submission doc.: ieee 802.11-15/1347r0 november 2015 filippo tosato, toshibaslide 1 strategies to...

22
Submission doc.: IEEE 802.11- 15/1347r0 November 2015 Filippo Tosato, Toshiba Slide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors: N am e A ffiliations A ddress Phone em ail Filippo Tosato Toshiba Corporation filippo.tosato@ toshiba-trel.com Tsuguhide A oki Toshiba Corporation [email protected] Tom oko A dachi Toshiba Corporation [email protected] K entaro Taniguchi Toshiba Corporation [email protected] ZubeirBocus Toshiba Corporation [email protected]

Upload: elijah-porter

Post on 19-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0November 2015

Filippo Tosato, ToshibaSlide 1

Strategies to reduce MIMO feedback overhead

Date: 2015-11-09

Name Affiliations Address Phone email Filippo Tosato Toshiba

Corporation [email protected]

Tsuguhide Aoki Toshiba Corporation

[email protected]

Tomoko Adachi Toshiba Corporation

[email protected]

Kentaro Taniguchi Toshiba Corporation

[email protected]

Zubeir Bocus Toshiba Corporation

[email protected]

Authors:

Page 2: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0November 2015

Filippo Tosato, ToshibaSlide 2

Abstract

• In this presentation we discuss strategies to reduce the MIMO feedback overhead. In particular, we focus on a compression technique that operates in the “spatial” direction by compressing multiple eigenmodes with fewer coefficients than the Givens decomposition.

Page 3: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

Feedback overhead reduction in 11ax

• In frequency: 11ac already adopted tone grouping such that feedback may be provided for every 2nd or 4th subcarrier

• In time: high correlation of feedback coefficients in successive reports can be exploited by using some source coding techniques for compression (e.g., differential feedback)

• In space: note that by going from 1 to 2 STA’s antennas the feedback bits in 11ac increase by 50%, going from 3 to 6 antennas the increase is 150%.• In this presentation we show how multiple eigenmodes can be

compressed by representing their vector space up to a rotation matrix

Slide 3

November 2015

Page 4: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

MIMO compressed feedback in 11ac

Slide 4

November 2015

• STA measures the channel for subcarrier from the LTFs of the NDP and decomposes the channel matrix into an orthonormal column matrix, , of size , and a real diagonal matrix from the SVD of the effective channel

• is represented in compressed form by Givens rotations

Page 5: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

MIMO compressed feedback in 11ac

Slide 5

November 2015

• Givens representation of consists of angles in and angles in with

• NOTE: the number of real dimensions of is but the feedback does not need to capture the absolute phase of the columns of

• The angles are uniformly quantised with the same resolution (2 more bits are needed for angles than )

Page 6: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

SNR reporting in 11ac

Slide 6

November 2015

• SNR is reported for each spatial stream

• Average SNR across the feedback tones, 8 bit uniform quantisation between -10dB and 53.75dB

• Delta SNR for each feedback tone, 4 bit uniform quantisation between -8dB and 7dB

Page 7: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

Modified representation of • A cosine-sine decomposition allows to represent the

matrix with fewer quantised values

Slide 7

November 2015

START Input: 𝑉

Find CS decomposition of 𝑉

START Input: 𝑉

Find Givens decomposition of 𝑉

Quantisation

11ac compressed feedback

STOP Output quantised

feedback

• The feedback signals a linear combination of the 11ac eigenmodes

Page 8: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

Modified representation of • An equivalent representation to Givens rotations can

be achieved by a 2-step decomposition

• Step 1: Grassmannian (GR) representation of , through a CS decomposition, which yields

• Step 2: Givens decomposition of

• The combined 2-step decomposition requires the same number and type of coefficients as in the Givens decomposition

• The GR representation alone allows to save bits in the representation of multiple eigenmodes with small loss in beamforming gain

