa física que fueron diseñados para preservar la compatibilidad con 802.11b (i.e. WLANs heterogéneas). Descriptores: 802.11g, Protocolo MAC, análisis de desempeño, mecanismo de protección, RTS/CTS, WLAN. Abstract Wire less lo cal area net works (WLANs) based on the 802.11 stan dard are be ing de ployed with great suc cess in a great va ri ety of home, of fice and cor po rate en vi ron ments. Since the in tro duc tion of the 802.11 stan dard, mul ti ple ex ten sions have been pro posed and ap proved by the IEEE, namely the 802.11a, 802.11b and 802.11g stan dards. This work is re lated to the study and per for mance anal y sis of the IEEE 802.11g phys i cal (PHY) and MAC lay ers. The 802.11g is de fined to op er ate in the 2.4 GHz band and it was de signed to pre serve back - ward com pat i bil ity with the 802.11b stan dard. Hence it is im por tant to pres ent a study re - lated to the per for mance of the MAC and the PHY op er a tional modes in 802.11g, in clud ing the per for mance is sues re lated to the PHY op er a tional modes which are de signed to be com - pat i ble with 802.11b (i.e. Het er o ge neous WLANs). Keywords: 802.11g, MAC Pro to col, Per f or mance Anal y sis, Pro tec ti on Mech a nism, RTS/CTS, WLAN. I nt r o duc t i o n Recent advances on wireless local area net- works (WLAN) technologies are making possi- ble the deployment of a large number of WLANs in a great variety of home, office and corporate environments. In particular, the success of the 802.11 standard has made it possible for a great number of products to be readily available at a large number of electronic retail stores. Since the initial introduction of the IEEE 802.11 standard, defined in (IEEE Std.

Upload: others

Post on 05-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

INGENIERÍA Investigación y Tecnología VIII. 1. 45-57, 2007(artículo arbitrado)

A Performance Study of the IEEE 802.11g PHYand MAC Layers over Heterogeneous and

Homogeneous WLANsL. Villaseñor-González, C. Portillo-Jiménez y J. Sánchez-García

Electronics and Telecommunications Department CICESE Research Center, Ensenada, Baja California E-mails: [email protected], [email protected], [email protected]

(Recibido: enero de 2006; aceptado: junio de 2006)

ResumenLas redes locales inalámbricas (WLANs) basadas en el estándar 802.11 se hanextendido con mucho éxito dentro de una gran variedad de ambientes, incluyendo

el hogar, las oficinas y las corporaciones. Iniciando con la introducción del estándar802.11, a la fecha se han propuesto y aprobado diversas extensiones por la IEEE,éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta

el análisis de desempeño de las capas físicas (PHY) y de control de acceso al medio(MAC) del estándar IEEE 802.11g. El estándar 802.11g opera en la banda defrecuencia de los 2.4 GHz y es compat ible con el estándar 802.11b. Por lo tanto,

resulta de gran interés presentar un estudio relacionado con el desempeño de lascapas PHY y MAC que se utilizan en 802.11g, incluyendo el desempeño de losmodos de operación de la capa física que fueron diseñados para preservar la

compatibilidad con 802.11b (i.e. WLANs heterogéneas).

Descriptores: 802.11g, Protocolo MAC, análisis de desempeño, mecanismo de

protección, RTS/CTS, WLAN.

AbstractWire less lo cal area net works (WLANs) based on the 802.11 stan dard are be ing de ployed

with great suc cess in a great va ri ety of home, of fice and cor po rate en vi ron ments. Since thein tro duc tion of the 802.11 stan dard, mul ti ple ex ten sions have been pro posed and ap provedby the IEEE, namely the 802.11a, 802.11b and 802.11g stan dards. This work is re lated to

the study and per for mance anal y sis of the IEEE 802.11g phys i cal (PHY) and MAC lay ers.The 802.11g is de fined to op er ate in the 2.4 GHz band and it was de signed to pre serve back -ward com pat i bil ity with the 802.11b stan dard. Hence it is im por tant to pres ent a study re -

lated to the per for mance of the MAC and the PHY op er a tional modes in 802.11g, in clud ingthe per for mance is sues re lated to the PHY op er a tional modes which are de signed to be com -pat i ble with 802.11b (i.e. Het er o ge neous WLANs).

Key words: 802.11g, MAC Pro to col, Per for mance Anal y sis, Pro tec tion Mech a nism,RTS/CTS, WLAN.

Introduction

Recent advances on wireless local area net-works (WLAN) technologies are making possi-ble the deployment of a large number ofWLANs in a great variety of home, office and

corporate environments. In particular, thesuccess of the 802.11 standard has made itpossible for a great number of products to bereadily available at a large number of electronicretail stores. Since the initial introduction of theIEEE 802.11 standard, defined in (IEEE Std.

