study of multistage oscilloscope trigger circuit

40
Study of Multistage Oscilloscope Trigger Circuit S. Sakurai , S. Takigami, T. Ida, Y. Ozawa, N. Tsukiji, Y. Kobori, H. Kobayashi, R. Shiota Gunma University, Socionext Inc. 1/36 ISPACS 2017 Nov. 9 NP-L2 Paper ID 11,

Upload: others

Post on 02-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 2: Study of Multistage Oscilloscope Trigger Circuit

2/40

Outline

1. Research Objective

2. Analysis of Trigger Circuit

3. Multistage Trigger Circuit

4. Application to SAR-TDC

5. Summary

Page 3: Study of Multistage Oscilloscope Trigger Circuit

3/40

Outline

1. Research Objective

2. Analysis of Trigger Circuit

3. Multistage Trigger Circuit

4. Application to SAR-TDC

5. Summary

Page 4: Study of Multistage Oscilloscope Trigger Circuit

4/40

Oscilloscope Trigger Circuit

c

Track&Hold

Track&Hold

Σ

Input

to

Output

to

sinωt

Track&Hold

sin(ωt+2π/3)

+

+

+

sin(ωt+4π/3)

F1

F2

F3

S1

S2

S3

Track&Hold

Track&Hold

Σ

Trigger

Input

to

Output

sinωt

cosωt

𝑉𝑜_3

𝑉𝑜_2

Two stage

Three stage

Application Trigger Circuit

Sequential Sampling

Oscilloscope

Δt 2Δt 4Δt3Δt

Time

Δt=T_delay

Trigger

Page 5: Study of Multistage Oscilloscope Trigger Circuit

5/40

Research Motivation

Brain A lot of neurons

Large number Good performance

Each transistor has only simple capability

Smart Each neuron has low capability

Page 6: Study of Multistage Oscilloscope Trigger Circuit

6/40

Research Objective

1. Analysis of basic trigger circuits

(two-stage and three-stage)

2. Extension to an N-stage trigger circuit, and

its output formula.

3. Application to SAR-TDC

for one-shot timing measurement

Page 7: Study of Multistage Oscilloscope Trigger Circuit

7/40

Outline

1. Research Objective

2. Analysis of Trigger Circuit

T/H Circuit, Gilbert Analog Multiplier

Basic Trigger Circuit

3. Multistage Trigger Circuit

4. Application to SAR-TDC

5. Summary

Page 8: Study of Multistage Oscilloscope Trigger Circuit

8/40

Trigger Circuit Configuration

Sinusoidal wave based on time 𝑡0Output signal with zero phase

Signal sourceT/H circuitMultiplier

Construction with

Track&Hold

Track&Hold

Σ

Trigger

Input

to

Output

sinωt

cosωt

to

Trigger Time

ON

OFF

Output

Trigger

Page 9: Study of Multistage Oscilloscope Trigger Circuit

9/40

Track / Hold Circuit

SW

ON

SW

OFF

Vin

Vout=VcVout=Vin

VcVin

Page 10: Study of Multistage Oscilloscope Trigger Circuit

10/40

Gilbert Analog Multiplier

𝑉𝑖𝑛

𝑉𝑂𝑢𝑡1𝐼𝑜 ഥ𝐼𝑜𝑉1

ഥ𝑉1

𝑉2𝑉2

𝑉𝑂𝑢𝑡1 = 𝑉𝑐𝑐 − 𝑅ഥ𝐼𝑜𝑉𝑂𝑢𝑡2 = 𝑉𝑐𝑐 − 𝑅𝐼𝑜

𝑉𝑂𝑢𝑡1 − 𝑉𝑂𝑢𝑡2 = 𝑅 𝐼𝑜 − ഥ𝐼𝑜 = 𝑅𝐼𝑇 ∗ tanh𝑉1 − ഥ𝑉12𝑉𝑇

∗ tanh𝑉2 − 𝑉22𝑉𝑇

≅ 𝑉1 ∗ 𝑉2

Page 11: Study of Multistage Oscilloscope Trigger Circuit

11/40

Analysis of Two-stage Trigger Circuit.