Slide 8

November 2015

Page 9: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

Proposal to add a new representation of the beamforming feedback matrix in 11ax

Slide 9

November 2015

• The beamformee feeds back an orthonormal matrix

• with unitary matrix of size

• is known to the beamformee but unknown to the beamformer

• is represented in compressed form by a matrix as follows

with the matrices obtained by an SVD

Page 10: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

Proposal to add a new representation of the beamforming feedback matrix in 11ax

Slide 10

November 2015

• The matrix is of size and its representation consists of angles, , in and magnitudes, , in with

• It can be shown that

• Note that , and only for

• For the representation is equivalent to that of 11ac

• The parameters and are uniformly quantised in the same way as and , respectively

Page 11: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

Proposed SNR reporting in 11ax

Slide 11

November 2015

• Average SNR is reported across spatial streams

• This average per-stream SNR is reported in the same way as 11ac with 8 bit average SNR across tones and 4 bits delta SNR

Page 12: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

How the beamformee computes

• Beamformee computes CS decomposition (thin version) of (same cost as SVD of size )

• is given by

Slide 12

November 2015

Page 13: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

Overhead comparison

Slide 13

November 2015

11ac Proposed

Size of ()

Number of angles per

tone()

SNR report(bits)

Number of “angles” per tone

()

SNR report(bits)

Overhead reduction

(MU high-res, =52)(%)

2x1 2 8+4 2 8+4 0

2x2 2 2(8+4) - 8+4 51.8

3x1 4 8+4 4 8+4 0

3x2 6 2(8+4) 4 8+4 35.8

3x3 6 3(8+4) - 8+4 69

4x1 6 8+4 6 8+4 0

4x2 10 2(8+4) 8 8+4 22.8

4x3 12 3(8+4) 6 8+4 51.9

4x4 12 4(8+4) - 8+4 77.5

Page 14: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

Further overhead reduction

• The proposal can be combined with tone grouping and other techniques to reduce the overhead further in the time direction• In particular by exploiting the correlation of the “angular”

coefficients between consecutive reports in the time direction

• The same differential feedback techniques can be applied to the Givens coefficients as well as the proposed transformation coefficients.

Slide 14

November 2015

Page 15: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

4 TX, 2 RX antennas, 3 STAs, 1 stream/STA

• Feedback rank is (1 eigenmode), no overhead reduction

• No need for reporting 2 eigenmodes, performance is the same

Slide 15

November 2015

SNR[dB]-2 0 2 4 6 8 10 12 14 16

PE

R

10-3

10-2

10-1

100Ntx=4, Nrx=2, Nss=1, Nuser=3, MCS 0, ZF sumrate, TGac-D channel

1 step_GR feedback, rank 1

11ac feedback, rank 1

11ac feedback, rank 2

Page 16: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

4 TX, 2 RX antennas, 2 STAs, 2 streams/STA

• Feedback rank is , overhead reduction in compressed feedback matrix is 20%

• For the proposed scheme reporting average SNR across spatial streams shows similar performance as per-stream SNR, overhead reduction in SNR reporting is 50%

• 52 feedback tones

Slide 16

November 2015

Feedback overhead V(bits/report)

Feedback overhead SNR(bits/report)

Overhead reduction

(%)