Page 2: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

802.11-1999), several extensions have beenapproved by the IEEE. These extensions include the 802.11a (IEEE Std. 802.11a, 1999), 802.11b(IEEE Std. 802.11b, 1999) and 802.11g (IEEE Std.802.11g, 2003) versions.

The 802.11g standard defines the extensionsto the medium access control (MAC) mecha-nism, as well as, the physical layer (PHY). Oneof the main characteristics of the 802.11gstandard is that it defines a PHY layer operating in the 2.4 GHz band, thus allowing backwardcompatibility with legacy 802.11b equipment(Vassis et al., 2005). As a result, the 802.11gstandard defines several PHY operational mo-des to support the compatibility with 802.11b(Choi et al, 2003). In addition, a protectionmechanism is proposed in the 802.11g standardto avoid interoperability issues within a hete-rogeneous WLAN environment composed of802.11b and 802.11g devices. Hence it is im-portant to present a study on the performanceof the 802.11g standard to have a clear un-derstanding of the operational issues related tothe multiple PHY operational modes, as well as, the implications or the impact introduced bythe protection mechanism proposed in section9.10 of (IEEE Std. 802.11g, 2003). There are acouple of articles in the literature that presentsome aspects of the performance of the 802.11gstandard. Some related work includes the workby (Wang, S.-C. et al., 2005) which presents amathematical model to evaluate the networkthroughput of 802.11g wireless networks;however they do not include a complete ana-lysis of the multiple operational PHY modesdefined in the 802.11g standard. (Wijesinha etal., 2005) present throughput performance ofUDP traffic in a 802.11g wireless network, while (Medepalli et al., 2004) presents the call carrying capacity of 802.11 wireless networks including802.11g; however they too fail to include acomprehensive performance evaluation of allthe mandatory 802.11g extended data rates.(Boulmalf et al., 2005) presents the throughputand SNR measurements of an 802.11g wirelessnetwork for an indoor environment whichincludes the coexistence with 802.11b devices;

however their work does not provide a detailedanalysis of 802.11g by accounting for all thePHY and MAC layers functionalities imple-mented to support the coexistence with 802.11band 802.11g devices. (Rao et al., 2005) inves-tigates the performance of 802.11g throughcomputer simulations using a realistic channelmodel for various modulation schemes, likeBPSK, QPSK, 16-QAM and 64-QAM; howeverthey only present Bit Error Rate (BER) results asa function of the channel SNR for the differentsupported modulation schemes. (Wang et al.,2005) present empirical network performanceresults for 802.11g networks and in their workthey present packet delay, data loss andthroughput measurement results as a functionof the channel SNR; however they only consider an homogeneous 802.11g network environment and do not provide performance results for thebackward compatibility operational modes of802.11g. In an earlier work, (Doufexi et al., 2003)presents a performance comparison between802.11a and 802.11g wireless networks and they describe some performance issues related to the interoperability of 802.11b and 802.11g devices;however they only provide performance ana-lysis results as a function of the packet error rate PER. The main contribution of this work is toinclude a comprehensive performance study ofall the mandatory operational modes of the802.11g PHY layer, including the performanceissues in heterogeneous 802.11b and 802.11gwireless networks.

This work is divided in five sections. Thenext section presents a description of the newfeatures introduced in the IEEE 802.11g stan-dard. Following we present a performancestudy and analysis of the 802.11g MAC pro-tocol. Later, the numerical results are pre-sented followed by the conclusions.

The 802.11g Stan dard

The IEEE 802.11g standard was approved onJune 2003. This standard builds on the MACprotocol specifications defined for legacy 802.11 networks, as defined in (IEEE Std. 802.11-1999),

46 INGENIERIA Investigación y Tecnología FI-UNAM

A Perfor mance Study of the IEEE 802.11g PHY and MAC Layers over Heter o ge neous ...

Page 3: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

(IEEE Std. 802.11a, 1999 ) and (IEEE Std. 802.11b, 1999). In addition, it also defines multiple ope-rational modes for the PHY layer. This sectionpresents a basic description of some of the MACfunctionalities, as well as, the operational modesdefined for the 802.11g PHY layer.

The 802.11 MAC Protocol

The 802.11 MAC defines two basic methods toaccess the medium, the Distributed CoordinationFunction (DCF) and the Point CoordinationFunction (PCF ), as described in chapter 9 of(IEEE Std. 802.11-1999). The DCF defines arandomized access mechanism, which is basedon the Carrier Sense Multiple Access/CollisionAvoidance (CSMA/CA) scheme, where eachmobile node has a fair chance to access thewireless medium. On the other hand, the PCFdefines a centrally controlled access mechanism for the wireless medium. It should be noted that the 802.11 standard defines the PCF as anoptional access method. The study and analysispresented in this work is based on the DCFaccess mechanism.

