subduction fluids and their interaction with the mantle...

14
Per. Mineral. (2007), 76, 2-3, 253-265 doi:10.2451/2007PM0028 SPECIAL ISSUE: In honour of Ezio Callegari on his retirement http://go.to/permin l PERIODICO di MINERALOGIA established in 1930 An International Journal of MINERALOGY, CRYSTALLOGRAPHY, GEOCHEMISTRY, ORE DEPOSITS, PETROLOGY, VOLCANOLOGY and applied topics on Environment, Archaeometry and Cultural Heritage ABSTRACT. — We review three case studies emphasizing the role of ultramafic rocks in the recycling of volatiles and trace elements at convergent plate margins. Serpentinites are major water carriers in subduction zones and their breakdown liberates large quantities of water at sub-arc depths. The incompatible elements incorporated during oceanic serpentinization are released into the fluid phase produced once antigorite dehydrates to olivine + orthopyroxene. Importantly, the antigorite breakdown can trigger either wet melting or production of supercritical fluids in altered basalts and sediments. The produced fluid phases incorporate substantial amounts of incompatible element, initially residing in the crustal reservoirs. The fluid phase which exits the slab is highly reactive with respect to the overlying, silica undersaturated, mantle rocks. This leads to formation of reactive (ortho)pyroxenite layers, which filter the uprising hydrous melt/supercritical fluid to produce aqueous, solute-rich solutions. This fluid has equilibrated with peridotites and is mobile in the mantle. A consequence of these subduction fluid/mantle reactions is that the mantle wedge domains overlying the slabs can be heterogeneous in composition and layered, due to the presence of reactive pyroxenite bodies. Another aspect regards the debate whether supercritical fluids or hydrous melts are effective media for trace element transport. Since both agents are saturated in silica, they will react with the silica- undersaturated mantle wedge peridotites to produce aqueous, incompatible trace element-rich residual fluids. Hence, while hydrous melt and/or supercritical fluids are important for scavenging incompatible elements from the slab, they may not be the agents that transfer the metasomatic subduction signature to the inner parts of the mantle wedges. RIASSUNTO. — Questo contributo riassume tre casi di studio che evidenziano il ruolo delle rocce ultrafemiche nei processi di riciclo delle sostanze volatili e degli elementi in traccia ai margini di placca convergenti. Le serpentiniti sono i sistemi maggiormente responsabili per il trasporto dell’acqua nelle zone di subduzione, dove liberano grandi quantità di acqua a profondità di sub-arco a causa della disidratazione del serpentino. Gli elementi incompatibili incorporati da queste rocce durante l’alterazione oceanica, vengono rilasciati nel fluido prodotto dalla disidratazione del serpentino. L’acqua rilasciata dall’antigorite può innescare la fusione parziale o la formazione di fluidi supercritici nei livelli di rocce basaltiche e meta- sedimentarie costituenti la placca subdotta. I fusi o i fluidi così prodotti incorporano quantità significative di elementi maggiori (oltre il 50 % in peso) e in traccia Subduction fluids and their interaction with the mantle wedge: a perspective from the study of high-pressure ultramafic rocks MARCO SCAMBELLURI 1 * , NADIA MALASPINA 2 and JOERG HERMANN 3 1 Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova, Italy 2 Dipartimento di Scienze della Terra, Università di Milano, Italy 3 Research School of Earth Sciences, The Australian National University, Canberra, Australia * Corresponding author, E-mail: [email protected]

Upload: others

Post on 30-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

Per. Mineral. (2007), 76, 2-3, 253-265 doi:10.2451/2007PM0028SPECIAL ISSUE: In honour of Ezio Callegari on his retirement http://go.to/permin

l PERIODICO di MINERALOGIAestablished in 1930

An International Journal ofMINERALOGY, CRYSTALLOGRAPHY, GEOCHEMISTRY,ORE DEPOSITS, PETROLOGY, VOLCANOLOGYandappliedtopicsonEnvironment,ArchaeometryandCultural Heritage

AbstrAct. — We review three case studiesemphasizing the role of ultramafic rocks in therecyclingofvolatilesandtraceelementsatconvergentplatemargins.Serpentinitesaremajorwatercarriersinsubductionzonesandtheirbreakdownliberateslarge quantities of water at sub-arc depths. Theincompatibleelementsincorporatedduringoceanicserpentinization are released into the fluid phaseproduced once antigorite dehydrates to olivine +orthopyroxene.Importantly,theantigoritebreakdowncan trigger either wet melting or production ofsupercriticalfluidsinalteredbasaltsandsediments.Theproduced fluidphases incorporate substantialamountsofincompatibleelement,initiallyresidinginthecrustalreservoirs.Thefluidphasewhichexitstheslabishighlyreactivewithrespecttotheoverlying,silica undersaturated,mantle rocks.This leads toformationofreactive(ortho)pyroxenitelayers,whichfiltertheuprisinghydrousmelt/supercriticalfluidtoproduce aqueous, solute-rich solutions.This fluidhasequilibratedwithperidotitesandismobileinthemantle.

Aconsequenceof thesesubductionfluid/mantlereactionsisthatthemantlewedgedomainsoverlyingtheslabscanbeheterogeneousincompositionandlayered,duetothepresenceofreactivepyroxenite

bodies.Anotheraspectregardsthedebatewhethersupercritical fluidsorhydrousmelts are effectivemediafortraceelementtransport.Sincebothagentsaresaturatedinsilica,theywillreactwiththesilica-undersaturatedmantlewedgeperidotitestoproduceaqueous, incompatible trace element-rich residualfluids.Hence,whilehydrousmeltand/orsupercriticalfluids are important for scavenging incompatibleelementsfromtheslab,theymaynotbetheagentsthattransferthemetasomaticsubductionsignaturetotheinnerpartsofthemantlewedges.

riAssunto.—Questocontributoriassumetrecasidistudiocheevidenzianoilruolodellerocceultrafemicheneiprocessidiriciclodellesostanzevolatiliedeglielementiintracciaaimarginidiplaccaconvergenti.Le serpentiniti sono i sistemi maggiormenteresponsabiliperiltrasportodell’acquanellezonedisubduzione,doveliberanograndiquantitàdiacquaaprofonditàdisub-arcoacausadelladisidratazionedelserpentino.Glielementiincompatibiliincorporatidaquesteroccedurantel’alterazioneoceanica,vengonorilasciatinelfluidoprodottodalladisidratazionedelserpentino. L’acqua rilasciata dall’antigorite puòinnescarelafusioneparzialeolaformazionedifluidisupercritici nei livelli di roccebasaltiche emeta-sedimentariecostituentilaplaccasubdotta.Ifusioifluidicosìprodottiincorporanoquantitàsignificativedielementimaggiori(oltreil50%inpeso)eintraccia

