su pplementar y information - media.nature.com · 3.3 dna-protein ladder model (dpl) we now turn to...

13
Supplementary Methods Quantitative analysis of cooperative binding of cGAS along DNA 1 Introduction The catalytic activity of cGAS is activated by binding to DNA, which induces a structural change that properly forms the active site. Initial structural studies showed that two cGAS molecules form a heterotetrameric complex with two DNA ligands. Hereby, the two cGAS molecules sandwich 2, approx. 30° angled DNA duplex molecules. cGAS binds approx. 16-20 base pairs of each DNA ligand. However, dsDNA that in principle fully spans the cGAS dimer (20 bp) does not activate the enzyme to any appreciable amounts in vitro and in human cells in vivo as well. An activating transition is observed if the DNA length is increased to 40-50 bp. Longer DNA activates cGAS even more robustly, and long plasmid DNA is a "gold standard" for cGAS activation. Even if we account for “DNA end” effects, i.e. the enzyme falling off ends more rapidly than dissociation from internal DNA binding sites through Brownian motion, the evident incapability of short blunt ended DNAs to activate cGAS and the increasing activity with increasing DNA length (keeping the molarity of base pairs constant) is not explained by the cGAS dimer model. Our structural results indicate that once the DNA ligands are long enough to bind two cGAS dimers next to each other, a DNA:protein network is formed that resembles a twisted ladder. 2 DNA-Protein Ladder Model (DPL) Our new crystal structures suggest that pairs of cGAS dimers mutually stabilize each other via a DNA:protein network: cGAS dimers are positioned like the rungs of a ladder, with the two DNA strands being the beams. A mathematical treatment for the cooperative binding of cGAS dimers to DNA can be formulated along the general ideas of the Monod-Wyman-Changeux (MWC) model for cooperative transitions in proteins: proteins bind as monomers along a single duplex of DNA with a dissociation constant K 1 [mol/l]. Along two parallel DNA duplexes, such as those prearranged in the vicinity of a cGAS:DNA heterotretramer, two cGAS molecules bind with an overall microscopic dissociation constant K 2 [mol/l]. Since we assume for the model that two cGAS molecules bind simultaneously, the macroscopic dissociation constant for assembly of cGAS dimers with two parallel DNA molecules would be K 2 2 , analogous to the empirical Hill equation. Furthermore, the binding of two cGAS:DNA heterodimer into a cGAS 2 :DNA 2 heterotetramer is characterized by a dissociation constant K 3 [mol/l]. The overall binding scheme is depicted in (Fig. 3a). The model includes simplifications. In particular, we neglect binding of single cGAS molecules to the prearranged "dimeric" DNA lattice and the equilibrium can be formulated as: 2 + 2 * + + , : , . Furthermore, we neglect interactions between DNA molecules with unequal number of bound cGAS molecules. Such an assumption can be justified, if interaction between DNA molecules with equal number of bound cGAS molecules is much stronger than interaction between DNA molecules with unequal numbers of cGAS, because latter has "less" interacting cGAS dimers between the two DNA molecules. WWW.NATURE.COM/NATURE | 1 SUPPLEMENTARY INFORMATION doi:10.1038/nature23890

Upload: lamthuan

Post on 24-Aug-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

SupplementaryMethods

Quantitative analysis of cooperative binding of cGASalongDNA

1 Introduction

ThecatalyticactivityofcGASisactivatedbybindingtoDNA,whichinducesastructuralchangethatproperlyformstheactivesite. InitialstructuralstudiesshowedthattwocGASmoleculesform a heterotetrameric complex with two DNA ligands. Hereby, the two cGAS moleculessandwich2,approx.30°angledDNAduplexmolecules.cGASbindsapprox.16-20basepairsofeachDNAligand.However,dsDNAthatinprinciplefullyspansthecGASdimer(20bp)doesnotactivatetheenzymetoanyappreciableamountsinvitroandinhumancellsinvivoaswell.AnactivatingtransitionisobservediftheDNAlengthisincreasedto40-50bp.LongerDNAactivatescGASevenmorerobustly,andlongplasmidDNAisa"goldstandard"forcGASactivation.Evenifweaccountfor“DNAend”effects,i.e.theenzymefallingoffendsmorerapidlythandissociationfrominternalDNAbindingsitesthroughBrownianmotion,theevidentincapabilityofshortbluntendedDNAstoactivatecGASandtheincreasingactivitywithincreasingDNAlength(keepingthemolarityofbasepairsconstant)isnotexplainedbythecGASdimermodel.OurstructuralresultsindicatethatoncetheDNAligandsarelongenoughtobindtwocGASdimersnexttoeachother,aDNA:proteinnetworkisformedthatresemblesatwistedladder.