・Track mode

𝑉𝑜 𝑇𝑟𝑎𝑐𝑘 = cos 𝜔𝑡 cos 𝜔𝑡 + cos 𝜔𝑡 +𝜋

2cos 𝜔𝑡 +

𝜋

2= cos2 𝜔𝑡 + sin2 𝜔𝑡= 1

・Hold mode𝑉𝑜 𝐻𝑜𝑙𝑑 = cos 𝜔𝑡 cos 𝜔𝑡0 + sin 𝜔𝑡 sin 𝜔𝑡0

= cos 𝜔 𝑡-𝑡0

※ Trigger time:t0

𝑉𝑜_2Track&Hold

Track&Hold

Σ

Trigger

Input

to

Output

sinωt

cosωt

Page 12: Study of Multistage Oscilloscope Trigger Circuit

12/40

Two-stage CMOS Trigger Circuit

T/H Circuit

Page 13: Study of Multistage Oscilloscope Trigger Circuit

13/40

Two-stage CMOS Trigger Circuit

T/H Circuit Gilbert Multiplier

Page 14: Study of Multistage Oscilloscope Trigger Circuit

14/40

Simulation of Two-stage Trigger Circuit

Input signal(sin,cos)

Input trigger signal

Output signal

Voltag

e [V

]

15mV

-15mV

4.0

0.0

2.7mV

0mV

0.0 1.0us 2.0us 3.0us 4.0us

Time [sec]

Page 15: Study of Multistage Oscilloscope Trigger Circuit

15/40

c

Track&Hold

Track&Hold

Σ

Input

to

Output

to

sinωt

Track&Hold

sin(ωt+2π/3)

+

+

+

sin(ωt+4π/3)

F1

F2

F3

S1

S2

S3

Three-stage Trigger Circuit

𝑉𝑜_3

𝑆1 = sin𝜔𝑡,𝑆2 = sin 𝜔𝑡 +2𝜋

3,𝑆3 = sin 𝜔𝑡 +

4𝜋

3

𝐹1 = sin𝜔𝑡0 ,𝐹2 = sin 𝜔𝑡0 +2𝜋

3,𝐹3 = sin 𝜔𝑡0 +

4𝜋

3

Signal source

Triggered signal

Page 16: Study of Multistage Oscilloscope Trigger Circuit

16/40

Analysis of Three-stage Trigger Circuit

𝑉𝑜ℎ𝑜𝑙𝑑 = 𝑆1 𝐹2 − 𝐹3 + 𝑆2 𝐹3 − 𝐹1 + 𝑆3 𝐹1 − 𝐹2

=3 3

2sin 𝜔(𝑡 − 𝑡0 )

𝑉𝑜𝑡𝑟𝑎𝑐𝑘 = 𝑆1 𝑆2 − 𝑆3 + 𝑆2 𝑆3 − 𝑆1 + 𝑆3 𝑆1 − 𝑆2

= 0 (Constant)

𝑆1 = sin𝜔𝑡,𝑆2 = sin 𝜔𝑡 +2𝜋

3,𝑆3 = sin 𝜔𝑡 +

4𝜋

3

𝐹1 = sin𝜔𝑡0 ,𝐹2 = sin 𝜔𝑡0 +2𝜋

3,𝐹3 = sin 𝜔𝑡0 +

4𝜋

3

Signal source

Triggered T/H circuit output

・Track mode

・Hold mode

Page 17: Study of Multistage Oscilloscope Trigger Circuit

17/40

Three-stage CMOS Trigger Circuit

Trigger

input

Vout

sin(ωt) sin(ωt+2π/3) sin(ωt+4π/3)+ - + - + -

Vdd

Page 18: Study of Multistage Oscilloscope Trigger Circuit

18/40

Simulation of Three-stage Trigger Circuit

Input signal

Input trigger signal

Output signal

Voltag

e [V

]

15mV

-15mV

4.0

0.0

1.75mV

0mV

0.0 1.0us 2.0us 3.0us 4.0us

Page 19: Study of Multistage Oscilloscope Trigger Circuit

19/40

Spectrum Comparison of Two-stage, Three-stage

Cancellation of the third harmonicsdue to three-stage structure.

Red :3 stageBlack :2 stage

-200

-160

-120

-80

-40

100K 1M 10M 100M

Gai

n[d

B]

Frequency[Hz]

-50dB

Page 20: Study of Multistage Oscilloscope Trigger Circuit

20/40

Outline

1. Research Objective

2. Analysis of Trigger Circuit

3. Multistage Trigger Circuit

4. Application to SAR-TDC

5. Summary

Page 21: Study of Multistage Oscilloscope Trigger Circuit

21/40

Configuration of N-stage Trigger Circuit

Track&Hold

Track&Hold

Σ

Input

Output

sinωt

Track&Hold

sin(ωt+θ)

+

+

+sin(ωt+2θ)

F1

F2

F3

S1

S2

S3

Track&Hold

Sn

sin(ωt+nθ)