Subduction fluids and their interaction with the mantle wedge: a perspective from the study of high-pressure ultramafic rocks

MArco scAMbelluri 1 *, nAdiA MAlAspinA 2 and Joerg HerMAnn 3

1DipartimentoperloStudiodelTerritorioedellesueRisorse,UniversitàdiGenova,Italy2DipartimentodiScienzedellaTerra,UniversitàdiMilano,Italy

3ResearchSchoolofEarthSciences,TheAustralianNationalUniversity,Canberra,Australia

*Correspondingauthor,E-mail:[email protected]

Page 2: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

254 M. scAMbelluri, n. MAlAspinAandJ. HerMAnn

originariamentepresentinelleroccecrostali.Lafasefluida rilasciata dallo slab subdotto è altamentereattivarispettoallesoprastantiroccedimantelloecausalaformazionedilivellireattiviaortopirosseno.Questi livelli ‘filtrano’ i fluidi supercritici e/o ifusiidratiuscentidalloslabperprodurreunfluidoacquoso residuale ricco in soluto: quest’ultimo sièequilibratoconleperidotititidimantelloedèingradodimigrareall’internodelwedgedimantello.Unaconseguenzadiquestereazionifluido/mantelloècheidominiidelcuneodimantellosoprastantiloslabsonocomposizionalmenteeterogeneie‘stratificati’a causa della presenza dei livelli di pirossenitireattive.Unaltroaspettodiquestericercheriguardal’efficienzadei fluidi supercritici odei fusi idraticomeagentiditrasportodeglielementiintraccianelmantello.Entrambigliagentisonoricchiinsiliceelalororeazioneconilmantelloliberafluidiacquosimobili arricchiti in elementi incompatibili. Diconseguenza,mentreifusiidratieifluidisupercriticisonoimportantiperincorporareelementidaiserbatoicrostali nello slab, essi non sono gli agenti chetrasferisconoallepartiinternedelcuneodimantellol’improntametasomaticasubduttiva.

introduction

Subduction zone fluids play a fundamentalrole in large-scale mass transfer at convergentplate margins, as they transfer volatiles andincompatibleelementsfromcrustalreservoirsinthesubductingplatestotheoverlyingmantle.Thefluidtransportleadstometasomatismofthemantlewedgeperidotitesandtriggerspartialmeltinginregionswhereperidotitesareabovethewetsolidustemperatures. �ased on detailed geochemical�ased on detailed geochemicalstudies of arc lavas, it has been inferred thatsubductionfluidsareenrichedinlargeionlitophile(LILE)andlightrareearths(LREE)relativetothehighfieldstrengthelements(HFSE;McCullochand Gamble, 1991; �renan et al., 1994). TheThecrust-to-mantleexchangeatsubductionzonesthusimpactsonmantlere-fertilizationandisamajordrivingforcefor thechemicaldifferentiationoftheEarth.Theroleoffluidsinsuchacyclehasbeenincreasinglyemphasizedinthelastdecadeand an ongoing debate concerns their nature,compositionandeffectivemobility(ScambelluriandPhilippot, 2001;Manning, 2004;Hermannet al., 2006; Zack and John, 2007). The clear

distinctionbetweenaqueousfluidsandhydroussilicatemelts,whichcharacterizesallrocksystemsat relatively low pressures and temperatures,vanishesatultrahigh-pressureconditions,wherecompletemiscibilitybetweenwaterandsilicatemeltshasbeenexperimentallyattainedinarangeofP-Tconditionsandofbulkrockcompositions(�ureauandKeppler,1999;Stalderet al.,2001;Schmidtet al.,2004;Hermannet al.,2006;Kesselet al.,2005).Theexistenceofasecondcriticalendpoint,wherethewetsolidusterminatesandasupercriticalliquidforms,openedthedebateontheroleofsupercriticalfluidphasesasmetasomaticagentsindeepsubductionenvironments.

Studiesofnaturaleclogite-faciesrocksprovideimportantconstraintstotheunderstandingofdeepsubductionfluidsandtheirinteractionwithslabandmantlewedgerocks.Thehigh(HP)andultrahigh-pressure (UHP) rocks exposed in orogenicterrainsprovideindependentconstraintsondeepmetamorphisminslabs,andrepresentexceptionalnaturallaboratoriesonsubduction-zoneprocessesinadepthwindowbetween50and200kilometers.Someultradeepcoesite-,diamond-andmajorite-bearingrockspreserveprimarysolidmultiphaseinclusions(VanRoermundet al.,2002;Stoeckertet al.,2001;Ferrandoet al.,2005;Malaspinaet al.,2006;Scambelluriet al.,2007),whichhavebeen interpreted in somecaseas remnantsofasupercriticalfluidphase.

Ultramafic rocks play a fundamental role involatileandelementrecyclingatconvergentplatemargins.Fieldstudieshaveshownthatserpentiniteisstableateclogite-faciesconditionsandhencecantransportwaterintothemantle(Scambelluriet al.,1995).Experimentsdemonstratetheprolongedstabilityofantigoriteserpentineto200kmdepthandidentifyhydrousultramaficsystemsasexceptionalwatercarriersintotheEarth’smantle(UlmerandTrommsdorff,1995;WunderandSchreyer,1997;�romileyandPawley,2003).Thesefindingshaveimportantconsequencesonsubductiondynamicsbecause serpentinites provide a particularlyfertilewaterreservoirforarcmagmatism(Ulmerand Trommsdorff, 1995), and because theirdehydrationcangenerateintermediate-depth(50-200Km)earthquakes(Peacock,2001;Dobsonet al.,2002).Serpentinitesalsoactaslowdensityandlowviscositymediaenablingtheexhumationofhighandultrahighpressurerocks(Hermannet al.,

Page 3: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

Subduction fluids and their interaction with the mantle wedge: a perspective from the study ... 255

2000;Guillotet al.,2001;Rupkeet al.,2004).Themantledomainsoverlyingthesubductingplatesareotherenvironmentswhereultramaficrocksplayakeyrole,asthefluid/peridotiteinteractionsattheslab/mantleinterfacecancontrolthecompositionoffluids,whicharetransferredtotheinnerpartsofthemantlewedges.However, the understandingHowever,theunderstandingofmechanismsrulingtheslab-to-mantleelementtransferisessentiallyhamperedbythepaucityofsuitable rock samples recording suchexchangereactions.Moststudiesofsupra-subductionzoneperidotitesinvestigatedeitherfore-arcxenoliths,orxenolithssampledatrelativelyshallowmantlelevels,wellabovearc-magmasources(Vidalet al..,1989;Mauryet al..,1992;Lauroraet al..,2001).InformationondeepmetasomatismofthemantlewedgecanbegainedbystudiesofHPandUHPterrains,where felsic rockshostmetasomatizedperidotites (�rueckner, 1998; Rampone andMorten,2001;Paquinet al..,2004;Scambelluriet al..,2006;Liouet al..,2004).Suchassociationsenable to study the element exchange betweencrustalandmantlerocksatpressurescorrespondingtothesub-arcdepthofthesubductedslab.