2 DNA-ProteinLadderModel(DPL)

OurnewcrystalstructuressuggestthatpairsofcGASdimersmutuallystabilizeeachotherviaaDNA:proteinnetwork:cGASdimersarepositionedliketherungsofaladder,withthetwoDNAstrandsbeingthebeams.AmathematicaltreatmentforthecooperativebindingofcGASdimersto DNA can be formulated along the general ideas of theMonod-Wyman-Changeux (MWC)modelforcooperativetransitionsinproteins:proteinsbindasmonomersalongasingleduplexofDNAwithadissociationconstantK1[mol/l].AlongtwoparallelDNAduplexes,suchasthoseprearrangedinthevicinityofacGAS:DNAheterotretramer,twocGASmoleculesbindwithanoverallmicroscopicdissociation constantK2[mol/l]. Sinceweassume for themodel that twocGASmolecules bind simultaneously, themacroscopic dissociation constant for assembly ofcGAS dimerswith two parallel DNAmoleculeswould be K22, analogous to the empirical Hillequation. Furthermore, the binding of two cGAS:DNA heterodimer into a cGAS2:DNA2heterotetramerischaracterizedbyadissociationconstantK3[mol/l].Theoverallbindingschemeisdepictedin(Fig.3a).Themodelincludessimplifications.Inparticular,weneglectbindingofsingle cGASmolecules to the prearranged "dimeric"DNA lattice and the equilibrium can beformulated as: 2𝑐𝐺𝐴𝑆 + 2𝐷𝑁𝐴

*++ 𝑐𝐺𝐴𝑆,: 𝐷𝑁𝐴,. Furthermore, we neglect interactions betweenDNAmoleculeswithunequalnumberofboundcGASmolecules. Suchanassumptioncanbejustified,ifinteractionbetweenDNAmoleculeswithequalnumberofboundcGASmoleculesismuch stronger than interaction between DNA molecules with unequal numbers of cGAS,becauselatterhas"less"interactingcGASdimersbetweenthetwoDNAmolecules.

WWW.NATURE.COM/NATURE | 1

SUPPLEMENTARY INFORMATIONdoi:10.1038/nature23890

3 MathematicalModelling

3.1 NomenclatureDNA-ProteinLadderModel(DPL)

InderivinganexpressionfortheactivityasafunctionoftheconcentrationandlengthsofDNAligandsandtheconcentrationofprotein,weusethefollowingterminology:

p0: totalconcentrationofprotein(cGASmonomer)l0: totalconcentrationofDNAmoleculess: numberofbindingsitesperDNAmoleculepilj: complexofjDNAwithicGASmoleculesK1: equilibriumdissociationconstantcGASmonomerwithDNAK2: equilibriumdissociation constant for binding of cGAS to prearrangedDNAmolecules,

formingthecGAS2:DNA2complexK3: equilibrium dissociation constant for the interaction of two cGAS:DNA complexes,

formingthecGAS2:DNA2complexa: aconstantrelatingtheconcentrationofDNAboundcGAStotheobservedrateofproduct

formation

3.2 Generaldimerequilibrium

Ingeneral,theformationofadimer,e.g.theassociationoftwoDNAmoleculesbycGAS,canbedescribedinitssimplestformwiththefollowingequilibriumscheme:

𝑙 + 𝑙*𝑙, (1.1)

with𝐾 = 1off1on.Usingtheresultingequations

𝑙 ∗ 𝑙 = 𝐾𝑙, (1.2)𝑙6 = 𝑙 + 2𝑙, (1.3)

onecanderiveexpressionforlandl2asafunctionofl0andK:

𝑙 = − 89𝐾 − 𝐾 𝐾 + 8𝑙6 (1.4)

𝑙, =8;𝐾 + 4𝑙6 − 𝐾 𝐾 + 8𝑙6 (1.5)

Iflhassomeformofassociatedactivitya1(e.g.fluorescence,enzymaticactivity)andl2arelatedproperty 2*a2 (since l2 has two "active" sites), one can combine equations (1.4 and 1.5) tocomputetheoverallactivityA:

𝐴 = 89

𝑎, − 𝑎8 𝐾 + 4𝑎,𝑙6 − 𝑎, − 𝑎8 𝐾 𝐾 + 8𝑙6 (1.6)

With𝑎 = 𝑎, − 𝑎8,𝑏 = 𝑎,andK'=K/4oneobtains

𝐴 = 𝑎𝐾′ + 𝑏𝑙6 − 𝑎 𝐾′ 𝐾′ + 2𝑙6 (1.7)

WWW.NATURE.COM/NATURE | 2

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature23890

3.3 DNA-ProteinLadderModel(DPL)

Wenowturntotheschemeoutlinedin(Fig.3a)andderiveanequationfortheconcentrationofDNAboundcGAS.Indoingso,weassumethatundersteadystateconditions,ATP/2APTP,GTPandcGAMP/fGAMPhavenosubstantialinfluenceonK1,K2andK3.Theexperimentallyobservedsteady state activity A of product formation (in our case measured by (∆F/∆t: change influorescencepertime)canbewrittenas