As part of the coordination procedure togain access to the transmission medium, the802.11 standard uses four different inter-framespacing, section 9.2.3 of (IEEE Std. 802.11-1999).Figure 1 shows a diagram of the differentInter-Frame Spacing (IFS) used in 802.11. TheShort Inter-Frame Space (SIFS) is used for thetransmission of high priority 802.11 frames,such as, the Request-To-Send (RTS), Clear-To-Send (CTS ) and Acknowledgement (ACK) frames.

The PCF Inter-Frame Space (PIFS) is usedduring PCF contention-free operation. The DCF Inter-Frame Space (DIFS) is used during DCF

contention-based operation. An Extended Inter-Frame Space (EIFS), not shown, is also defined in the 802.11 standard and it is used when there isan error during a frame transmission. TheContention Window ( CW) size is defined as amultiple of a time slot, and it plays a major roleduring the Backoff procedure that each mobilenode must execute before transmission.

The use of the IFS and CW is important in the coordination of the access to the wireless me-dium, as described by (Gast, 2002). Table 1,shows the different inter-frame space valuesdefined in the 802.11g standard which aredefined in (IEEE Std. 802.11g, 2003). It should be noted that an optional time slot of 9 µs has beendefined for those cases in which the wirelessnetwork is composed of only 802.11g com-plying devices, as indicated in section 19.4.4 of(IEEE Std. 802.11g, 2003).

Table 1. MAC Param eter values in µs

Time slot = 20 Time slot = 9

SIFS 10 10

PIFS 30 19

DIFS 50 28

The minimum size of the CW , as defined in the 802.11g standard, is dependant on therequestor’s characteristic rate. If the WLANsupports only rates in the set 1, 2, 5.5 and 11Mbps, then the minimum size of the CW,denoted by CW min, is equal to the length of 31 time slots, as defined in section 18.3.4 of(IEEE Std. 802.11b, 1999); otherwise, CWmin is set to be equal to the length of 15 time slots,as defined in section 19.8.4 of (IEEE Std.802.11g, 2003).

Vol.VIII No.1 -enero-marzo- 2007 47

L. Villaseñor-González, C. Portillo-Jiménez, y J. Sánchez-García

ChannelBusy CWSIFS

DIFSPIFS

802.11Frame

Slot Time

Figure 1. Illus tra tion of the inter-frame spacing in 802.11

Page 4: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

The 802.11g PHY Layer

The 802.11g standard defines several rateextensions, as part of the Extended Rate PHY(ERP) specification, to the PHY for the DirectSequence Spread Spectrum (DSSS ) implemen-tation. The 802.11g PHY specification includesfour sets of modulation schemes ERP-DSSS/CCK(Mandatory), ERP-OFDM (Mandatory), ERP-PBCC(Optional) and DSSS-OFDM (Optional) (Vassiset al. 2005). Figure 2 shows the PHY layerPLCP-PDU (PPDU) packet format of the802.11g ERP -DSSS/CCK PHY, from section19.3.2.3 of (IEEE Std. 802.11g, 2003). The initial802.11 standard (IEEE Std. 802.11-1999) definesa long preamble PLCP framing and later instandard (IEEE Std. 802.11b, 1999) a short

(optional) preamble for the PPDU was defined;however in the 802.11g standard the shortpreamble PPDU capability has been defined asmandatory.

Figure 3 shows the ERP-OFDM PHY layerPPDU packet format, which is the same as in802.11a and it is illustrated in section 17.3.2 of(IEEE Std. 802.11a, 1999). An important obser-vation should be made at this point; as part ofthe operational description of the ERP-OFDMmodulation scheme, the 802.11g standard spe-cifies that an ERP packet is going to be followedby a period of no transmission with a length of 6 µs. This period is called the signal extension. Thelogic behind this is that in the 802.11a standardthe SIFS length is defined to be 16 µs, this is to

48 INGENIERIA Investigación y Tecnología FI-UNAM

A Perfor mance Study of the IEEE 802.11g PHY and MAC Layers over Heter o ge neous ...

PLCP Preamble144 bi ts

PLCP Header48 bi ts

MAC PSDU(Vari able Size)

1 Mbps DBPSK 1 Mbps DBPSK2 Mbps DQPSK5.5/11 Mbps CCK5.5/11 Mbps PBCC

Lon g PreamblePLCP Framing

PLCP Preamble72 bits

PLCP Header48 bi ts

MAC PSDU(Vari able Size)

1 MbpsDBPSK2 Mbps DQPSK5.5/11 Mbps CCK5.5/11 Mbps PBCC

Shor tPreamblePLCP Framing

2Mbps DQPSK

Figure 2. ERP-DSSS/CCK PHY layer PPDU framing

PLCP Preamble12 Symb ols

PLCP Header Si gnal1 OFDM Frame

Data(Vari able No. of OFDM frames )

6 Mbps BPSK(4µs )

CodedOFDM(Rate indicated in Signal)

OFDMTrainingSequence (16 µs)

