study on the limit load of large diameter natural gas

9
Scientific Journal of Technology Volume 1 Issue 02, 2019 ISSN: 26888645 28 Study on the Limit Load of Large Diameter Natural Gas Pipeline with Internal and External Defects Feihong Qin a , Lei Yang b , Kaidie Yang c , Yi Li d and Yuchuan Guo e School of petroleum engineering, Southwest Petroleum University, Chengdu 610500, China a [email protected], b [email protected], c [email protected] d [email protected], e [email protected] Abstract In this paper, the D1016 × 18.4 X80 pipeline in a river crossing section of Myanmar China natural gas pipeline project is taken as the research object, and the plastic failure criterion and the double elastic slope criterion are selected as the determination methods of the ultimate internal pressure load. Based on the ABAQUS finite element analysis, the effects of the depth, length and width of internal and external defects on the ultimate load of the pipeline are studied respectively. Keywords Large Diameter Pipeline; Ultimate Load; X80 Pipeline Steel; Internal And External Defects; Interference. 1. Introduction Oil and natural gas promote the development of the world economy, which is of great significance to the national economy and national development. At present, the pace of development of China's oil and natural gas industry is speeding up, and the construction of oil and gas pipelines has entered a high‐speed development period. There are many reasons for pipeline corrosion, moreover the mechanism is complex and the location of corrosion is random. The appearance of corrosion defects will affect the failure form and ultimate pressure of pipeline. The long‐distance oil and gas pipeline passes through a wide area where the terrain is complex. Furthermore, there are different soil properties, diverse pipeline structure and various transmission medium properties, thus it is easy to cause a large number of internal and external defects of the long‐distance pipeline. The pipeline with inner and outer wall defects does not necessarily lose the bearing capacity. Repair and replace the pipeline when the pipeline does not completely lose the bearing capacity,which will force to stop pipeline transmission, causing unnecessary economic losses to a certain extent. Based on the finite element method, X.Li et al. [1] (2016) proposed an evaluation method for the interference between adjacent corrosion, which has better accuracy and applicability, especially for the axial long corrosion defects. S.s.al‐owaisi et al. [2] (2016) used finite element software to analyze X60 with adjacent defects of different shapes. It was found that the adjacent defects of two shapes (ellipse and rectangle) will interact when the axial distance is not more than 3 times of the wall thickness or the circumferential distance is not more than 0.5 times of the wall thickness. In GB / T19624 safety assessment of pressure vessels with defects in service (2004) [3], considering the mutual influence of multiple cracks, a crack merging method is proposed aiming at multiple adjacent cracks, in which the internal and external crack defects are treated as penetrating crack defects, but this method does not propose the treatment method of internal and external volume crack defects. To sum up, there are few research results on the limit load of double defect pipeline at present, except for the research of crack defects on the inner and outer walls of the pipeline.

Upload: others

Post on 20-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

ScientificJournalofTechnologyVolume1Issue02,2019

ISSN:2688‐8645

28

StudyontheLimitLoadofLargeDiameterNaturalGasPipelinewithInternalandExternalDefects

FeihongQina,LeiYangb,KaidieYangc,YiLidandYuchuanGuoe

Schoolofpetroleumengineering,SouthwestPetroleumUniversity,Chengdu610500,[email protected],[email protected],[email protected]

[email protected],[email protected]

AbstractInthispaper,theD1016×18.4X80pipelineinarivercrossingsectionofMyanmarChinanatural gas pipeline project is taken as the research object, and the plastic failurecriterion and the double elastic slope criterion are selected as the determinationmethodsof theultimate internalpressure load.Basedon theABAQUS finiteelementanalysis,theeffectsofthedepth,lengthandwidthofinternalandexternaldefectsontheultimateloadofthepipelinearestudiedrespectively.

Keywords

Large Diameter Pipeline; Ultimate Load; X80 Pipeline Steel; Internal And ExternalDefects;Interference.