𝐴 = 𝑎8 ∗ 𝑖 ∗ 𝑝B𝑙si=1 + 𝑎, ∗ 2𝑖 ∗ 𝑝,B𝑙,s

i=1 (2.1)

witha1anda2constantsthatrelatetheconcentrationofDNAboundcGASmonomers(e.g.p1l)anddimers(e.g.p2l2)totherateofproductformation.Thefactorof2inthesecondsumaccountsforthetwo"active"sitesineachp2il2.Foragivennumberofbindingsitess,atequilibrium,theschemein(Fig.3a)hasthefollowingequilibriumequations:

a) conservationofproteinandDNAligand:

𝑝6 ≈ 𝑝 (2.2)

𝑙6 = 𝑙 + 2𝑙, + 𝑝B𝑙GBH8 + 2𝑝,B𝑙, (2.3)

To derive a mathematical expression, in 2.1 a simplification is used: we designed ourexperimentswithforthemostpartasurplusofproteinoverDNAbindingsites,assumingthatone molecule of cGAS covers ~20 bp of DNA. For the purpose of deriving an analyticmathematicalequation,weassumep0>>s*l0,i.e.p≈p0.

b) bindingofcGAStoDNA:weassumethatcGAScanbindanywhereonDNA.TheDNAhassnon-overlappingbindingsites(e.g.oneper20bp)allsbindingsitesareequal.

G∗IJ∗KILK

= 𝐾8 (2.4)

GM8 ∗IJ∗ILK,∗I+K

= 𝐾8 (2.5)

...

GM BM8 ∗IJ∗INOLKB∗INK

= 𝐾8 (2.6)

...

IJ∗IPOLKG∗IPK

= 𝐾8 (2.7)

LikewiseforthecGASdimersboundtotwoDNAmolecules(l2denotestheprearranged“DNAdimer”):

G∗IJ+∗K+I+K+

= 𝐾,, (2.8)

...

WWW.NATURE.COM/NATURE | 3

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature23890

GM BM8 ∗IJ+∗I+NO+K+

B∗I+NK+= 𝐾,, (2.9)

... IJ+∗I+PO+K+

G∗I+PK+= 𝐾,, (2.10)

Finally,wehavetheinteractionoftwocGASboundDNAmoleculesp1l.Weonlyneedoneequation;allothersareredundantduetothermodynamiclinkage. ILK∗ILK

I+K+= 𝐾Q (2.11)

Foragivens,theequations2.1a,2.2,...2.7cannowbeusedtoeliminateallbutonepiloronep2il2.Repeatingthisprocedureforeachofthepilandp2il2,weobtainasetofexpressionsfortheconcentrationsofthepilandp2il2(i=1...s)asfunctionsofs,p0,l0,K1,K2andK3.For example, let's look at the case s=3. In Mathematica code, we formulate the followingexpressionsforequations2.2,...2.10:eq1 = l0 - (l + p1l + p2l + p3l +2*l2+2*p2l2 + 2*p4l2 + 2*p6l2) eq2 = 3*p0*l - k1*p1l eq3 = 2*p0*p1l - 2*k1*p2l eq4 = p0*p2l - 3*k1*p3l eq5 = 3*p0*p0*l2 - k2^2*p2l2 eq6 = 2*p0*p0*p2l2 - 2 k2^2*p4l2 eq7 = p0*p0*p4l2 - 3 k2^2*p6l2 eq8 = p1l*p1l - k3*p2l2

In equilibrium, eq0=0, eq1=0, eq2=0 ... We now use these expressions in Mathematica toeliminatelandallpilbutpl:Eliminate[{eq1==0,eq2==0,eq3==0,eq4==0,eq5==0,eq6==0,eq7==0,eq8==0},{l,l2,p2l,p3l,p2l2,p4l2,p6l2}]

Thisprocedureresultsinthefollowingequation:p1l (k1^3 k2^4 k3 p0 + 3 k1^2 k2^4 k3 p0^2 + 3 k1 k2^4 k3 p0^3 + k2^4 k3 p0^4 + 2 k1^2 k2^6 p1l + 6 k1^2 k2^8 p0^2 p1l + 6 k1^2 k2^4 p0^4 p1l + 2 k1^2 p0^6 p1l) == 3 k1^2 k2^4 k3 l0 p0^2