Service16 bits PSDU Tail

6 bits Pad bits

Figure 3. ERP-OFDM PHY layer PPDU framing

Page 5: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

allow for the convolutional decode process tofinish, as it is described in section 19.3.2.3 of(IEEE Std. 802.11g, 2003). This assumption alsoapplies to the ERP-OFDM in 802.11g, howeverin the 802.11g standard the SIFS length isdefined to be 10 µs, presumably to preservebackward compatibility with 802.11b. None-theless, in 802.11g, the ERP-OFDM modulationscheme still requires 16 µs to ensure the con-volutional decoding process to be finished ontime. Therefore a signal extension of 6 µs isincluded so that the transmitting station cancompute the Duration field in the MAC header.This will ensure that the NAV value of 802.11bstations is set correctly, as described in section19.3.2.3 of (IEEE Std. 802.11g, 2003). The per-formance study presented in this work is basedon the two mandatory ERP PHY specifications,namely the ERP -DSSS/CCK and the ERP-OFDM modulation scheme.

Protec tion Mech a nism

The MAC sublayer functional description,presented in section 9 of (IEEE Std. 802.11g,2003), includes a proposal to allow for theinteroperability of 802.11b and 802.11g devices.The protection mechanism is introduced toensure that 802.11g stations, using one of theERP modulation schemes, do not transmitunless they have updated the Network Allocation Vector (NAV) of the receiving non-ERP stations,as described in section 9.10 of (IEEE Std.802.11g, 2003). The protection mechanismproposes that ERP complying stations shouldtransmit RTS/CTS or CTS-to-self frames beforetransmitting an ERP-OFDM packet. Figure 4,

illustrates a time diagram to describe theRTS/CTS protection mechanism proposed inthe 802.11g standard.

As indicated in section 9.2 of (IEEE Std.802.11-1999), to support the proper operation of the RTS/CTS and the virtual carrier sensemechanisms, all the mobile stations in theWLAN shall be able to detect the RTS and CTSframes. As a result the RTS and the CTS framesshall be transmitted using one of the rates in the BSSBasicRateSet parameter. In addition, the802.11g standard defines that if the protectionmechanism is enabled and if the frame is aprotection frame (i.e., RTS/CTS) then there arespecial rules for the transmission rate of theseframes. In this case, if any of the rates in theBSSBasicRateSet parameter corresponds to an802.11 or 802.11b rate, then the protectionframes should be sent at one of the 802.11 or802.11b basic rates, as described in section 9.10of (IEEE Std. 802.11g, 2003). It should be notedthat the protection mechanism is not requiredfor the optional ERP-PBCC or DSSS-OFDMmodulation schemes, as these frames start witha DSSS header which can be detected andprocessed by non-ERP (e.g. 802.11b) complyingdevices.

Perfor mance Anal ysis

This section presents the methodology used inthe performance study of the 802.11g standard.The analysis takes into account a variety ofissues of the mandatory PHY operational mo-des defined in the 802.11g standard.

Vol.VIII No.1 -enero-marzo- 2007 49

L. Villaseñor-González, C. Portillo-Jiménez, y J. Sánchez-García

RTSTx

Rx

Frame

ACK

SIFS

CWDIFSNAV

CTSSIFS SIFS

NAV (RTS)

NAV (CTS)

Figure 4. RTS/CTS protec tion mech a nism

Page 6: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

50 INGENIERIA Investigación y Tecnología FI-UNAM

A Perfor mance Study of the IEEE 802.11g PHY and MAC Layers over Heter o ge neous ...

The performance study is divided in twoscenarios:

1. The WLAN is composed by 802.11band 802.11g devices (i.e., a heteroge-nenous WLAN).

2. The WLAN is composed of only802.11g devices (i.e., a homo ge neousWLAN).

The analysis presented in this section isfocused on the upper bound performance thatcan be achieved at the MAC layer as a result of the framing structure and the overhead introduced at the MAC and PHY layers. In this work we are notconcerned with the performance degradation due to network load and we only consider a scenariowhere a single station is transmitting data toanother station, thus it is assumed that the stationmakes a successful transmission immediatelyafter the CW period.

WLAN with 802.11b and 802.11g devices

In this scenario the WLAN is composed by802.11b and 802.11g devices. Thus an 802.11gcomplying device can operate in any of theERP-DSSS/CCK, ERP-OFDM mandatory mo-dulation schemes. Recall that the 802.11b sta-tions can detect ERP-DSSS/CCK PPDU packets.However, this is not the case when ERP-OFDMPPDU packets are transmitted by the 802.11gstations. In this case, the 802.11g devices mustintroduce the protection mechanism, describedin (IEEE Std. 802.11g, 2003), or an alternativeone as described by (Choi, 2003); this willensure that the 802.11b devices will not transmit while the channel is busy.