11ac 4160 432 -

proposed 3328 216 22.8%

Page 17: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, ToshibaSlide 17

November 2015

SNR[dB]0 5 10 15 20 25

PE

R

10-4

10-3

10-2

10-1

100Ntx=4, Nrx=2, Nss=2, Nuser=2, MCS 0, ZF sumrate, TGac-D channel

1step_GR feedback, avg SNR

1step_GR feedback

11ac feedback

SNR[dB]0 5 10 15 20 25

PE

R

10-5

10-4

10-3

10-2

10-1

100Ntx=4, Nrx=2, Nss=2, Nuser=2, MCS 1, ZF sumrate, TGac-D channel

1step_GR feedback, avg SNR

1step_GR feedback

11ac feedback

SNR[dB]10 15 20 25 30 35

PE

R

10-4

10-3

10-2

10-1

100Ntx=4, Nrx=2, Nss=2, Nuser=2, MCS 2, ZF sumrate, TGac-D channel

1step_GR feedback, avg SNR

1step_GR feedback

11ac feedback

SNR[dB]10 12 14 16 18 20 22 24 26 28 30

PE

R

10-4

10-3

10-2

10-1

100Ntx=4, Nrx=2, Nss=2, Nuser=2, MCS 3, ZF sumrate, TGac-D channel

1step_GR feedback, avg SNR

1step_GR feedback

11ac feedback

Page 18: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, ToshibaSlide 18

November 2015

SNR[dB]15 20 25 30 35 40

PE

R

10-4

10-3

10-2

10-1

100Ntx=4, Nrx=2, Nss=2, Nuser=2, MCS 5, ZF sumrate, TGac-D channel

1step_GR feedback , avg SNR

1step_GR feedback

11ac feedback

SNR[dB]10 15 20 25 30 35 40

PE

R

10-4

10-3

10-2

10-1

100Ntx=4, Nrx=2, Nss=2, Nuser=2, MCS 4, ZF sumrate, TGac-D channel

1step_GR feedback, avg SNR

1step_GR feedback

11ac feedback

Page 19: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

Sensitivity to channel aging• We can trade off the reduced overhead

for increased feedback granularity.

Slide 19

November 2015

SNR[dB]14 16 18 20 22 24 26 28 30 32 34

PE

R

10-3

10-2

10-1

100Ntx=4, Nrx=2, Nss=2, Nuser=2, MCS 2, ZF sumrate, TGac-D channel, delay: 25-50ms

1step_GR feedback, avg SNR, delay:25,40ms

1step_GR feedback, avg SNR, delay:50ms

11ac feedback, delay:50ms

25 ms

40ms

50ms

Page 20: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

Performance in closed-loop SU-MIMO

• 3 TX, 2 RX antennas, 2 streams

• 4 TX, 3 RX antennas, 3 streams

Slide 20

November 2015

Feedback overhead V(bits/report)

Feedback overhead SNR(bits/report)

Overhead reduction

(%)

11ac 2496 432 -

proposed 1664 216 35.8%

Feedback overhead V(bits/report)

Feedback overhead SNR(bits/report)

Overhead reduction

(%)

11ac 4992 648 -

proposed 2496 216 51.9%

Page 21: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

• There is some beamforming gain loss with GR feedback, which disappears when comparing at the same overhead with channel aging

Slide 21

November 2015

SNR[dB]0 2 4 6 8 10 12

PE

R

10-4

10-3

10-2

10-1

100Ntx=3, Nrx=2, Nss=2, Nuser=1, MCS 0, ZF sumrate, TGac-D channel, delay: 0-200ms

1 step_GR feedback, rank 2, avg SNR

11ac feedback, rank 2

0ms 200ms

130ms

SNR[dB]0 2 4 6 8 10 12

PE

R10-4

10-3

10-2

10-1

100Ntx=4, Nrx=3, Nss=3, Nuser=1, MCS 0, ZF sumrate, TGac-D channel, delay: 0-200ms

1 step_GR feedback, rank 2, avg SNR

11ac feedback, rank 2

0ms

200ms

100ms

Page 22: Submission doc.: IEEE 802.11-15/1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: 2015-11-09 Authors:

Submission

doc.: IEEE 802.11-15/1347r0

Filippo Tosato, Toshiba

Summary

• MIMO Feedback overhead can be reduced by adopting different compression strategies• in frequency (e.g., tone grouping),

• in time (e.g., differential feedback) and

• in space (spatial compression of multiple eigenmodes)

• We showed how the representation of multiple eigenmodes can be modified to achieve a higher level of compression

• Performance evaluation shows that the beamforming gain loss is minimal especially for MU-MIMO, whilst the overhead saving is substantial (typically between ~20% and 50%)

Slide 22

November 2015