Theequationcanbesolvedforp1lwithSolve[p1l (k1^3 k2^4 k3 p0 + 3 k1^2 k2^4 k3 p0^2 + 3 k1 k2^4 k3 p0^3 + k2^4 k3 p0^4 + 2 k1^2 k2^6 p1l + 6 k1^2 k2^4 p0^2 p1l + 6 k1^2 k2^2 p0^4 p1l + 2 k1^2 p0^6 p1l) == 3 k1^2 k2^4 k3 l0 p0^2, {p1l}]

resultinginasolutionthatdescribestheconcentrationofpilasafunctionofs=3,p0,l0,K1,K2:p1l = (k1^3 k2^4 k3 p0 - 3 k1^2 k2^4 k3 p0^2 - 3 k1 k2^4 k3 p0^3 - k2^4 k3 p0^4 + Sqrt((k1^3 k2^4 k3 p0 + 3 k1^2 k2^4 k3 p0^2 + 3 k1 k2^4 k3 p0^3 + k2^4 k3 p0^4)^2 + 12 k1^2 k2^4 k3 l0 p0^2 (2 k1^2 k2^6 + 6 k1^2 k2^4 p0^2 + 6 k1^2 k2^2 p0^4 + 2 k1^2 p0^6)))/ (4 (k1^2 k2^6 + 3 k1^2 k2^4 p0^2 + 3 k1^2 k2^2 p0^4 + k1^2 p0^6)) p2l = (-k1^3 k2^4 k3 p0^2 - 3 k1^2 k2^4 k3 p0^3 - 3 k1 k2^4 k3 p0^4 - k2^4 k3 p0^5 + Sqrt((k1^3 k2^4 k3 p0^2 + 3 k1^2 k2^4 k3 p0^3 + 3 k1 k2^4 k3 p0^4 + k2^4 k3 p0^5)^2 + 12 k1 k2^4 k3 l0 p0^4 (2 k1^3 k2^6 + 6 k1^3 k2^4 p0^2 + 6 k1^3 k2^2 p0^4 + 2 k1^3 p0^6)))/ (4 (k1^3 k2^6 + 3 k1^3 k2^4 p0^2 + 3 k1^3 k2^2 p0^4 + k1^3 p0^6)) p3l = (-k1^3 k2^4 k3 p0^3 - 3 k1^2 k2^4 k3 p0^4 - 3 k1 k2^4 k3 p0^5 - k2^4 k3 p0^6 +

WWW.NATURE.COM/NATURE | 4

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature23890

Sqrt(4 k2^4 k3 l0 p0^6 (6 k1^4 k2^6 + 18 k1^4 k2^4 p0^2 + 18 k1^4 k2^2 p0^4 + 6 k1^4 p0^6) + (k1^3 k2^4 k3 p0^3 + 3 k1^2 k2^4 k3 p0^4 + 3 k1 k2^4 k3 p0^5 + k2^4 k3 p0^6)^2))/(12 (k1^4 k2^6 + 3 k1^4 k2^4 p0^2 + 3 k1^4 k2^2 p0^4 + k1^4 p0^6))

Inserting the three expression into 𝐴8 = 𝑎8 ∗ 𝑖 ∗ 𝑝B𝑙s

i=1 (first half of (eq. 2.1)), one canformulatethefollowingsum(s=3):

𝐴8 = 𝑎8 ∗ 𝑓8 ∗3𝑖

𝑖𝑝6B

𝐾8BT8

Q

BH8

with (3.1)

𝑓8 =−𝐾,9𝐾Q 𝐾8 + 𝑝6 Q + 𝐾,9𝐾Q 𝐾,9𝐾Q 𝐾8 + 𝑝6 U + 24𝐾89𝑙6 𝐾,, + 𝑝6, Q

12 𝐾,, + 𝑝6, Q

Generalizingsresultsinthefollowingexpression:

𝐴8 = 𝑎8 ∗ 𝑓8 ∗𝑠𝑖

𝑖𝑝6B

𝐾8BTGM,

G

BH8

with (3.2)

𝑓8 =−𝐾,,GM,𝐾Q 𝐾8 + 𝑝6 G + 𝐾,,GM,𝐾Q 𝐾,,GM,𝐾Q 𝐾8 + 𝑝6 ,G + 8𝑠𝐾89GM9𝑙6 𝐾,, + 𝑝6, G

4𝑠 𝐾,, + 𝑝6, G

Thesummationhasanexplicitexpression:

𝑠𝑖

𝑖𝑝6B

𝐾8BTGM,

G

BH8

= 𝐾8,𝑠𝑝6

𝐾8 + 𝑝6𝐾8 + 𝑝6𝐾8,

G

Withthisexpressionandreformulation,3.2canbewrittenas: (3.3)

𝐴8 = −𝑎84

𝑝6𝐾8 + 𝑝6

∗𝐾8,𝐾Q𝐾,,

𝐾,, 𝐾8 + 𝑝6 ,

𝐾8, 𝐾,, + 𝑝6,

G

−𝐾8,𝐾Q𝐾,,

𝐾,, 𝐾8 + 𝑝6 ,

𝐾8, 𝐾,, + 𝑝6,

G 𝐾8,𝐾Q𝐾,,

𝐾,, 𝐾8 + 𝑝6 ,

𝐾8, 𝐾,, + 𝑝6,

G

+ 8𝑠𝑙6

Notethatthisexpressionhasthegeneralformof(1.4).Usingthesameprocedure,oneobtainsanexpressionforA2: (3.4)