Σ

Σ

Σ

・・・

・・・

・・・

Fn ・・・

Σ+

Vo_N

・・・

to

Page 22: Study of Multistage Oscilloscope Trigger Circuit

22/40

Consideration of N-stage Trigger Circuit

𝑆1 𝐹2 − 𝐹3 + 𝑆2 𝐹3 − 𝐹1 + 𝑆3 𝐹1 − 𝐹2

𝑆1 𝐹2 − 𝐹3 − 𝐹4 −⋯− 𝐹𝑁−1 − 𝐹𝑁+𝑆2 𝐹3 − 𝐹4 − 𝐹5 −⋯− 𝐹𝑁 − 𝐹1+⋯+𝑆𝑁 𝐹1 − 𝐹2 −⋯−𝐹𝑁−2 − 𝐹𝑁−1

Extension to N-stage

Output of three-stage

Same calculation

c

Track&Hold

Track&Hold

Σ

sinωt

Track&Hold

sin(ωt+2π/3)

+

+

+

sin(ωt+4π/3)

F1

F2

F3

S1

S2

S3

Track&Hold

Track&Hold

Σ

Input

Output

sinωt

Track&Hold

sin(ωt+θ)

+

+

+sin(ωt+2θ)

F1

F2

F3

S1

S2

S3

Track&Hold

Sn

sin(ωt+nθ)

Σ

Σ

Σ

・・・

・・・

・・・

Fn ・・・

Σ+

Vo_N

・・・

to

Page 23: Study of Multistage Oscilloscope Trigger Circuit

23/40

Consideration of N-stage Trigger Circuit

c

Track&Hold

Track&Hold

Σ

sinωt

Track&Hold

sin(ωt+2π/3)

+

+

+

sin(ωt+4π/3)

F1

F2

F3

S1

S2

S3

𝑆𝑛 = sin 𝜔𝑡 + 𝑛 − 1 𝜃 , 𝜃 =2𝜋

𝑁

𝑆1 = sin𝜔𝑡,𝑆2 = sin 𝜔𝑡 +2𝜋

3,𝑆3 = sin 𝜔𝑡 +

4𝜋

3

𝜃1 = 0 𝜃2 =2𝜋

3𝜃3 =

4𝜋

3

Signal source of three-stage

Signal source of N-stage

Track&Hold

Track&Hold

Σ

Input

Output

sinωt

Track&Hold

sin(ωt+θ)

+

+

+sin(ωt+2θ)

F1

F2

F3

S1

S2

S3

Track&Hold

Sn

sin(ωt+nθ)