1. Introduction

Oil and natural gas promote the development of the world economy, which is of greatsignificance to the national economy and national development. At present, the pace ofdevelopmentofChina'soilandnaturalgasindustryisspeedingup,andtheconstructionofoilandgaspipelineshasenteredahigh‐speeddevelopmentperiod.Therearemanyreasonsforpipeline corrosion, moreover the mechanism is complex and the location of corrosion israndom.Theappearanceofcorrosiondefectswillaffectthefailureformandultimatepressureofpipeline.Thelong‐distanceoilandgaspipelinepassesthroughawideareawheretheterrainis complex. Furthermore, there are different soil properties, diverse pipeline structure andvarioustransmissionmediumproperties,thusitiseasytocausealargenumberofinternalandexternaldefectsofthelong‐distancepipeline.Thepipelinewithinnerandouterwalldefectsdoes not necessarily lose the bearing capacity. Repair and replace the pipeline when thepipeline does not completely lose the bearing capacity,which will force to stop pipelinetransmission,causingunnecessaryeconomiclossestoacertainextent.Basedonthefiniteelementmethod,X.Lietal.[1](2016)proposedanevaluationmethodforthe interference between adjacent corrosion, which has better accuracy and applicability,especiallyfortheaxiallongcorrosiondefects.S.s.al‐owaisietal.[2](2016)usedfiniteelementsoftwaretoanalyzeX60withadjacentdefectsofdifferentshapes.Itwasfoundthattheadjacentdefectsoftwoshapes(ellipseandrectangle)willinteractwhentheaxialdistanceisnotmorethan3timesofthewallthicknessorthecircumferentialdistanceisnotmorethan0.5timesofthewallthickness.InGB/T19624safetyassessmentofpressurevesselswithdefectsinservice(2004) [3], considering themutual influence ofmultiple cracks, a crackmergingmethod isproposedaimingatmultipleadjacentcracks,inwhichtheinternalandexternalcrackdefectsare treated as penetrating crack defects, but this method does not propose the treatmentmethodofinternalandexternalvolumecrackdefects.Tosumup,therearefewresearchresultsonthelimitloadofdoubledefectpipelineatpresent,except for the research of crack defects on the inner and outer walls of the pipeline.

ScientificJournalofTechnologyVolume1Issue02,2019

ISSN:2688‐8645

29

Furthermoretherearefewresearchonthelimitloadofthepipelinewithinternalandexternalvolumedefects.Atpresent,theresearchonthelimitloadofthepipelinewithdoubledefectsismainlyaimedatthesamesurfacedefects,whereasthereisnowaytoavoidtheexistenceandinteraction of internal and external wall defects in actual working condition. Adopting thecurrentpipelinesafetyevaluationsystemtodeterminethepipelinewithinternalandexternaldefects will result in relatively conservative judgment results, thus increasing the pipelineoperationrisk.Therefore,itisnecessarytofurtherstudytheultimateloadofpipelineundertheinterferenceofinternalandexternaldoubledefects.

2. LiteratureReferences

Theprocessofpipelinematerialfailureisrelativelycomplex.Throughthecomparativeanalysisoftheexistingtheoryandmethodofpipelineultimateloadandpipelinefailurecriterion,thispaper finally selects the plastic failure criterion to analyze the ultimate bearing capacity ofpipeline,andchoosesthedoubleelasticslopemethodasthedeterminationcriterionofpipelineultimateload.

2.1. PlasticFailureCriterionInordertoobtaintheultimateloadwithengineeringpracticalsignificance,theplasticfailurecriterion is used to analyze the ultimate bearing capacity. The plastic failure criterion isexpressedasfollows:

00

2ln

3L f

i

RP

R (2‐1)

Inwhich

0LP ——Plasticlimitinternalpressureofflawlesspipelineunderinternalpressure,MPa;

0R ——Outerradiusofpipe,mm;

iR ——Innerradiusofpipe,mm.

The X80 steel studied in this paper belongs to high‐strength steel grade, which has greattoughness.Inordertoexertthebearingcapacityofthematerialandobtainthelimitloadwithengineeringpracticalsignificance,thelocalandcontrollableplasticdeformationofthepipelineisallowed.Inconclusion,thefailurestateofthepipelinewithinternalandexternaldefectsisanalyzedbyusingtheplasticfailurecriterioninthispaper.

2.2. LimitLoadDeterminationCriteriaAccordingtothedifferentcriteriaofsignificantplasticflowwhenthesteelreachestheplasticlimit,therearemanycriteriatodeterminetheultimateloadinengineering.Inthispaper,thedoubleelasticslopecriterionisusedasthecriteriatodeterminetheultimateload,asshowninFigure1,makeaninternalpressure‐straincurve,andmakeastraightlinethroughtheorigin,sothatitsslopeistwicetheslopeoftheelasticsectionoftheloaddeformationcurve.Theloadvalue corresponding to the intersectionof the straight lineand the internalpressure‐straincurveisthelimitload.