Toaddresstheroleofultramaficrocksin the fluid and element cycling in subductionzones,herewereviewthree field-basedstudiesconcerningfluidreleaseintheslabandpossiblefluid-rockinteractionsataslab-mantleinterface.Inthefirstpartofthispaperwediscusstheserpentinedehydrationreactionintheslab,anditspossibleconsequences in terms of interaction of de-serpentinizationfluidswithsedimentaryorgraniticlayersintheslab.Inthesecondpartwediscussthecaseofultrahigh-pressuregarnetorthopyroxenitesas proxies for the reaction between mantleperidotiteswithpercolating silicate-rich agentsreleasedfromfelsicand/ormetasedimentaryslabcomponents.

Fluid production in subducted ultrAMAFic rocks

Serpentinitesarekeylithologiesintheoverallwatercycleatoceanicandsubductionsettings.Severalmodelsassumeastratifiedstructureoftheslabs(e.g.PoliandSchmidt,2002),withalowerultramaficlayer,anoverlyingmaficcrustandanuppermostsedimentarylayer.Thisstructurecanbe

inheritedfromapreviousoceaniclithosphere,asdocumentedinpresent-dayfastspreadingridges.Insuchsettings,serpentinizationoftheoceanicmantleoccursatouterrises,wherefracturesinthebendingplatesenhanceseawaterinfiltrationatanddeepmantleserpentinization(Raneroet al.,2003;Peacock,2001).Alternatively,partofthelayeredslabarchitecturemaybeerasedbytectonicerosionand/orsubductiondeformation,e.g.boudinageofcompetentslablayersliketheoceaniccrust.Also,thelithosphereatslowandultraslowspreadingridgesisnotlayered,butischaracterizedbythevast exposure of serpentinized oceanicmantleattheseafloor(Cannatet al.,1995;Dicket al.,2003).Duringsubductionofthistypeofoceaniclithosphere,serpentinitesmaybeatthetopoftheslab.

Despite the considerable progress inunderstanding hydrous phase relations insubductedserpentinites,littleisyetknownabouttheirgeochemicalfeatures,particularlyaboutthetraceelementfingerprintsofthefluidsreleased.The only natural cases of analyzed fluidsproducedduringpartialtocompletebreakdownof antigorite at HP to UHP concern the Erro-Tobbio serpentinites (Western Alps) and thechloriteharzburgites from the�eticCordillera(SouthernSpain)(Scambelluriet al.,1997;2001;2004a; 2004b;Trommsdorffet al., 1998).Thehigh-pressureserpentinitecyclepasses throughtwodehydrationsteps(Fig.1):aminor“brucite-out” reaction leading to the firstappearanceofmetamorphicolivine+antigorite+fluid,andamajorfluidrelease(antigorite-out)relatedtofullantigoritedehydrationtoolivine+orthopyroxene+ fluid.The first reaction is recordedbymanyAlpineand�eticHPserpentinites(e.g.Liguria:Cimminoet al.,1979;Scambelluriet al.,1995;Zermatt:Liet al.,2004;Monviso:Lombardoet al.,1978;NevadoFilabride:Trommsdorffet al.,1998; Puga et al., 1999). In all these settingsthe serpentinites are associated with eclogites(Messigaet al.,1995;Messigaet al.1999;Pugaet al.,1999)anddisplayastableassemblageofolivine+antigorite+Ti-clinohumite+diopside+chlorite,crystallizedat500-650°Cand2-2.5GPa.The“brucite-out”reaction(Fig.1)causesalossofabout2wt%bulkwaterfromtheinitialserpentinites.�estrecordsofthisaqueousfluidareprimary fluid inclusionshostedbyolivine,

Page 4: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

256 M. scAMbelluri, n. MAlAspinAandJ. HerMAnn

diopsideandTi-clinohumitecrystallizedinveinsintheErro-Tobbioserpentinites(Fig.2a,b).Theinclusionsgenerallydisplayasaltdaughtercrystal(Fig. 2a), locally associatedwith ilmenite andmagnetite:theirsalinitycanbeashighas50wt%NaClequivandthesaltcompositioncorrespondstoamixtureof(Na,K)ClandMgCl2(Scambelluriet al.,1997).Suchacompositionwastakenasevidencefordeeprecyclingofoceanicchlorineandalkaliesinthefluidphase(Scambelluriet al.,1997).Lower(present-day)averagesalinityof10wt%NaClequivalents pertain to primary fluid inclusionspresentinolivineanddiopsideinthe�etichigh-pressureserpentinites(Scambelluriet al.,2001a).Thefirstdehydrationfluidsreleasedduringtheserpentinitesubductioncyclethuscorrespondtoaqueoussolutionswhichconcentratehighamountsofhighlyincompatiblehalogenspecies.Thehighsalinityofsuchinclusionsmayreflectchangesinthecompositionofpristinefluidsdrivenbywater-consumingprocesses, suchashydrousmineralcrystallizationinveins,orhydrationofrelict(dry)mantleminerals(Scambelluriet al.,1997).

Theantigoritebreakdownisthesecondandthemostimportantdehydrationreactioninsubductedserpentinites(Fig.1),leadingtoabulklossof6.5-