𝐴, =𝑎,4

𝑝6,

𝐾,, + 𝑝6,∗

𝐾8,𝐾Q𝐾,,

𝐾,, 𝐾8 + 𝑝6 ,

𝐾8, 𝐾,, + 𝑝6,

G

+ 4𝑠𝑙6

−𝐾8,𝐾Q𝐾,,

𝐾,, 𝐾8 + 𝑝6 ,

𝐾8, 𝐾,, + 𝑝6,

G 𝐾8,𝐾Q𝐾,,

𝐾,, 𝐾8 + 𝑝6 ,

𝐾8, 𝐾,, + 𝑝6,

G

+ 8𝑠𝑙6

Inourexperimentswestudy theactivationof cGASas functionofDNA lengthandkeep theeffectiveconcentrationofbindingsitesleff=l0*sconstant.CombiningA1andA2resultsinthefinalformulafortheconcentrationofcGASboundtoDNAandhencesteadystateactivityAofproductformationasafunctionofs:

WWW.NATURE.COM/NATURE | 5

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature23890

𝐴(𝑠) = 𝑎𝐾′(𝑠) + 𝑏𝑙eff − 𝑎 𝐾′(𝑠) 𝐾′(𝑠) + 2𝑙eff (3.5)with

𝑙eff = 𝑠𝑙0

𝐾′(𝑠) =𝐾8,𝐾Q4𝐾,,

𝐾,, 𝐾8 + 𝑝6 ,

𝐾8, 𝐾,, + 𝑝6,

G

𝑎 =𝑎,𝑝6,

𝐾,, + 𝑝6,−

𝑎8𝑝6𝐾8 + 𝑝6

𝑏 = [+IJ+

*++TIJ+

3.4 DPLModel:SpecialCasesandSimplifications

a)K3→∞(no“dimer”state)ATaylorseriesexpansionof(3.5)aroundleffresultsaround0yields

𝐴 𝑠 = −𝑎 + 𝑏 𝑙eff +𝑎2𝐾′

𝑙eff, −𝑎

2𝐾′,𝑙effQ ⋯

henceforK3→∞(thereforeK’→∞),𝐴 𝑠 = −𝑎 + 𝑏 𝑙eff = 𝑎8

𝑙eff𝑝6𝐾8 + 𝑝6

which describes bind of cGAS monomers on a single DNA ligand with s binding sites andconcentrationl0.b)K3→0(no“monomer”state)SettingK3=0in(3.5)yields

𝐴 𝑠 = 𝑏𝑙eff = 𝑎,𝑙eff𝑝6,

𝐾,, + 𝑝6,

withdescribesa(maximally)cooperativeformationofcGASdimerson(prearranged)DNAwithsbindingsitesandaconcentrationofl0.BindingalongDNAofcGASdimersisnon-cooperative.c)K1≫p0ThisconditionisareasonableassumptionforourstudiessincetheexperimentallydeterminedDNAbindingaffinityforshortDNAisonly~20µM.Inthiscase(3.5)simplifiesto: 𝐴(𝑠) = 𝑎 𝐾′(𝑠) + 𝑙eff − 𝐾′(𝑠) 𝐾′(𝑠) + 2𝑙eff (3.6)with

𝑙eff = 𝑠𝑙0

𝐾′(𝑠) = 𝐾8′𝐾,,

𝐾,, + 𝑝6,

G

𝐾8] =𝐾8,𝐾Q4𝐾,,

𝑎 = 𝑎,𝑝6,

𝐾,, + 𝑝6,

WWW.NATURE.COM/NATURE | 6

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature23890

Note,inthiscase,thereareonlytwoindependentbindingconstantsK2andK1’=K12K3/4K22.Eq.3.6istheoneusedtofittheexperimentaldatainourstudy.

4 FittingofexperimentaldataForglobalfittingofthedatamatrix(8differentDNAligandsby8differentcGASconcentrations),weusedthefminsearchprocedureasimplementedinMatlab_R2015a(TheMathWorks,Inc).4.1 FittingwithHillequations

First,thedatawerefittedusingasetofempiricalHillequations (4.1)

𝑉_BKK(𝑉 [a, 𝑠B, 𝐾B) = 𝑉 [a𝑙eff,i𝑝6

GN

𝐾B + 𝑝6GN

withVmaxfittedglobally(i.e.itisassumedtobethesameforallligands)andsi,KifittedforeachDNAligandliindividually.Here,leff,iistheconcentrationofDNAliganditimesitsnumberofbpsand leff,i=constant in all reactions. fminsearchwasused tominimize the following function (iligands, j protein concentrations, rij: experimentally measured rate for ligand i and proteinconcentrationj,wij:standarddeviationofrijfromthreeindependentexperiments):