ScientificJournalofTechnologyVolume1Issue02,2019

ISSN:2688‐8645

30

tanψ=2tanθ

Limit load line

Ultimate load point

Ultimate test load

Regression line

Maximum principal strain or displacement

ψ

θ

Loa

d

Figure1:schematicdiagramofdoubleelasticslopecriterion

ThedoubleelasticslopecriterionisamoderncriterionadoptedbyASMEBoilerandpressurevesselcode.IthasarelativelygoodapplicabilityandhighaccuracytothemainstreamsteelinChina.Therefore,thedoubleelasticslopecriterionisadoptedasthedeterminationcriterionofultimateloadinthispaper.

3. FiniteElementAnalysisofLimitLoadofInternalandExternalDefects

3.1. ModelEstablishmentandParameterSettingInthispaper,theparametersofarivercrossingsectionofMyanmarChinanaturalgaspipelineare used for modeling and finite element analysis. In engineering practice, the pipeline isaffectedbymanyfactors.Inordertoaccuratelyanalyzethepipeline,thefull‐sizeD1016×18.4steelpipemodelisusedinthispaper.According toSaintVenant's theorem[4], the lengthof thepipeaffectedby theendeffect iscalculatedasfollows:

10162.5 2.5 18.4 241.7

2L Rt mm (1)

Itshowsthatthelengthof241.7mmawayfromthetwoendswillbeaffectedbytheconstraintsofthetwoends.Thus,inordertofullyavoidtheinfluenceoftheendeffectofthepipesection,bettermodelingandanalysis,thelengthofthefiniteelementmodelinthispaperissetas4m,andthedefectsarelocatedinthemiddleofthemodel.ModelparametersareshowninTable1.

Table1:finiteelementmodelparametersofpipesection

Steels

Yieldstrength(M

Pa)

Ultimatetensile

strength(MPa)

Youngmodulus(G

Pa)

Poisson'sratio

Length(m)

Externaldiameter(m

m)

Wallthickness(m

m)

API5L

SPECX80

555 625 210 0.3 4 1016 18.4

ScientificJournalofTechnologyVolume1Issue02,2019

ISSN:2688‐8645

31

Themodelofpipesectionisformedbydrawing,thetypeofdefectissetasrectangularvolumedefect, and the corrosion rectangular pit is formed by rotating cutting. Besides, themodeladopts C3D8R eight nodes linear hexahedron reduction integral element. In addition, thestructuredgriddivisiontechnologyisusedtofinallyformthegrid.ThegriddivisionresultsareshowninFigure1.

Figure2:schematicdiagramofgriddivision

3.2. AnalysisoftheInfluenceofInternalandExternalDefectParametersontheUltimateLoad

3.2.1. AnalysisoftheInfluenceoftheDepthofInternalandExternalDefectsontheUltimateLoadofPipeline

Inthissection,theinfluenceofdifferentdefectdepthontheultimateloadwillbeanalyzed.Inordertofacilitatetheanalysisandsummaryofthelaw,thedefectdepthwillbedimensionlesstreated,anda/t=0.1willbeusedasthedefectfoundationdepthofthestudy.Whenstudyingtheinfluenceofthedepthofinternalandexternaldefectsontheultimateloadofpipeline,setthelengthofinternalandexternaldefects /b Rt =1,widthc=20mm,andthedepthaofinternalandexternaldefectsarea/t=0.1,0.15,0.2,0.25and0.3respectively.Thereare25typesofdefectsintotal.AsshowninFigure2,basedonfivekindsofpipeaxialspacingofL=50mm,150mm,250mm,350mmand450mm,125modelswithexternaldefectsa1/tandinternaldefectsa2/tof0.1,0.15,0.2,0.25and0.3,wererespectivelyestablished.

(a)a1/t=0.1(b)a1/t=0.15(c)a1/t=0.2(d)a1/t=0.25(e)a1/t=0.3

Figure3:schematicdiagramofexternaldefectmodelbasedondepthchange

ScientificJournalofTechnologyVolume1Issue02,2019

ISSN:2688‐8645

32

Theabove125kindsofpipelinemodelsareimportedintoABAQUSforfiniteelementanalysis,andthecorrespondinginternalpressure‐straincurveisobtained.Further,thelimitloadcanbeobtainedbyintroducingitintoOriginsoftwarewiththeuseofthedoubleelasticslopemethod.