12wt%water.Thisreaction is recordedby themetamorphicharzburgitesofthe�eticCordillera,a unique rock type (Fig. 2c) showing spinifextexturedolivine+orthopyroxene(Trommsdorffet al.,1998),aswellascoarsegranoblasticolivine,orthopyroxene,chlorite+Ti-clinohumite.Suchmetamorphicharzburgitescrystallizedat650-700°Cand2GPa(Trommsdorffet al.,1998;Pugaet al.,1999;LopezSanchez-Vizcainoet al.2005)(Fig.1,Field3);however,thisassemblagecanalsoformatUHPconditions(UlmerandTrommsdorff,1995).Olivineandorthopyroxeneintheserockscontainprimaryfluidinclusionsfilledwithsoliddaughter phases (olivine, magnetite-ilmenite,chlorite,apatite)andaninterstitialaqueousliquid.Theseinclusionsareremnantsofthefluidphasereleasedat theantigoritebreakdown.Aninitialsalinity range of 0.4 – 2 wt% NaClequiv wasestimated for this fluid from thebulk-rocknetdifferenceofwaterandchlorinebetweenantigoriteserpentinitesandharzburgites(Scambelluriet al.,2004a).ThetraceelementcompositionsoftheseinclusionsweremeasuredbyLaserAblation(LA)ICPMS,usingthe0.4–2wt%NaClequivestimatesof the initial fluid salinity as internal standard(Scambelluriet al.,2004a,b).ThespiderdiagramofFig.3showsthetraceelementcompositionsofinclusionsnormalizedtotheprimitivemantle.Thefluidinclusionsdisplayappreciableincompatibleelementcontents,thehighestamountspertainingto the light elements and the alkalies. In theinclusions,severalelements(e.g.�oron)displaylargevariations in theabsoluteconcentrations,whichmay spanover oneorder ofmagnitude.Allfluidinclusionsdisplaycomparablepatterns,whicharesystematicallyenrichedinLILE(Rb,�a,Cs,Sr),�andLiwithrespecttotheHFSE(Ti,Nb).Thesefeaturesaresimilartowhatisobservedin arc volcanics (Fig. 3) and are in excellentagreementwithexperimentalresults.TenthoreyandHermann(2004)analyzedfluidcompositionsthat were experimentally produced from thedehydrationofserpentinitesathighpressure.Theirstudyshowedthatincompatibleelements,whichcanbetakenupduringserpentinization,arefullyreleasedduringthebreakdownofantigorite.

Fig. 1 – Pressure-temperature diagram showing theevolutionarypathoftheoceanicmantleatthetransitionfromoceanicserpentinites(field1),tohigh-pressureantigoriteserpentinites(field2),toolivine-orthopyroxenerocks(field3).RedrawnafterHermannet al.(2000).

Page 5: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

Subduction fluids and their interaction with the mantle wedge: a perspective from the study ... 257

interAction oF Fluids witH subducted sediMents

Dependingon thestructureof thesubductinglithosphere,theserpentinebreakdownfluidsmayeither(i)direcly infiltrate themantlewedge,or(ii)reactwithcrustalrocksofthesubductedslab.Thefirstcaseoccursiftheslabisnotlayered(i.e.slabserpentinitesareclosetotheinterfacewiththemantlewedge)or if the fluid ischannelled.Thisleadstoadirectinteractionoftheantigorite-breakdownfluidswiththemantle,whichwouldacquirethesignatureshowninFig.3.Thesecond

caseoccursifslabsarelayeredandcrustalrocksareabovetheserpentinizedoceanicmantle,oraremixedwithserpentinitematerialinmélangezonesatthetopoftheslab(Spandleret al.,2007).Figure4portraysthewetsoliduscurvesforthevariousslabcomponents(Hermannet al.,2006;Kesselet al.,2006)withtheaimtoexplaintheinteractionbetweenserpentinitefluidsandcrustalslabrocks.ThewetperidotitesolidusreportedinFig.4isbyStalderet al.(2001),whodeterminedthesecondcriticalendpointforthissystem.AlsoreportedinFig.4aretheboxesreferringtothecrystallizationconditionsoftheHPErro-Tobbioserpentinites,of

Fig.2 – A: primary salt-bearing fluid inclusions in diopside from an olivine vein, Erro-Tobbio Unit (Scambelluri–A: primary salt-bearing fluid inclusions in diopside from an olivine vein, Erro-Tobbio Unit (ScambelluriA:primarysalt-bearingfluidinclusionsindiopsidefromanolivinevein,Erro-TobbioUnit(Scambelluriet al.,1997).�:olivine,magnetite,diopsideandTi-clinohumiteveininhigh-pressureserpentinite(ErroTobbioUnit,WesternAlps,Italy).C:Chloriteharzburgitewithspinifex-liketexture.Inlightgreyisorthopyroxeneinbrowngreyisolivine.(Cerro del Almirez,(CerrodelAlmirez,�èticCordillera,Spain;Trommsdorffet al.,1998).D: primary fluid inclusions rich of solid phases (magnetite, olivineD:primaryfluidinclusionsrichofsolidphases(magnetite,olivinechlorite)andwithaquoeusliquid,inolivinefromthechloriteharzburgites(Scambelluriet al.,2001;2004a).

Page 6: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

258 M. scAMbelluri, n. MAlAspinAandJ. HerMAnn

theUHPCignanaophiolites,andoftheHP�èticharzburgites.Allpeakconditionsareclosetothewet solidus and to the secondcritical endpointof pelitic and granitic systems.�ecause of theinverted isotherms in subduction zones, fluidsreleasedat650-700°Cduringantigoritebreakdownwillheatupastheyrise.Asaconsequence,thesetheseuprisingfluidswilllikelytriggertheproductionofmeltsorsupercriticalliquidsinthesedimentarylayers at 750–800°C (Hermann and Green,2001).Subductedsedimentsandalteredoceaniccrust are themajorhostsof incompatible traceelements in thesubductedcrust (TenthoreyandHermann,2004).ThegreatmajorityofLILEishostedinphengiteintheserocktypes(Hermann,2002;Spandleret al.., 2003).�ecausephengiteisstable to temperaturesof950-1000°Catsub-arcpressures(Schmidtet al..2004;HermannandGreen,2001), fluid-absentmeltingofphengite-bearingmetasedimentsandalteredoceaniccrustishardlyachievedatsub-arcconditionsanditisnotregardedtobeaviableprocesstoproduceLILEenrichedslabfluids.Incontrast,inthepresenceofanexternally-derivedfluid,sedimentsandalteredoceaniccrustwillundergofluid-presentmelting

and LILE will preferentially partition into thefluidphase(HermannandGreen,2001;Kesselet al..,2005).Thisdemonstratesthatfluidsliberatedfromsubductedultramaficrocksplayakeyroleinscavengingtraceelementsfromfertilesubductionlithologiessuchasalteredbasaltsandsediments.

interAction oF subduction zone Fluids witH tHe MAntle wedge

Understandingtheinteractionofhydrousmelts/supercriticalfluidswiththemantlewedgeiscrucialtodefinethevolatileandtraceelementrecyclinginsubductionzones.Thegarnetorthopyroxenitesfrom the Maowu Ultramafic Complex (DabieShan,China)areexcellentproxiestounraveltheslab-to-mantleelementtransferatUHPconditions.Thisbodyconsistsoflayeredmeta-harzburgites,garnetorthopyroxenitesandwebsteritesassociatedwith coesite-eclogites. Pyroxenites are locallyboundedbyphlogopite-richlayers,andarehostedbygarnet-coesite-bearinggneisses.Inthisterrane,gneisses andultramafic rocks share a commonUHPhistorywithpeakconditionsof4-6GPaand

Fig.3–Traceelementcompositionsofinclusionsinolivinefromthechloriteharzburgites(Scambelluriet al.,2004b).