𝑅𝑒𝑠 =1𝑤Bf

𝑉_BKK 𝑉 [a, 𝑠B, 𝐾B − 𝑟B,f,

B,f

Minimizationof17parameters(Vmax,8si,8Ki)resultedinanR2=0.991.Fig.S1(leftpanel)showstheexperimentaldataalongwiththefitofthesetofHillequations,therightpanelisaplotofthe“Hillcoefficients”siasafunctionofDNAlength. Ingeneral,thedatashowanincreasein“cooperativity”forlongerDNAasexpected.

FigureS1.Leftpanel:Experimentaldata(seealsolegendforFig.3c)fittedtoasetofHillequationswithaglobalVmax,andindividualKi,si.Plottedistherateofsubstrateturnover(∆F/∆t[RFUmin-1])asa

WWW.NATURE.COM/NATURE | 7

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature23890

TheempiricalHillequation,althoughbeingabletogenerallyfitthedatawithanR2=0.991,hasnodirectphysicalinterpretation,becauseitisunclearhowKiandsicorrelatewiththeunderlyingmolecularevents.4.2 FittingwithDPLequation

Usingthesameprocedure,wefittedtheexperimentaldatawiththesimplifiedDPLmodel(eq.3.6)throughleastsquareminimizationandthefminsearchprocedure(Fig.S2):

𝑅𝑒𝑠 =1𝑤Bf

𝑉hij 𝑉 [a, 𝑠B, 𝐾8], 𝐾, − 𝑟B,f,

B,f

Althoughhereonly11(Vmax,8si,K1’,K2)comparedtothe17parametersoftheHillequations(Vmax,8si,8Ki)areoptimized,theresultingR2=0.988isveryclosetothatobtainedusingtheHillequations. IntheDPLmodel,K1’andK2haveaphysical interpretation intheassemblyoftheDNA-proteinladder(seeabove).scorrespondstoeffectivenumberofcooperativebindingsitesalongtheladder.Itshouldbenoted,thatp0appearsintheequationalreadyasquadraticformp02,sincecGASisassumedtobindasdimer,sotheoverall“cooperativity”withrespecttocGASconcentration is 2s, the “cooperativity” between adjacent cGASdimers is s. In theDPL fit, ssmoothlyincreaseswithincreasingDNAlength,showingasteepertransitionaround40-50basepairs,correspondingwelltotheobservedinvivothreshold(Fig.1a).ForlongerDNA,sis1.2-1.4,butnothigher. Thus, per thismodeling, cooperativebindingof two cGASdimers alongDNA(shortladder)wouldbeinprinciplesufficienttoaccountforthecooperativity.Theyethigher

functionofcGASconcentration.Rightpanel:PlotofsiasafunctionofDNAlength(numberofbasepairs).LongerDNAleadstoanincreaseinsi,whichcanbeinterpretedasanincreaseincooperativebinding.

FigureS2.Leftpanel:Experimentaldata(seealsolegendforFig.3c)fittedtotheDPLequation(3.6)withaglobalVmax,K1’andK2,andindividualsi.Plottedistherateofsubstrateturnover(∆F/∆t[RFUmin-1])asafunctionofcGASconcentration.Rightpanel:PlotofsiasafunctionofDNAlength(numberof base pairs). Longer DNA leads to an increase in si, which can be interpreted as an increase incooperativebinding.

WWW.NATURE.COM/NATURE | 8

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature23890

activity of very longDNA could originate frommore efficient assembly of cGAS dimer in cisbecauselongDNAcouldeasilybendbackandthuscanhelpassemblecGASdimersatlowDNAconcentrations.4.3 TitrationwithinactivecGASD307N

Inthetitrationexperiment,anincreasingamountofcGAScd(D307N),i.e.amutantthatdoesnotturnoversubstrateGTPandATP,istitratedintoasolutionofafixedamountofcGAScdandafixedamountofDNA.Theladdermodelpredictsahillorbellshapedcurve.IntheabsenceofcGAScd(D307N),thelowamountofcGAScdresultsinlowfGAMPproduction,becausemostifnotallofcGAScdisnotboundtoDNAincatalyticallyactivecGASn:DNA2complexes.TitratingincGAScd(D307N) will cooperatively promote ladder formation and therefore help trap cGAScd incGASn:DNA2 ladders, therefore increasing activity. Increasing amounts of cGAScd (D307N),however, will more and more compete cGAScd away from DNA:protein ladders due to thelimitingnumberofproteinbindingsitesonDNA.Thus,afteramaximumstimulation, furtherincreaseof cGAScd (D307N)will result ina gradual reductionof theobserved rateof fGAMPproduction.Theobservedactivityisasfollows:

𝐴 =𝑝[𝑝klk

∗ 𝑓(𝑝klk)

Here,paistheconcentrationofcatalyticactivecGASandpitheconcentrationofcatalyticinactivecGAS(D307N).ptot=pa+piisthetotalconcentrationofcGASmolecules,bothactiveandinactive.f is theDPL function (3.5 or 3.6) or e.g. an empiricalHill function (4.1). Fittingwas done asdescribedfor4.2usingthefminsearchfunctionasimplementedinMatlab.Forfitting,K1’wassetfixedtothevalueobtainedfromthefitinFig.S2(toreducethenumberoffreeparamteter),allotherparameters(Vmax,K2ands)werekeptfreeandoptimized.Itshouldbenotedthatourpremisethatp0>>s*l0,i.e.p≈p0isnotexactlytruefortheexperimentalconditionsusedinFig.3d, sobothaHillequationand theDPLequationareonlyapproximations.Nevertheless,weobtainagoodfit.Theimportantpointhereisthatagoodfitofthedataleadtos=1.8.Sincetheprotein concentration scales with p2s in the DPL model, 2*1.8=3.6 indicates substantialcooperativityforthestimulationofactivecGASbytitratingininactivecGAS.

WWW.NATURE.COM/NATURE | 9

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature23890

SupplementaryTable1Proteinconstructsandtheirdescriptions

ConstructName ProteinNameSourceOrganism

Fragment,aa

Modification

mcGAScdCyclicGMP-AMPsynthase(cGAS)

Musmusculus 141-507 -

hcGAScdCyclicGMP-AMPsynthase(cGAS)

Homosapiens 155-522 -

hcGASCyclicGMP-AMPsynthase(cGAS)

Homosapiens 1-522N-terminalHis6-MBP-tag

Flag/HA-hcGASCyclicGMP-AMPsynthase(cGAS)

Homosapiens 1-522N-terminalFlag/HA-tag

eGFP-hcGASCyclicGMP-AMPsynthase(cGAS)

Homosapiens 1-522N-terminaleGFP-tag

mTFAMTranscriptionfactorA,mitochondrial(TFAM)

Musmusculus 43-243N-terminalHis6-tag

hTFAMTranscriptionfactorA,mitochondrial(TFAM)

Homosapiens 43-246N-terminalHis6-tag

HA-TFAMTranscriptionfactorA,mitochondrial(TFAM)

Homosapiens 43-246 N-terminalHA-tag

mHMGB1HighmobilitygroupproteinB1(HMGB1)

Musmusculus 1-215N-terminalHis6-tag

mHMGB1dCTTHighmobilitygroupproteinB1(HMGB1)

Musmusculus 1-185N-terminalHis6-tag

lHUDNA-bindingproteinHU

Listeriamonocytogenes

1-121N-terminalHis6-tag

WWW.NATURE.COM/NATURE | 10

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature23890

Supplementary Table 2 Stimulatory DNA sequences Construct Name

Sequence

20 bp-s CTACTAGTGATCTATGACTG 20 bp-as CAGTCATAGATCACTAGTAG 25 bp-s CTACTAGTGATCTATGACTGATCTG 25 bp-as CAGATCAGTCATAGATCACTAGTAG 30 bp-s CTACTAGTGATCTATGACTGATCTGTACAG 30 bp-as CTGTACAGATCAGTCATAGATCACTAGTAG 35 bp-s ATCTACTAGTGATCTATGACTGATCTGTACATGAT 35 bp-as ATCATGTACAGATCAGTCATAGATCACTAGTAGAT 40 bp-s AGTGTCTACTAGTGATCTATGACTGATCTGTACATGATCT 40 bp-as AGATCATGTACAGATCAGTCATAGATCACTAGTAGACACT 45 bp-s TACAGATCTACTAGTGATCTATGACTGATCTGTACATGATCTACA 45 bp-as TGTAGATCATGTACAGATCAGTCATAGATCACTAGTAGATCTGTA 50 bp-s GATACAGATCTACTAGTGATCTATGACTGATCTGTACATGATCTACA