L=50mm

Figure4:3Drainbowmapofinnerdefectdepthouterdefectdepthultimateload

0.10 0.15 0.20 0.25 0.300.10

0.15

0.20

0.25

0.30

Dep

th o

f ex

tern

al d

efect

Depth of internal defect

13.18

14.30

15.42

16.54

17.66

18.78

19.90

21.02

22.14

L=50mm

Figure5:contoursectionofinternaldefectdepthexternaldefectdepthultimateload

ItcanbeseenfromFigure3andFigure4thatwhenL=50mm,withtheincreaseofthedepthofinternalandexternaldefects,thelimitloadvalueofpipelinedecreasesfrom22.13MPato13.19MPa,withatotaldecreaseof8.94MPaandthedecreaseof40.40%.Theaboveanalysisshowsthatwhentheaxialdistancebetweentheinnerandouterdefectsissmall,theinterferenceeffectofthedoubledefectsisnoticeablystrengthened,whichleadstothedeclineoftheultimateloadofthepipeline.ItcanbeseenfromFigure4thattheultimateloadofpipelinedecreasesrapidlywiththeincreaseofdefectdepth,andtherateofchangeisincreasing,whichfullyshowsthattheinfluenceofdefectdepthontheultimateloadofpipelineissignificant.

ScientificJournalofTechnologyVolume1Issue02,2019

ISSN:2688‐8645

33

3.2.2. AnalysisoftheInfluenceoftheLengthofInternalandExternalDefectsontheUltimateLoadofPipeline

Inthissection,theinfluenceofdifferentdefectlengthsontheultimateloadwillbeanalyzed.Inordertofacilitatetheanalysisandsummaryofthelaw,thedefectlengthwillbedimensionlesstreatedand /b Rt =0.5willbeusedasthebasicdefectlengthofthestudy.Whenstudyingtheinfluenceofthelengthofinternalandexternaldefectsontheultimateloadofthepipeline,setthedepthofinternalandexternaldefectsa/t=0.25,a=4.6mm,widthc=20mm,andthelengthbofinternalandexternaldefectsare0.5 Rt , Rt ,1.5 Rt ,2 Rt ,2.5 Rt ,respectively.Thereare25typesofdefectsintotal.AsshowninFigure5,basedonfivekindsofpipeaxialspacingofL=50mm,150mm,250mm,350mmand450mm, the lengthofexternaldefectb1andinternaldefectb2 as0.5 Rt , Rt ,1.5 Rt ,2 Rt , 2.5 Rt are respectivelyestablished,andthereare125pipemodelsintotal.

(a)b1=0.5 Rt (b)b1= Rt (c)b1=1.5 Rt (d)b1=2 Rt (e)b1=2.5 Rt

Figure6:schematicdiagramofexternaldefectmodelbasedonlengthchange

Theabove125kindsofpipelinemodelsareimportedintoABAQUSforfiniteelementanalysis,andthecorrespondinginternalpressure‐straincurveisobtained.Further,thelimitloadcanbeobtainedbyintroducingitintoOriginsoftwarewiththeuseofthedoubleelasticslopemethod.

L=50mm

Figure7:3Drainbowmapofinnerdefectdepthouterdefectdepthultimateload

ScientificJournalofTechnologyVolume1Issue02,2019

ISSN:2688‐8645

34

L=50mm

Figure8:contoursectionofinternaldefectdepthexternaldefectdepthultimateload

ItcanbeseenfromFigure6thatwhenL=50mm,withtheincreaseofthelengthofinternalandexternaldefects,theultimateloadvalueofthepipelinedecreasesfrom19.41MPato14.83MPa,withatotalof4.58MPaandthedecreaseof23.60%.Thus,theultimateloadofpipelinewilldecreasewiththe increaseofdefect length,butthechangeratewillbesmallerandsmaller.Besides,asshowninFigure7,thecontourdistributionbecomessparserwiththeincreaseofthelength,indicatingthatwhenthedefectlengthislonger,itsinfluenceontheultimateloadofthepipelinedecreasesgradually.3.2.3. AnalysisoftheInfluenceoftheWidthofInternalandExternalDefectsonthe

UltimateLoadofPipelineThissectionwillanalyzetheinfluenceofdifferentdefectwidthontheultimateload.Inordertofacilitatetheanalysisandsummaryofthelaw,widthc=20mmisusedasthewidthofdefectfoundation.Whenstudyingtheinfluenceofthewidthofinternalandexternaldefectsontheultimateloadofthepipeline,setthedepthofinternalandexternaldefectsa/t=0.1,a=1.84mm,lengthb/ Rt=1,b=96.68mm,andthewidthcofinternalandexternaldefectsarerespectively20mm,50mm,100mmand200mm.Thereare16typesofdefectsintotal.AsshowninFigure8,themodelswiththewidthofexternaldefectc1andinternaldefectc2of20mm,50mm,100mmand200mmarerespectivelyestablishedbyusingtheaxialspacingofL=50mmand150mm.Thereare32pipelinemodelsintotal.