Page 7: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

Subduction fluids and their interaction with the mantle wedge: a perspective from the study ... 259

700-750°C (Liou and Zhang, 1998).Althoughthese rocks are not direct samples of amantlewedge,texturalandgeochemicaldatademonstratethat they represent former garnet–peridotitesmetasomatizedbyacrust-derivedSiO2-richfluidphaseat~4.0GPaand~750°C(Malaspinaet al.,2006).Thepetrographicobservationsindicatethatthegarnetorthopyroxenitespreservearelictparagenesisconsistingofolivine+orthopyroxene1+ garnet1 ± clinopyroxene ± Ti-clinohumiteovergrown by coarse-grained orthopyroxene2(Fig. 5a, b) associated with porphyroblasticinclusion-richgarnet2(Fig.5c).Orthopyroxene2replacesearlierolivine(Fig.5b)andcanincludefine-grained garnet1 and orthopyroxene1. Thisindicatesthatformermantlephases(i.e.olivine,garnet1andorthopyroxene1)werereplacedbyaSi-enrichedphase.Themajorandtraceelementcompositionsofwhole-rocksandmineralphases

supportthetexturalevidencethattheprotolithofthesepyroxeniteswasaperidotite.TheydisplayhighMg#andNiconcentrationsandchondrite-normalizedREEpatternsresemblingtheonesofadepletedmantle(Malaspinaet al.,2006).Withrespect to the inferred harzburgite protholith,however, the Maowu orthopyroxenites areenriched in SiO2 andAl2O3. LREE enrichmentcharacterizesthebulkrocksaswellasthereplaciveorthopyroxene2. Such major and trace elementcompositionsofthegarnet–orthopyroxeniteshavebeenattributedbyMalaspinaet al.(2006)totheinfiltrationofametasomaticmelt-likefluidphaserich inSiO2,Al2O3, and incompatible elementssourcedfromthecountry-rockgneissesatpeakUHP conditions. Reaction of such a SiO2-richhydrousfluidphasewiththeperidotiteresultsinaSiO2-andAl2O3-lossfromthefluidphasetoformthegarnetorthopyroxenites.Ontheotherhand,partof theH2Ocomponentof themetasomaticagentcannotbeaccomodatedbythenewlyformedanhydrousphasesOpx2andGrt2,andevolvesintoa residualaqueous fluid.This free fluid is thenoccasionally trapped by the growing Grt2 intoprimarypolyphaseinclusions(Fig.5c,d,e,f).

The polyphase inclusions in the Maowuorthopyroxenites thereforeprovide informationonthenatureandcompositionoftheresidualfluidproducedafterinteractionoftheperidotitewiththemelt-likefluidphase.Theydisplayregularnegativecrystalshapes(Fig.5c,d,e,f)andcontainasolidassemblage(oxide+amphibole+chlorite±talc±mica±apatite)showingconstantvolumeratios,tosuggestthattheyrepresentdaughterphasesthatformed from a compositionally homogeneousfluidphaseprimarilytrappedbytheUHPgarnet.Toconstrainthenatureofsuchafluidphasetheinclusionshavebeenre-homogenizedinapistoncylinderexperimentatP=3.5GPaandT=900°C(Malaspinaet al.,2006).There-homogenizationexperimentproducedahydrousporousquench,indicatingthattheUHPfluidintheinclusionswasasolute-richaqueousfluidratherthanahydrousmelt. The composition of this fluid has beeninvestigatedwithLA-ICP-MSanalysesperformedonthebulkofbothpolyphaseandexperimentallyre-homogenizedinclusions,followingthemethoddevelopedbyHeinrichet al.(2003).Theresultsgive a reliable estimate of the trace elementcompositionofthetrappedresidualfluid.Asshown

Fig.4–Wetsoliduscurvesforultramafic,mafic,peliticandgraniticsystems,showingthesecondcriticalendpoints.Theendpoint forultramaficsystems liesatmuchhigherpressures(10GPa).�oxesrefertothepeakP-TconditionsfordifferentserpentiniteandcrustalHPandUHPunitsoftheAlpsandofthe�eticCordillera.RedrawnandmodifiedafterHermannet al.(2006).

Page 8: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

260 M. scAMbelluri, n. MAlAspinAandJ. HerMAnn

Fig.

5–

Mai

nte

xtur

esin

orth

opyr

oxen

itesf

rom

Mao

wu,

Chi

na.A

:coa

rse

repl

aciv

eor

thop

yrox

ene

(Opx

–M

ain

text

ures

inor

thop

yrox

enite

sfro

mM

aow

u,C

hina

.A:c

oars

ere

plac

ive

orth

opyr

oxen

e(O

pxM

ain

text

ures

ino

rthop

yrox

enite

sfro

mM

aow

u,C

hina

.A:c

oars

ere

plac

ive

orth

opyr

oxen

e(O

px 2)

enc

losi

ngfo

rmer

gar

net(

Grt)

and

orth

opyr

oxen

e(O

px1).

:ble

bso

foliv

ine

(Ol)

repl

aced

by

Opx

2.C

:coa

rse

garn

etp

orph

yrob

last

(Grt 2)

with

prim

ary

solid

mul

tipha

sein

clus

ions

att

hec

ore.

D,E

,F:e

nlar

gem

ents

ofs

olid

m

ultip

hase

incl

usio

nsin

gar

netp

orph

yrob

last

s,sh

owin

gth

eco

nsta

ncy

ofv

olum

epr

opor

tions

ofm

iner

alin

fillin

gs(D

,E)a

ndth

ety

peo

fmin

eral

s(c

hlor

ite:C

hl;K

-am

phib

ole:

K-a

mp;

am

phib

ole:

Am

p;p

yrite

:Py)

insi

deth

ein

clus

ions

(F).

Afte

rMal

aspi

naA

fterM

alas

pina

et a

l.(2

006)

.