The MAC throughput, MACth-DSSS, for theERP-DSSS/CCK modulation scheme is defined

in equation 1, while the MAC throughput,MACth-OFDM, for the ERP-OFDM scheme withprotection mechanism (e.g., in a heterogeneousWLAN) is defined in equation 2,

MACMAC PSDU Size

D IFS C W SIFS F ACKth D SSSt t t

- =+ + + +

_ _ ,

(1)

MAC th O FDM- =

MAC PSDU SizeDIFS CW SIFS F RTS CTS ACKt t t t t

_ _( )+ + ² + + + +3

(2)

where, DIFS represents the DCF inter-framespacing time, CWt is the average time length ofthe contention window, SIFS is the short inter-frame spacing time, Ft represents the time ittakes to transmit the PPDU frame, RTSt, CTSt

and ACKt represents the time it takes to trans-mit an RTS, CTS and ACK frame respectively. Itshould be noted that expressions (1) and (2) donot account for those cases where the MACPSDU must be fragmented at the PLCP sub-layer, in which case, each PPDU frame frag-ment is fallowed by a SIFS plus an ACK frame.

WLAN with only 802.11g devices

In this scenario the WLAN is entirely composedby 802.11g complying devices. In this case thereis no requirement to use the RTS/CTS pro-tection mechanism, other than to guaranteereservation of the wireless medium and toavoid the hidden node problem.

Figure 5, shows a time diagram of thetransmission of an ERP-OFDM PPDU . In thiscase the MAC throughput is evaluated asindicated in expression (1).

Figure 5. PPDU trans mis sion time diagram

Page 7: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

Numer ical Results

This section presents the numerical results ofthe MAC throughput for a heterogeneous and ahomogeneous 802.11g wireless network. Thissection is divided in two subsections. The firstsubsection deals with a heterogeneous 802.11band 802.11g wireless network scenario. Thesecond subsection deals with a homogeneous802.11g wireless network scenario.

Heter o ge neous 802.11b and 802.11g WLAN

This section presents the performance analysisresults of the MAC throughput for the twomandatory modulation schemes defined in the802.11g standard, namely the ERP -DSSS/CCKand the ERP-OFDM modulation schemes.

ERP-DSSS/CCK Results

In this scenario the 802.11g complying devicestransmit using the ERP -DSSS /CCK modulationscheme. As the non-802.11g complying devicescan detect the ERP-DSSS/CCK messages, thereis no need to introduce the RTS/CTS protectionmechanism. Table 2 shows the MAC parametervalues used for calculations in this section. Thenumerical results are presented for the case ofshort and long preambles.

Table 2. ERP-DSSS/CCK param eter values in µs

Short PLCP Long PLCP

DIFS 50 50

SIFS 10 10

CWt 150 150

PLCP Preamble 72 144

PLCP Header 24 48

The average length of the contentionwindow, CWt, is calculated as the expectedvalue of a uniform random variable in the range [0, CWm in]. The value of CWmin increases withthe number of retransmissions. It should be

noted that the 802.11g standard defines aninitial CWmin value of 15 time slots, while themaximum value of the contention window islimited by the physical layer. For the case of adirect sequence (DS) PHY Layer the maximumlength of the contention windows is 1,023. Forthe purpose of the analysis presented in thissection, the value of CWmin is 15 time slots andthe time slot duration is equal to 20 µs.

The value of Ft , which represents the time ittakes to transmit the PPDU frame, is defined as,

F PLCP PLCPMAC PSDU Size

PHYt P Hrate

= + +_ _

(3)

where, PLCPP and PLCPH represent the lengthof time required to transmit the PLCP preambleand the PLCP header, respectively. TheMAC_PSDU_Size can have a maximum size of2,346 bytes, which includes a variable sizeFrame Body of 0 – 2 312 bytes and several control fields with a total length of 34 bytes (Heiskala etal., 2002). The set of PHY layer data rates,PHYrate, considered for this scenario include 1,2, 5.5 and 11 Mbps.

Figure 6 shows the MAC performanceresults of the ERP -DSSS/CCK modulationscheme using the Long Preamble PLCP Fra-ming format. The numerical results are pre-sented for different lengths of the MPDU and atthe four ERP-DSSS/CCK date rates: 1 Mbps, 2Mbps, 5.5 Mbps and 11 Mbps. Figure 7, showsthe MAC performance results assuming theShort Preamble PLCP framing format. Thenumerical results are presented for differentlengths of the MPDU and at date rates of 2, 5.5and 11 Mbps, which are supported with theshort preamble framing format, as described insection 18.2.2.2 of (IEEE Std. 802.11b, 1999).

Vol.VIII No.1 -enero-marzo- 2007 51

L. Villaseñor-González, C. Portillo-Jiménez, y J. Sánchez-García

Page 8: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

52 INGENIERIA Investigación y Tecnología FI-UNAM

A Perfor mance Study of the IEEE 802.11g PHY and MAC Layers over Heter o ge neous ...