Σ

Σ

Σ

・・・

・・・

・・・

Fn ・・・

Σ+

Vo_N

・・・

to

Page 24: Study of Multistage Oscilloscope Trigger Circuit

25/40

Derivation of N-stage Output

𝑥𝑘 = 𝑉𝑘+1 − 𝑉𝑘

= 𝐹𝑘+1 𝑆𝑘 −

𝑙=1

𝑘−1

𝑆𝑙 − 2𝑆𝑘𝐹1 + 𝑆𝑘+1 𝐹1 −

𝑚=2

𝑘−1

𝐹𝑚

Using difference sequence

𝑉𝑁 = 𝑆1𝐹2 + 𝑆2𝐹1 +

𝑘=2

𝑁−1

𝐹𝑘+1 𝑆𝑘 −

𝑙=1

𝑘−1

𝑆𝑙 − 2𝑆𝑘𝐹1 + 𝑆𝑘+1 𝐹1 −

𝑚=2

𝑘−1

𝐹𝑚

N-stage Output

3stage → 4stage → 5stage → … → N-1stage → Nstage

Increment when increasing the stage number

𝑥3 𝑥4 𝑥𝑁−1・・・𝑥5 𝑥𝑁−2

Page 25: Study of Multistage Oscilloscope Trigger Circuit

26/40

Confirmation of N-stage Output

Matching with Three-stage

𝑉𝑜_𝑁 = 𝑎2 +

𝑘=2

𝑁−1

𝐹𝑘+1 𝑆𝑘 −

𝑙=1

𝑘−1

𝑆𝑙 − 2𝑆𝑘𝐹1 + 𝑆𝑘+1 𝐹1 −

𝑚=2

𝑘−1

𝐹𝑚

𝑉𝑜_3 = 𝑆1𝐹2 + 𝑆2𝐹1 +

𝑘=2

2

𝐹𝑘+1 𝑆𝑘 −

𝑙=1

1

𝑆𝑙 − 2𝑆𝑘𝐹1 + 𝑆𝑘+1 𝐹1 −

𝑚=2

1

𝐹𝑚

= 𝑆1𝐹2 + 𝑆2𝐹1 + 𝐹3 𝑆2 − 𝑆1 − 2𝑆2𝐹1 + 𝑆3 𝐹1 − 𝐹2

= 𝑆1 𝐹2 − 𝐹3 + 𝑆2 𝐹3 − 𝐹1 + 𝑆3 𝐹1 − 𝐹2

𝑉𝑜_3 = 𝑆1 𝐹2 − 𝐹3 + 𝑆2 𝐹3 − 𝐹1 + 𝑆3 𝐹1 − 𝐹2 Match

Page 26: Study of Multistage Oscilloscope Trigger Circuit

27/40

Output of Five-stage Trigger Circuit

Page 27: Study of Multistage Oscilloscope Trigger Circuit

28/40

-200

-160

-120

-80

-40

100K 1M 10M 100M

Gai

n[d

B]

Frequency[Hz]

Output Spectrum Comparison

Third harmonic cancellation

Second harmonic reduction by 30%

Third harmonic

Red :Five-stageBlue :Three-stage

Page 28: Study of Multistage Oscilloscope Trigger Circuit

29/40

-160

-120

-80

-40

100K 1M 10M 100M

Gai

n[d

B]

Frequency[Hz]

Multistage Configuration Merit

-18dB

Red :Five-stageBlue :Three-stage

Third harmonic cancellation

Second harmonic reduction by 30%

Page 29: Study of Multistage Oscilloscope Trigger Circuit

30/40

Outline

1. Research Objective

2. Analysis of Trigger Circuit

3. Multistage Trigger Circuit

4. Application to SAR-TDC

5. Summary

Page 30: Study of Multistage Oscilloscope Trigger Circuit

31/40

Time Digitizer Circuit

Time-to-Digital Converter (TDC)Measure time difference between Start and Stop signals.

Measure Digital outputTime

difference

Page 31: Study of Multistage Oscilloscope Trigger Circuit

32/40

ΔT ΔT ΔT

CLK1

CLK2

ΔT

SAR-TDC Configuration

Need cycle clock for measurement

Reference[5]

Y. Ozawa, T. Ida, S. Sakurai, R. Jiang, H. Kobayashi, R.

Shiota, “SAR ADC Architecture for One-Shot Timing

Measurement with Full Digital Implementation,”

Page 32: Study of Multistage Oscilloscope Trigger Circuit

33/40

Problem of SAR-TDC and Remedy

Voltage signal can be held.

Timing signal cannot be held.

Timing signal can be held !

Our argument

Myth

Page 33: Study of Multistage Oscilloscope Trigger Circuit

34/40

One-shot Timing Measurement Using Trigger Circuit

2017/11/17

Oscillate with initial phase

at input timing

Input START,STOP signal

It can hold the time difference using two trigger circuits.

1step 2step 3step 4step 5step 6step 7step

Suggestion

Δ𝑇 Δ𝑇

Page 34: Study of Multistage Oscilloscope Trigger Circuit

35/40

One-shot Timing Measurement Configuration

START

STOP

w1

w2

ck1

ck2

ΔT ΔT ΔT ΔT

Page 35: Study of Multistage Oscilloscope Trigger Circuit

36/40

One-Shot Timing Measurement Simulation

Page 36: Study of Multistage Oscilloscope Trigger Circuit

37/40

Outline

1. Research Objective

2. Analysis of Trigger Circuit

3. Multistage Trigger Circuit

4. Application to SAR-TDC

5. Summary

Page 37: Study of Multistage Oscilloscope Trigger Circuit

38/40

Summary

• Investigation of CMOS trigger circuit

• Extension to N-stage trigger circuit, and

its confirmation with SPICE simulated

sinusoidal output power spectrum.

Harmonics reduction

• Proposal of one-shot timing measurement

with trigger circuits and SAR-TDC.

Page 38: Study of Multistage Oscilloscope Trigger Circuit

39/40

Future works

• Harmonics suppression analysis

based on derived formula.

• Circuit configuration

that reduces Gilbert cell nonlinearity

• Implementation consideration

including SAR-TDC.

Page 39: Study of Multistage Oscilloscope Trigger Circuit

40/40

Outline

1. Research objective

2. Analysis of Trigger circuit

3. Multistage Trigger Circuit

4. Applying to SAR-TDC

5. Summary

Page 40: Study of Multistage Oscilloscope Trigger Circuit

41/40

Back Up