Page 9: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

Subduction fluids and their interaction with the mantle wedge: a perspective from the study ... 261

in Fig. 6, both polyphase and re-homogenizedinclusions display very high concentrations ofincompatibleandfluid-mobiletraceelements,withpositivespikesinCs,�a,Pb,Sr,andahighU–Thratios. These chemical characteristics provideevidencethatthemetasomaticagentleadingtotheformationof theorthopyroxeniteshadacrustalaffinity.Theresidualaqueousfluidretainedmostoftheincompatibleelementsthatwerepresentinthereactinghydrous-melt.Infact,thewhole-rockcomposition,representedbythewhitediamondsin Fig. 6, shows relative enrichments only inLREE,whereasmostofthefluid-mobileelementsarebelowthedetectionlimit.Thereasonforthisobservation is that the rock-forming minerals– orthopyroxene and garnet – are not able toincorporatetheseincompatibleelements.ThelowLILEcontentsinthewhole-rocksimplythatsuchLILE-enrichedfluid largelyescaped thesystemandwasonlyoccasionally trappedingarnet2 toformthepolyphaseinclusions.Thisfluidisabletomigrateupintothemantlewhereitmayenhancecrystallizationofmetasomaticamphibole(below3GPa;FumagalliandPoli,2005)and/orphlogopite,toultimatelyreachthelocusofpartialmeltinginthemantlewedge.

discussion And conclusions

The presented case studies highlight theimportanceofultramafic rocks in the recyclingof volatiles and trace elements at convergentplatemargins.Serpentinitesarethemaincarriers

ofwaterinsubductionzonesandthebreakdownofantigoriteliberateslargequantitiesofwateratsub-arcdepths.Moreover,incompatibleelementsincorporated during oceanic serpentinizationwill be released into the HP-UHP fluid phaseonceantigoritebreaksdown.Probablythemostimportanteffectonthetraceelementrecyclinginsubductionzonesisthatfluidsderivedfromtheantigoritebreakdownwilltriggerwetmeltinginalteredbasaltsandsediments.Theproducedmelts/supercriticalfluidsincorporatesubstantialamountsofincompatibleelements,intiallyresidinginthecrustalreservoirs.Fig.7describesapossibledeepsubductionenvironment,wheretheaqueousfluidsreleasedbytheserpentinitesinfiltrateanoverlyingmeta-sedimentarylayertoenhanceeitheritspartialmeltingortheproductionofsilicate-richfluids.Thefluidphasesthatexittheslabwillbehighlyreactive to the surrounding mantle peridotites.This will produce the orthopyroxenite layersdescribedintheMaowuexamplesandfiltertheuprisinghydrousmelt-supercritical fluidphase.Thefluiduprisingfromsuchfilteringzonewillbeanaqueous,solute-richsolutionwithcompositioncomparablewiththeoneportrayedinFig.6.Thisfluidequilibratedwithmantlerocksthroughthefilteringprocessandismobileinthemantle.

A first implication of our case studies thusconcerns the mantle wedges above subductingslabs,whichcanbeheterogeneousincompositionand layered, due to the presence of reactivepyroxenitebodies.Si-enrichmentinthemantlewasclaimedbypreviousstudiesofsupra-subductionmantledomainsaffectedbyre-fertilizationand/orformationofreactivepyroxenites(Kelemenet al.,1998;YaxleyandGreen,1998;Garridoand�odinier,1999;Grooveet al.,2005).Also,Sobolevet al. (2005) proposed that interaction between(2005)proposed that interactionbetweenrecycled crust andmantle peridotites producespyroxenitesinthedeepmantle,andmeltingofsuchamantlemightcontributetothegenesisofoceanislandbasalts.Herewehavedetailedafeasiblemechanismbywhichthesupra-subductionmantlereactswithslab-derivedsilicateagentstoproducelargezoneswherepyroxenitesdominate.

Oneinterestingaspectofthisworkisthatthedebatewhethertraceelementsaretransportedinsupercriticalfluidsorhydrousmeltsisafterallnotthatessential.�ecauseboththeseagentsaresaturatedinsilica,theywillinevitablyreactwith

Fig.6 – Trace element compositions of multiphase inclusions–Trace element compositions of multiphase inclusionsTraceelementcompositionsofmultiphaseinclusionsfromMaowuorthopyroxenitesandofthehostrocks.AfterAfterMalaspinaet al.(2006).

Page 10: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

262 M. scAMbelluri, n. MAlAspinAandJ. HerMAnn

thesilica-undersaturatedmantlewedgeasoutlinedintheMaowucasestudy.Duringthisreactionthefluidphasewillbetransformed,asSiandAlareextractedfromthemelt/supercriticalfluid,leavinganaqueous,incompatibletraceelementenrichedresidualfluid.Hence,whilehydrousmeltand/orsupercriticalfluidsareimportantforscavengingincompatible elements from the slab, they areunlikelytheagentsthattransportthemetasomatictraceelementsignature to thesourceof thearcmagmas.Onlyinthecasethatthereleasedfluidsarechannelledinpyroxenitedikesinthemantlewedge, the reactionwithmantle olivinewouldbe inhibited and the slab-derivedSi- and traceelement-richliquidsmightmigrateintooverlyinghotterregionsofthemantlewedge.

AcknowledgeMents

It isagreatpleasure forus toparticipate in theSpecialVolumeinhonourofProfessorEzioCallegari,andweacknowledgeR.CompagnoniandD.Castellifor the invitation to write this contribution. M.Scambelluri,inparticular,hasbeenstudentofProf.

Callegari duringhisUniversity studies inTorino,wherehemettheenthusiasmandpassionofEziointeachingpetrographyintheclassandinthefield.TheauthorsthankO.MüntenerandA.Zanettifortheirconstructivereviews.Thisworkhasbeenfinanciallysupportedby the ItalianMIUR, theUniversityofGenovaandbytheAustralianResearchCouncil.

REFERENCES

brenAn J.M., sHAw H.F., ryerson F.J. and pHinney d.l.(1995)-Mineral–aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim.Cosmochim.Acta,59,3331–3350

bureAu H. and keppler H. (1999) - Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications.EarthPlanet.Sci.Lett.,165,187–196.

broMiley G.D.andpAwleyA.(2003)-The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): the effects of

Fig.7 – Model for fluid evolution. See the text for explanation. Redrawn after Scambelluri–Model for fluid evolution. See the text for explanation. Redrawn after ScambelluriModelforfluidevolution.Seethetextforexplanation.Redrawn after ScambelluriRedrawnafterScambelluriet al.(2006)

Page 11: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

Subduction fluids and their interaction with the mantle wedge: a perspective from the study ... 263

Al3+ substitution on high-pressure stability.Am.Am.Mineral.,88,99-108.

bruecknerH.K.(1998)-A sinking intrusion model for the introduction of garnet-bearing peridotites into continent collision orogens. Geology, 26,631–634.

li X.p., zHAng l., wei c., Ai y.andcHenJ.(2007)-Petrology of rodingite derived from eclogite in western Tianshan, China. J.Metam.Geol., 25,363–382.