ERP-OFDM Results

In this scenario the 802.11g complying devicestransmit using the ERP -OFDM modulationscheme. As the non-802.11g complying devicescannot detect the ERP-OFDM messages, there is a need to introduce the RTS/CTS protectionmechanism. It should be noted that the RTS and CTS frames are transmitted at one of the basicrates defined in 802.11b. For the purpose of thiswork only the 2 Mbps and 11 Mbps basic rates

of 802.11b are considered. In addition, thenumerical results include the two possible cases in which the RTS/CTS frames are transmittedwith a short or a long PLCP framing. Table 3shows the MAC parameter values of theERP-OFDM modulation scheme used forcalculations in this section. The numericalresults are presented assuming a time slotlength of 20 µs.

Table 3. ERP-OFDM param eter values in µs

Time slot =20 µs

0

2

4

6

8

10

0 500 10 00 150 0 2 00 0 25 00MPDU Size (Bytes )

1 Mbps2 Mbps5 .5 Mb ps11 Mbps

PPDU Pa yload Dat a Rate

Figure 6. ERP-DSSS/CCK MAC Throughput (Long Preamble)

0

2

4

6

8

10

0 500 10 00 150 0 2 00 0 25 00

MPDU Size (Bytes )

2 Mb ps5.5 Mbps11 Mbps

PPDU P aylo ad Data Rat e

Figure 7. ERP-DSSS/CCK MAC Throughput (Short Preamble)

Page 9: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

DIFS 50

SIFS 10

CW t 150

The average length of the contention window,CW t, is calculated as the expected value of auniform random variable in the range [0,CWmin]. For the purpose of the analysis pre-sented in this section, the value of CWmin is 15time slots. It should be noted that the numericalresults account for the extended service period

of 6 µs after each ERP-OFDM PPDU frametransmission.

From the results presented in figure 8 tofigure 11 , it is clear that the MAC Throughput isnot significantly affected by transmitting theRTS/CTS frames at 2 or 11 Mbps. This isexplained by the fact that only the RTS /CTSframe body is transmitted at 2 or 11 Mbps andthe RTS/CTS payload field is small. On theother hand, the use of a short or a longpreamble has a greater impact on the MAC

Vol.VIII No.1 -enero-marzo- 2007 53

L. Villaseñor-González, C. Portillo-Jiménez, y J. Sánchez-García

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

2 2

0 5 00 10 00 1 500 2 000 25 00MPDU S ize (Bytes )

6 Mbp s9 Mbp s1 2 Mb ps1 8 Mb ps2 4 Mb ps3 6 Mb ps4 8 Mb ps5 4 Mb ps

PPDU Payload Da ta Rate

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

2 2

0 5 00 10 00 1 500 2 000 25 00MPDU S ize (Bytes )

6 Mbps9 Mbps12 Mbps18 Mbps24 Mbps36 Mbps48 Mbps54 Mbps

PPDU Payload D at a Ra te

Figure 8. ERP-OFDM MAC Throughput (RTS/CTS at 2 Mbps with Long Preamble)

Figure 9. ERP-OFDM MAC Throughput (RTS/CTS at 2 Mbps with Short Preamble)

Page 10: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

Throughput; this is especially true for highPPDU payload data rates.

Homo ge neous 802.11g WLAN

In this scenario the 802.11g complying devicestransmit using the ERP -OFDM modulationscheme in an 802.11g homogeneous environ-

ment (i.e., the WLAN is composed only by802.11g complying devices).

Then the 802.11g devices can transmit at anyof the ERP-OFDM data rates without the needof an RTS /CTS protection scheme, unless thereis a need for the reservation of the channel or toavoid the hidden node problem.

ERP-OFDM Results

The MAC performance results assume a timeslot length of 9 µs, as described in (IEEE Std.802.11g, 2003). The average length of the con-

A Perfor mance Study of the IEEE 802.11g PHY and MAC Layers over Heter o ge neous ...

54 INGENIERIA Investigación y Tecnología FI-UNAM

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

2 2

0 5 00 10 00 1 500 2 000 25 00MPDU S ize (Bytes )

6 Mbps9 Mbps12 Mbps18 Mbps24 Mbps36 Mbps48 Mbps54 Mbps

PPDU Pay load Da ta R at e

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

2 2

0 5 00 10 00 1 500 2 000 25 00MPDU S ize (Bytes )

6 Mbps9 Mbps12 Mbps18 Mbps24 Mbps36 Mbps48 Mbps54 Mbps

PPDU Payload D at a Ra te

Figure 11. ERP-OFDM MAC Throughput (RTS/CTS at 11 Mbps with Short Preamble)

Figure 10. ERP-OFDM MAC Throughput (RTS/CTS at 11 Mbps with Long Preamble)

Page 11: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

tention window, CWt, is calculated as theexpected value of a uniform random variable inthe range [0, CWmin]. For the purpose of theanalysis presented in this section, the value ofCWmin is 15 time slots. In addition, the MACperformance results account for the extendedservice period of 6 µs after each PPDU frametransmission.Table 4 shows the MAC parameter values usedfor calculations in this section. The numericalresults are presented assuming a time slotlength of 9 µs.