(a)c1=20mm(b)c1=50mm(c)c1=100mm(d)c1=200mm

Figure9:schematicdiagramofexternaldefectmodelbasedonwidthchange

ScientificJournalofTechnologyVolume1Issue02,2019

ISSN:2688‐8645

35

Theabove32kindsofpipelinemodelsareimportedintoABAQUSforfiniteelementanalysis,andthecorrespondinginternalpressure‐straincurveisobtained.Further,thelimitloadcanbeobtainedbyintroducingitintoOriginsoftwarewiththeuseofthedoubleelasticslopemethod.ItcanbeseenfromFigure9thatwhenL=50mm,withtheincreaseofthewidthofinternalandexternaldefects,thelimitloadvalueofpipelinedecreasesfrom22.13MPato21.48MPa,withonlyatotaldecreaseof0.65MPaandadecreaseof2.94%.Inaddition,withtheincreaseofthewidthofinternalandexternaldefects,thelimitloadofthepipelinedecreasesslightly,whiletheoverallchangeisnotsignificant.Furthermore,itcanbeseenfromFigure10thatmostareasoftheultimateloadareinastateofvery low rate of change, indicating that the influence of thewidth of internal and externaldefectsontheultimateloadofthepipelineisinsignificant,whichcanbeignoredinengineering.

L=50mm

Figure10:3Drainbowmapofinnerdefectdepthouterdefectdepthultimateload

L=50mm

Figure11:contoursectionofinternaldefectwidthexternaldefectwidthultimateload

ScientificJournalofTechnologyVolume1Issue02,2019

ISSN:2688‐8645

36

4. Conclusion

In this paper, theD1016×18.4X80pipeline of a river crossing section ofMyanmarChinanatural gas pipeline project is used as the modeling basis, meanwhile the ABAQUS finiteelementsimulationisusedtoresearchontheinfluenceofinternalandexternaldefectsontheultimateloadofthepipelineundertheinterference.Besides,theinfluenceofthedepth,lengthand width of internal and external double defects on the ultimate load of the pipeline isanalyzedanddiscussedrespectively.Theconclusionisasfollows:Theultimateloadofpipelinedecreasessignificantlywiththeincreaseofthedepthofinternalandexternaldefects,andtherateofchangeisincreasing.Thus,thedepthofdefectsisthemainfactoraffectingtheultimateloadofpipeline.While,theultimateloadofpipelinedecreaseswiththe increaseof the lengthof internal and external defects, but the rate of change is gettingsmallerandsmaller,whichindicatesthatthelengthofdefectshasanimpactontheultimateloadofpipelinetosomeextent.Furthermore,whenthelengthofdefectsislongerthan2.5 Rt ,theinfluenceoflengthonthepipelinecanbeignored.Moreover,comparedwiththedepth,thedefectlengthisthesecondaryinfluencefactoroftheultimateloadofthepipeline;atlast,theultimateloadofthepipelineisalmostconstantwiththeincreaseofthewidthoftheinternalandexternaldefects,indicatingthatitsinfluencecanbeignored.

Acknowledgements

SupportedbytheOpenExperimentFundofSouthwestPetroleumUniversity.

References

[1] LiX,BaiY,SuC,etal.Effectofinteractionbetweencorrosiondefectsonfailurepressureofthinwallsteelpipeline[J].InternationalJournalofPressureVessels&Piping,2016,138:8-18.

[2] Al‐OwaisiSS,BeckerAA,SunW.Analysisofshapeandlocationeffectsofcloselyspacedmetallossdefectsinpressurisedpipes[J].EngineeringFailureAnalysis,2016,68:172-186.

[3] GeneralAdministrationofqualitysupervision,inspectionandQuarantineofthepeople'sRepublicofChina.Safetyassessmentofpressurevesselswithdefectsinuse(GB/T19624‐2004)[S].Beijing:ChinaStandardsPress,2005.

[4] QiuChangsheng.StudyonextremepressureofUHPreactiontube[D].SouthChinaUniversityoftechnology,2013.