cAnnAt M., Mével c., MAiA M., deplus c., durAnd c., gente p., Agrinier p., belAroucHi A., dubuisson g., HuMler e.andreynoldsJ(1995)-Thin crust, ultramafic exposures and rugged faulting patterns at the Mid-Atlantic Ridge (22°-24°N). Geology,23,49-52.

ciMMino F., MessigA b.andpiccArdo g.b. (1979)Ti-clinohumite-bearing assemblages within antigoritic serpentinites of the Voltri Massif (Western Liguria): inferences on the geodynamic evolution of piemontese ultramafic sections.Ofioliti,4,97-120

dick H.J.b., lin J. andscHoutenH. (2003) -An ultraslow-spreading class of ocean ridge.Nature,426,405-412.

dobson d.p., MereditH p.g.andboon s.A. (2002)- Simulation of subduction zone seismicity by dehydration of serpentine.Science,Science,298,1407-1410

FerrAndo s., Frezzotti M.l., dAllAi l. andcoMpAgnoni R. (2005) - Multiphase solid inclusions in UHP rocks (Su-Lu, China): remnants of supercritical silicate-rich aqueous fluids released during continental subduction.Chem.Geol.,223,68–81.

FuMAgAlliP.and poliS. (2005) - Experimentally determined phase relations in hydrous peridotites to 6·5 gpa and their consequences on the dynamics of subduction zones. J.Petrol.,46,555-578.

gArrido c.J.andbodinier J.L. (1999) -Diversity of mafic rocks in the Ronda peridotite: Evidence for pervasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere.J.Petrol.,40,729-754

grove t.l., bAker M.b., price r.c., pArMAn s.w., elkins-tAnton l.t., cHAtterJee n. and Müntener o.(2005)-Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts.Contrib. Mineral. Petrol.,Contrib.Mineral.Petrol.,Petrol.,148,542–565.

guillot s., HAttori k. H., de sigoyer J., nägler t.andAuzende A.l.(2001)-Evidence of hydration of the mantle wedge and its role in the exhumation

of eclogites.EarthandPlanet.Sci.Lett.,193,115-127.

HeinricH c.A., pettke t., HAlter w.e., Aigner-torres M., AudétAt A., güntHer d., HAttendorF b., bleiner d., guillong M.andHornI.(2003)-Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively - coupled – plasma mass spectrometry.Geochim.Cosmochim.Acta,67,3473–3497.

HerMAnn J., Müntener o. and scAMbelluri M.(2000)-The importance of serpentinite mylonites for subduction and exhumation of oceanic crust.Tetctonophysics,327,225-238.

HerMAnnJ.andgreen d.H. (2001)-Experimental constraints on high pressure melting in subducted crust.EarthPlanet.Sci.Lett.,188,149-168

HerMAnnJ.(2002)-Allanite: Thorium and light rare earth element carrier in subducted crust.Chem.Geol.,192,289-306

HerMAnnJ.,spAndlerC.,HAckA.andkorsAkovA.V.(2006)-Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zone. Lithos,92,399-417.

keleMen p.b., HArt s.r.andbernsteinS.(1998)-Silica enrichment in the continental upper mantle via melt/rock reaction.Earth.Planet.Sci.Lett.,164,387-406

kessel r., scHMidt M.w., ulMer p. andpettke t. (2005)-Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth.Nature,437,724–727.

lAurorA A., MAzzuccHelli M., rivAlenti g., vAnnucci r., zAnetti A., bArbieri M.A. andcingolAni C.A. (2001) - Metasomatism andmeltingincarbonatedperidotitexenolithsfromthemantlewedge:theGobernadorGregorescase(SouthernPatagonia).J.Petrol.,42,69–87.

li X.p., M. rAHnandk. bucHer(2004)-Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution.J.Metam.Geol.,22,159-177

liou J.g., tsuJiMori t., zHAng r.y., kAtAyAMA i.andMAruyAMA s.(2004)-Global UHP Metamorphism and Continental Subduction/Collision: the Himalayan Model,Int.Geol. Rev.,Geol.Rev.,46,1–27.

liouJ.G.andzHAngR.Y.(1998)-Petrogenesis of an ultrahigh-pressure garnet-bearing ultramafic body from Maowu, Dabie Mountains, east-central China,Isl.Arc.,7,115–134.

loMbArdo b., nervo r., coMpAgnoni r., MessigA b., kienAst J.r., Mevel c., FiorA l., piccArdo g.b.andlAnzAR.(1978)-Osservazioni preliminari sulle ofioliti del Monviso (Alpi Occidentali).Rend.Rend.

Page 12: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

264 M. scAMbelluri, n. MAlAspinAandJ. HerMAnn

Soc.It.Mineral.Petrol.,34,253-305.lopez sAncHez-vizcAino v., troMMsdorFF v., goMez-

pugnAire M.t., gArrido c.J., Müntener o.andconnolly J.A.d. (2005)-Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain).Contrib.Contrib.Mineral.Petrol.,Petrol.,149,627-646.

MAlAspinA n., HerMAnn J, scAMbelluri M. andcoMpAgnoni r.(2006)-Polyphase inclusions in garnet–orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite.EarthPlanet.Sci.Lett.,249,173–187.

MAnning C.E.(2004)-The chemistry of subduction zone fluids.EarthPlanet.Sci.Lett.,223,1–16.

MAury r.c., deFAnt M.J.andJoron J.L.(1992)-Metasomatism of the subarc mantle inferred from trace elements in Philippine xenoliths.Nature,Nature,360,661–663.

Mc cullocHMTandgAMbleAJ(1991)-Geochemical and geodynamical constraints on subduction zone magmatism.EarthPlanetSciLett.,102,358–374

MessigA b., scAMbelluri M. and piccArdo G�(1995)-Formation and breakdown of chloritoid-omphacite high-pressure assemblages in mafic systems: evidence from the Erro-Tobbio eclogitic metagabbros (Ligurian Western Alps). Eur. J.Mineral.,7,1149-1167.