Table 4. ERP-OFDM param eter values in µs

Time slot(9 µs)

DIFS 28

SIFS 10

CW t 67.5

The results presented in figure 12 show anincreased MAC Throughput, compared to theERP-OFDM scheme in a heterogeneous WLAN.The MAC Throughput is almost twice in theERP-OFDM in a homogeneous WLAN than that in a heterogeneous WLAN for a MPDU size of2,346 and payload data rate of 54 Mbps. Thisresult clearly indicates that the introduction ofthe RTS/CTS protection mechanism has a major

impact on the performance of the ERP-OFDMmodulation scheme, especially for high payload data rates.

Conclu sions and Future Work

A performance study and analysis of the802.11g MAC protocol is presented in thisarticle. The most recent extension to the 802.11standard, namely the 802.11g, defines multiplePHY operational modes. Some of these PHYoperational modes are backward compatiblewith the 802.11b standard, while other PHYoperational modes will require some sort ofprotection mechanism to allow for the in-teroperability of 802.11b and 802.11g deviceswithin a heterogeneous WLAN, as described in(IEEE Std. 802.11g, 2003). In a heterogeneousWLAN an 802.11g complying device can ope-rate using the ERP -DSSS/CCK or the ERP-OFDM modulation schemes. In general, ahigher MAC efficiency is achieved under theERP-DSSS /CCK modulation scheme. This result is explained by the fact that 802.11g complyingdevices must introduce the RTS/CTS protectionmechanism when operating under the ERP-OFDM modulation scheme. On the other hand,in a homogeneous WLAN , the 802.11g devicescan operate in the ERP-OFDM modulationscheme without the need of introducing theRTS/CTS protection mechanism, unless there is

Vol.VIII No.1 -enero-marzo- 2007 55

L. Villaseñor-González, C. Portillo-Jiménez, y J. Sánchez-García

0

5

10

15

20

25

30

35

40

0 5 00 1000 150 0 2000 25 00MPDUS ize (Bytes )

6 Mbps9 Mbps12 Mbps18 Mbps24 Mbps36 Mbps48 Mbps54 Mbps

PPDU P ayloadD ata Rate

Figure 12. ERP-OFDM MAC Throughput (Time slot = 9 µs)

Page 12: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

a need to guarantee the reservation of thewireless medium or to avoid the hidden nodeproblem. In addition, in the case of a homo-geneous WLAN, the CWmin size and the timeslot length can be reduced, to 15 and 9 µsrespectively, to allow for an improved MACefficiency. Future work will consider theperformance analysis of the 802.11g standardby accounting for the wireless network loadand the impact that the wireless fading channelhas on the transmission of 802.11g frames.

Refer ences

Boulmalf M., El-Sayed H., Soufyane A.(2005). Measured Throughput and SNRof IEEE 802.11g in a Small Enter priseEnvironment. The 61st IEEE Vehic ularTech nology Confer ence, Stock holm, Swe- den, May.

Choi S., Del Prado-Pavon J. (2003). 802.11gCP: A solu tion for IEEE 802.11g and802.11b Inter Working. The 57 th IEEEVehic ular Tech nology Confer ence, Jeju,Korea, April.

Doufexi A., Armour S., Beng-Sin L., Nix A.,Bull D. (2003). An Eval u a tion of thePerfor mance of IEEE 802.11a and 802.11g Wire less Local Area Networks in a Cor-porate Office Envi ron ment. IEEE Inter -na tional Confer ence on Communica-tions, Anchorage, United States, May.

Gast M.S. (2002). 802.11 Wire less Networks,The Defin i tive Guide. O’reilly & Asso ci -ates Inc. United States, p. 29.

Heiskala J., Terry J. (2002). OFDM Wire lessLANs: A Theo ret ical and Prac tical Guide.Sams Publishing, United States, p. 223.

IEEE Std. 802.11-1999. Part 11: Wire less LANMedium Access Control (MAC) and Phys -ical Laye (PHY) Spec i fi ca tions. Refer encenumber ISO/IEC 8802-11:1999(E), IEEEStd. 802.11, 1999 Edition.

IEEE Std. 802.11a. Supple ment to Part 11:Wire less LAN Medium Access Control(MAC) and Phys ical Layer (PHY) Spec i fi ca -tions: High-speed Phys ical Layer in the 5GHz Band, IEEE Std. 802.11a-1999.

IEEE Std. 802.11b. Supple ment to Part 11:Wire less LAN Medium Access Control(MAC) and Phys ical Layer (PHY) Spec i fi ca -tions: Higher-speed Phys ical Layer in the 2.4 GHz Band, IEEE Std. 802.11b-1999.