ATC 50 bp-as GATTGTAGATCATGTACAGATCAGTCATAGATCACTAGTAGATCTGT

ATC 55 bp-s TCGATACAGATCTACTAGTGATCTATGACTGATCTGTACATGATCTA

CAATCACT 55 bp-as AGTGATTGTAGATCATGTACAGATCAGTCATAGATCACTAGTAGATC

TGTATCGA 60 bp-s AGTCGATACAGATCTACTAGTGATCTATGACTGATCTGTACATGATC

TACAATCACTGCA 60 bp-as TGCAGTGATTGTAGATCATGTACAGATCAGTCATAGATCACTAGTA

GATCTGTATCGACT 65 bp-s CCAAGTCGATACAGATCTACTAGTGATCTATGACTGATCTGTACAT

GATCTACAATCACTGCAGT 65 bp-as ACTGCAGTGATTGTAGATCATGTACAGATCAGTCATAGATCACTAG

TAGATCTGTATCGACTTGG 70 bp-s GACTACCAAGTCGATACAGATCTACTAGTGATCTATGACTGATCTG

TACATGATCTACAATCACTGCAGT 70 bp-as ACTGCAGTGATTGTAGATCATGTACAGATCAGTCATAGATCACTAG

TAGATCTGTATCGACTTGGTAGTC 75 bp-s GACTACCAAGTCGATACAGATCTACTAGTGATCTATGACTGATCTG

TACATGATCTACAATCACTGCAGTTACCG 75 bp-as CGGTAACTGCAGTGATTGTAGATCATGTACAGATCAGTCATAGATC

ACTAGTAGATCTGTATCGACTTGGTAGTC 80 bp-s GACTACCAAGTCGATACAGATCTACTAGTGATCTATGACTGATCTG

TACATGATCTACAATCACTGCAGTTACCGTGACC 80 bp-as GGTCACGGTAACTGCAGTGATTGTAGATCATGTACAGATCAGTCAT

AGATCACTAGTAGATCTGTATCGACTTGGTAGTC 85 bp-s TCCTAGACTACCAAGTCGATACAGATCTACTAGTGATCTATGACTG

ATCTGTACATGATCTACAATCACTGCAGTTACCGTGACC 85 bp-as GGTCACGGTAACTGCAGTGATTGTAGATCATGTACAGATCAGTCAT

AGATCACTAGTAGATCTGTATCGACTTGGTAGTCTAGGA 90 bp-s TCCTAGACTACCAAGTCGATACAGATCTACTAGTGATCTATGACTG

ATCTGTACATGATCTACAATCACTGCAGTTACCGTGACCAATGT

WWW.NATURE.COM/NATURE | 11

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature23890

90 bp-as ACATTGGTCACGGTAACTGCAGTGATTGTAGATCATGTACAGATCAGTCATAGATCACTAGTAGATCTGTATCGACTTGGTAGTCTAGGA

95 bp-s TCCTAGACTACCAAGTCGATACAGATCTACTAGTGATCTATGACTGATCTGTACATGATCTACAATCACTGCAGTTACCGTGACCAATGTCGACT

95 bp-as AGTCGACATTGGTCACGGTAACTGCAGTGATTGTAGATCATGTACAGATCAGTCATAGATCACTAGTAGATCTGTATCGACTTGGTAGTCTAGGA

100 bp-s TCCTAGACTACCAAGTCGATACAGATCTACTAGTGATCTATGACTGATCTGTACATGATCTACAATCACTGCAGTTACCGTGACCAATGTCGACTGGATC

100 bp-as GATCCAGTCGACATTGGTCACGGTAACTGCAGTGATTGTAGATCATGTACAGATCAGTCATAGATCACTAGTAGATCTGTATCGACTTGGTAGTCTAGGA

200 bp-s ATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGTCGTACTACCATCACCATCACCATCACGATTACATGATCGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAAT

200 bp-as ATTCCGGTATCTTTCTCGAATTTCTTACCGACTTCAGCGAGACCGTTATAGCCTTTATCGCCGTTAATCCAGATTACCAGTTTACCTTCTTCGATCATGTAATCGTGATGGTGATGGTGATGGTAGTACGACATATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGGGAATTGTTATCCGCTCACAAT

WWW.NATURE.COM/NATURE | 12

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature23890

Supplementary Table 3 Data processing and refinement statistics

Space group C2 (No. 5) C2 (No. 5)

Unit cell dimensions a, b,

c, α, β, γ

168.5 Å, 122.9 Å, 180.0 Å,

90º, 96.4º, 90º

168.5 Å, 122.9 Å, 180.0 Å,

90º, 96.4º, 90º

XDS STARANISO

Resolution rangea 50 – 3.6 (4.2) Å 50 – 3.6 (4.2) Å

No. of observed

reflections 212879 –

No. of unique reflections 41980 28400

Completenessb 0.99 0.67 / 0.91

I/σ(I)c 9.4 9.3 / 12.6

Rsym 22.4% (91.0%) –

No. of protein atoms 17712

No. of DNA atoms 4370

No. of zinc ions 6

R-factor / Free-R-factor 0.204 / 0.256

Rmsd bond lengths /

bond angles 0.010 Å / 1.4º

Ramachandran plot

preferred / allowed /

outliers

94.9% / 3.1% / 2.0%

aApproximate effective resolution in parentheses bResulting completeness after STARANISO for spherical / elliptical shells cResulting signal-to-noise ratio after STARANISO for spherical / elliptical shells

WWW.NATURE.COM/NATURE | 13

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature23890