MessigA b., kienAst J.r., rebAy g., riccArdi M.p.andtribuzio R.(1999)-Cr-rich magnesio chloritoid eclogites from the Monviso ophiolites (Western Alps, Italy).J. Metam. Geol.,J.Metam.Geol.,17,287–299.

pAquin J., AltHerr r.andludwig T.(2004)-Li–Be–B systematics in the ultrahigh-pressure garnet peridotite from Alpe Arami (Central Swiss Alps): implications for slab-to-mantle wedge transfer.EarthPlanetSciLett.,218,507–519.

peAcockS.(2001)-Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle?Geology,29,299-302

poli S. andscHiMidt M.W. (2002) -Petrologyofsubductedslabs.Ann.Rev.EarthPlanet.Sci.,30,207-235.

pugA e., nieto J.M., dìAz de Federico A., bodinier J.l. and Morten L. (1999) - Petrology and metamorpgic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association (Mulhacén Complex, SE Spain): Evidence of eo-Alpine subduction following and ocean-floor metasomatic process.Lithos,49,23-56.

rAMpone e. and Morten L. (2001) - Records of

crustal metasomatism in the garnet peridotites of the Ulten Zone (Upper Austroalpine, Eastern Alps).J.Petrol.,42,207–219

rAnero c. r., pHipps MorgAn J., McintosH k.andreicHert C.(2003)-Bending-related faulting and mantle serpentinization at the Middle America trench.Nature,425,367–373

vAn roerMund H.l.M., cArswell d.A., drury M.r.andHeiJboert T.C.(2002)-Microdiamonds in a megacrystic garnet websterite pod from Bardane on the island of Fjortoft, western Norway: evidence for diamond formation in mantle rocks during deep continental subduction.Geology,30,959–962.

rupke l.H., pHipps-MorgAn J., Hort M. andconnolly J.A.D. (2004) - Serpentine and the subduction zone water cycle.EarthPlanet.Sci.Lett.,223,17–34

scAMbelluri M., Müntener o., HerMAnn J., piccArdo g.b. andtroMMsdorFF V. (1995) -Subduction of water into the mantle: History of an alpine peridotite.Geology,Geology,23,459-462

scAMbelluriM.andpHilippot P.(2001)-Deep fluids in subduction zones.Lithos,Lithos,55,213-227.

scAMbelluri M., piccArdo g.b., pHilippot p., robbiAno A. and negretti L. (1997) - High salinity fluid inclusions formed from recycled seawater in deeply subducted alpine serpentinite.EarthPlanet.Sci.Lett.,148,485-500.

scAMbelluri M., bottAzzi P., troMMsdoFF v., vAnnucci r., HerMAnn J., gòMez-pugnAire M.t. and lòpez-sàncHez vizcAino V. (2001a)- Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle.EarthPlanet.Sci. LettSci.Lett.,192,457-470.

scAMbelluri M., rAMpone E. and piccArdo G.�.(2001b)-Fluid and element cycling in subducted serpentinite: A trace element study of the Erro-Tobbio high-pressure ultramafites (Western Alps, NW Italy).J.Petrol.,42,55-67.

scAMbelluriM.,MüntenerO.,ottolini L.,pettke T.andvAnnucci R.(2004a)-The variability of B, Cl and Li in the subducted oceanic mantle and in the antigorite-breakdown fluids: implications for fluid processes and light element recycling.EarthPlanet.Sci. Lett.,Sci.Lett.,222,217-234

scAMbelluriM.,Fiebig J., MAlAspinA n., Muentener O.andpettke T.(2004b)-Serpentinite subduction: Implications for fluid processes and trace-element recycling.Int. Geol. Rev.,Int.Geol.Rev.,46,595-613.

scAMbelluri M., HerMAnn J., Morten L. andrAMpone E.(2006)-Melt- versus fluid-induced metasomatism in spinel to garnet wedge

Page 13: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The

Subduction fluids and their interaction with the mantle wedge: a perspective from the study ... 265

peridotites (Ulten Zone, Eastern Italian Alps): clues from trace element and Li abundances.Contrib.Mineral.Petrol,Petrol,151,372–394.

scAMbelluri M., pettke T. and vAn roerMund H.L.M.(2007)-Majoritic garnets monitor deep subduction fluid flow and mantle dynamics.Geology,inpress.

scHiMidt M.w., vielzeuF d. and AuzAnneAu E.(2004) -Melting and dissolution of subducting crust at high pressures: the key role of white mica.EarthPlanet.Sci.Lett.,228,65–84.

spAndler c., HerMAnn J., Arculus R.andMAvrogenes J.(2003) - Redistribution of Trace Elements during Prograde Metamorphism from Lawsonite Blueschist to Eclogite Facies; Implications for Deep Subduction-zone Processes. Contrib.Contrib.Mineral.Petrol.,146,205-222

spAndler c., HerMAnn J., FAure k., MAvrogenes J.A.andArculus R.J.(2007)-The importance of talc-chlorite “hybrid” rocks for volatile recycling through subduction zones: evodence from the high-pressure subduction mèlange of New Caledonia.Contrib.Mineral.Petrol.DOI10.1007/s00410-007-0236-2.

sobolev A.v., HoFMAnn A.w., sobolev S.V. andnikosiAn I.K. (2005) -(2005) -An olivine-free mantle source of Hawaiian shield basalts.Nature,434,590-597.

stAlder r., ulMer p., tHoMpson A.andgüntHerD.(2001)-High-PressurefluidsinthesystemMgO-SiO2-H2Ounderuppermantleconditions.Contrib.Mineral.Petrol.,140,607-618

stoekert b., dyster J., trepMAn C.andMAsonne H.J. (2001) - Microdiamond daughter crystals precipitated from supercritical COH + silicate

fluids included in garnet, Erzgebirge, Germany.Geology,29,391-394

tentHorey E.andHerMAnn J.(2004)-Composition of fluids during serpentinite breakdown in subduction zones: evidence for limited boron mobility.Geology,32,865–868.

troMMsdorFF v., lòpez-sàncHez vizcAino v., gòMez-pugnAire M.T.andMüntenerO.(1998)-High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain.Contrib.Mineral.Petrol.,132,139-148.

ulMer P.andtroMMsdorFF V.(1995)-Serpentine stability to mantle depths and subduction-related magmatism.Science,268,858-861.

ulMer P. and troMMsdorFF V. (1999) - Phase relations of hydrous mantle subducting to 300 km.In:MantlePetrology:Fieldobservationsandhighpressure experimentation:A tribute to FrancisR. (Joe) �oyd. Geochemical Society SpecialPublicationNo.6:259-281

vidAlP.H.,dupuy C.,MAury R.andricHArd M.(1989)-Mantle metasomatism above subduction zones: trace-element and radiogenic isotope characteristics of peridotite xenoliths from Batan Island (Philippines).Geology,17, 1115–1118.

wunder �.andscHreyer W.(1997) -Antigorite: High pressure stability in the system MgO-SiO2-H2O (MSH).Lithos,41,213-227.

yAXley g.M. andgreen D.H. (1998) -Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweiz.Mineral.Petrogr.Mitt.,Mitt.,78,243-255.

zAck T.andJoHn T.(2007)-An evaluation of reactive fluid flow and trace element mobility in subducting slabs.ChemGeol.,239,199-216.

Page 14: Subduction fluids and their interaction with the mantle ...tetide.geo.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0028.pdf · the subducting plates to the overlying mantle. The