IEEE Std. 802.11g. Supple ment to Part 11: Wire less LAN Medium Access Control (MAC) and Phy-sical Layer (PHY) Spec i fi ca tions: Higher-speedPhys ical Layer Exten sions in the 2.4 GHz Band,IEEE Std. 802.11g-2003.

Medepalli K., Gopalakrishnan P., FamolariD., Kodama T. (2004). Voice Capacity ofIEEE 802.11b, 802.11a and 802.11g Wire -less LANs. IEEE Global Tele com mu ni ca -tions Confer ence (GLOBECOM), 2004,Dallas, Texas, United States, November.

Rao T.R., Giulietti A. (2005). A Perfor manceStudy on the 802.11g WLAN OFDMSystem . The Inter na tional Confer ence onComputer as a Tool, Belgrade, Serbia &Montenegro,November.

Vassis D., Kormentzas G., Rouskas A.,Maglogiannis I. (2005). The IEEE 802.11gStandard for High Data Rate WLANs.IEEE Network, Vol. 19, No. 3, pp. 21-26.

Wang S.C., Chen Y.M., Tsern-Huei L., HelmyA. (2005). Perfor mance Eval u a tion forHybrid IEEE 802.11b and 802.11g Wire-less Networks. IEEE Inter na tional Perfor-mance, Computing and Commu ni ca tions Confer ence, Phoenix, Arizona, UnitedStates, April.

Wang T., Refai H.H. (2005). Empir icalNetwork Perfor mance Anal ysis on IEEE802.11g with Different Proto cols andSignal to Noise Ratio Values. Second IFIP Inter na tional Confer ence on Wire lessand Optical Commu ni ca tions Networks,Dubai, United Arab Emirates, March.

Wijesinha A.L., Song Y., Krishnan M.,Mathur V., Ahn J., Shyamasundar V.(2005). Throughput Measure ments forUDP Traffic in an IEEE 802.11g WLAN.Sixth Inter na tional Confer ence on Soft -ware Engi neering, Arti fi cial Intel li gence, Networking and Parallel/Distrib uted Com- puting and First ACIS Inter na tional Work-

56 INGENIERIA Investigación y Tecnología FI-UNAM

A Perfor mance Study of the IEEE 802.11g PHY and MAC Layers over Heter o ge neous ...

Page 13: Study of IEEEjasan/Articulo_IIT.pdf · éstas incluyen los estándares 802.11a, 802.11b y 802.11g. En este trabajo se presenta el análisis de desempeño de las capas físicas (PHY)

shop on Self-Assembling Wire less Net-works, Mary land, United States, May.

Vol.VIII No.1 -enero-marzo- 2007 57

L. Villaseñor-González, C. Portillo-Jiménez, y J. Sánchez-García

Author’s biographiesLuis Villaseñor-González. Received an Engi neering degree in Elec tronics from UABC, Mexico (1993); M. Sc. in Elec tronics

and Tele com mu ni ca tions from CICESE, Mexico (1997); and Ph.D. in Elec trical Engi neering from the Univer sity of

Ottawa, Canada (2002). He is currently a Research Asso ciate Professor at the CICESE Research Center. He collab o -

rated as a Network Research Engi neer at the Commu ni ca tions Research Centre (CRC) in Ottawa, Canada. At CRC he was involved in a variety of research activ i ties in network tech nol o gies for the Govern ment o f Canada between 1999

and 2003. His current research inter ests include mobile Ad-Hoc networks, wire less commu ni ca tions networks, QoSprotocol archi tec tures, perfor mance anal ysis and eval u a tion of Internet tech nol o gies and computer networks. He iscurrently a member of the IEEE.

Canek Portillo-Jiménez. Received his M. Sc. in Elec tronics and Tele com mu ni ca tions from CICESE, Mexico (2004). Hegrad u ated from the Instituto Tecnologico de Culiacan with a B.Sc. in Elec tronics Engi neering in 2002. His researchinter ests include wire less LANs perfor mance anal ysis and eval u a tion and OFDM systems.

Jaime Sánchez-García . Received an Engi neering degree in Elec tronics from IPN-ESIME, México (1976); M.Sc. in Elec -

tronics and Tele com mu ni ca tions from CICESE Ensenada México (1979); and D.Sc. in Elec trical Engi neering (majorin Commu ni ca tions) from The George Wash ington Univer sity (2001). Since 1979, he has a research and faculty posi -

tion at the Elec tronics and Tele com mu ni ca tions Depart ment CICESE. Dr. Sánchez spent nine months (1997) asVisiting Scholar at School of Engi neering and Mines, Univer sity of Arizona Tucson. He won the 1st place in IIIEricsson Yearly Award (1988), Teleindustria Ericsson México. His publi ca tions include several IEEE arti cles and

inter na tional confer ences. Current research inter ests include wire less networks, advanced modu la tion and accesstech niques, soft ware radio, multipath prop a ga tion, and multicarrier modu la tion (OFDM). He is an IEEE member.