submission rolf de vegt, qualcomm, et al. july 2009 doc.:ieee 802.11-09/0849r0 slide 1 uplink...

16
Submission Rolf de Vegt, Qualcomm, et al. doc.:IEEE Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 N am e A ffiliations A ddress Phone em ail Rolfde V egt Qualcom m Incorporated 3165 K iferRoad Santa Clara, CA 95051 +1 4085339545 rolfv@ qualcomm.com Authors:

Upload: christine-stokes

Post on 19-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

July 2009 doc.:IEEE 802.11-09/0849r0

Slide 1

Uplink Intensive Usage Models

Date: 2009-07-15

Name Affiliations Address Phone email Rolf de Vegt Qualcomm

Incorporated 3165 Kifer Road

Santa Clara, CA 95051 +1 4085339545 [email protected]

Authors:

Page 2: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

July 2009 doc.:IEEE 802.11-09/849r0

Slide 2

Abstract

This documents contains a set of Home Use Cases and Enterprise Use Cases which will typically drive a large amount of uplink (client to AP) traffic.

Page 3: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

Context and Introduction

• Uplink SDMA is one of the candidate technologies for consideration by TGac

• Discussing the potential merits of Uplink SDMA brings up the question of the likelihood and importance of multiple simultaneous upstream traffic flows

• This document contains an initial set of uplink intensive use cases for Home and Enterprise environments

• This document references Usage Models contained in the 802.11ac Usage model document (doc. 09/0059r3)

July 2009 doc.:IEEE 802.11-09/0849r0

Slide 3

Page 4: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

Overview of Uplink Intensive Usage Models

Home Networking

• Distributed Content Sources

• Distributed STB Usage

• Networked Home Scenario– Combination of models:

• 2b Compressed video throughout home

• 3a Synch

• 3d Media content download to car

• Other (e.g. Back Up application, Video Surveillance)

Enterprise

• Surveillance Car Video Upload – Usage model 3e in WFA VHT submission

• Manufacturing Floor Automation– Usage model 6a in WFA VHT submission

• Video Surveillance System

• PC Data Back Up

July 2009 doc.:IEEE 802.11-09/0849r0

Slide 4

Page 5: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

Networked Home Scenario;Distributed Content Sources

HDMI

STB1

DTV1

Usage Model Characteristics:• Each Link of HD Quality• DTV1 Uses HD Content from PC• DTV2 Uses Content from NAS Drive• DTV1, DTV2 and AP located in different parts of the home (AP centrally located in home)

HDMI

STB2

DTV2

Entertainment PC

NAS Drive

July 2009 doc.:IEEE 802.11-09/0849r0

Slide 5

Page 6: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

Networked Home Scenario;Distributed STB Usage

HDMI

HDMI

STB1

STB2

DTV1

DTV2

Usage Model Characteristics:• Each Link of HD Quality• DTV1 Uses Content from STB2• DTV2 Uses Content from STB1• DTV1, DTV2 and AP all located in different parts of the home

July 2009 doc.:IEEE 802.11-09/849r0

Slide 6

Page 7: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

Networked Home Scenario

Combination of models:

• 2b Compressed video throughout home

• 3a Synch

• 3d Media content download to car

• Other: (e.g. Back Up application, Video Surveillance)

• Source and Sink Devices spread throughout the home, sometimes challenging Propagation, e.g. Content download to Car

July 2009 doc.:IEEE 802.11-09/0849r0

Slide 7

Page 8: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

Networked Home ScenarioCable / DSLModem

WLAN Bridge

IPTV Boxe.g. Roku

Kids Surveillance Monitor

Entertainment PC

SDTV Quality

HDTV IPTV Content

HDTV Content

CloudBack UpDrive

Automatic Hard Drive

Back Up

Camcord

er HD

Content

Car Video ContentServer

Car

Vid

eo

Con

tent

Syn

ch

NAS Drive

DTV1

DTV2

Smartphone pics upload

Car Parked in Carport

Kids Room Surveillance Video Cam

July 2009 doc.:IEEE 802.11-09/849r0

Slide 8

Page 9: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

Overview of Uplink Intensive Usage ModelsHome Networking

• Distributed Content Sources

• Distributed STB Usage

• Networked Home Scenario– Combination of models:

• 2b Compressed video throughout home

• 3a Synch

• 3d Media content download to car

• Other (e.g. Back Up application, Video Surveillance)

Enterprise

• Surveillance Car Video Upload – Usage model 3e in WFA VHT submission

• Manufacturing Floor Automation– Usage model 6a in WFA VHT submission

• Video Surveillance System

• PC Data Back Up

July 2009 doc.:IEEE 802.11-09/0849r0

Slide 9

Page 10: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

EnterpriseUsage Model 3e: Police / Surveillance Car Upload

• Upload several 10s of GB of data (Video Surveillance footage) from surveillance car to content server police station

• Multiple Surveillance Cars arrive and Upload at Station around the same time

July 2009 doc.:IEEE 802.11-09/849r0

Slide 10

Page 11: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.11

Usage Model 3e: Police / Surveillance Car Upload

Traffic Conditions: Presence of other Wi-Fi networks from neighboring businesses, government institutions or residences, is likely to occur. The video content upload will likely be using a dedicated VHT network. Multiple cars (up to 10) may be uploading at the same time.

Use Case:1.Surveillance officer turns on video cameras, typically at the beginning of the shift2. Cameras capture footage, which gets stored on a storage device on board the surveillance car3. Surveillance offers turns off video cameras, typically a the end of a shift4. VHT radio in car detects that it comes in reach of VHT network to which is authorized to upload content (typically the network at the base station)

• Assume multiple cars arriving at the same time and Uploading simultaneously

5. Content is uploaded for storage and viewing and analysis at a later point in time.

Pre-Conditions: Police / Surveillance Car is equipped with one or more SD or HD video cameras and a storage devices for video and other content. Connections between camera(s) and storage device are wired. Storage device is attached to a VHT radio. Car is also equipped with external antennas. Police station is equipped with a content server and VHT WLAN network.

Application: Car comes within range of Station VHT AP, and new video and audio content is uploaded to the content server in the station. Depending on the resolution of the video and the duration of the footage collection, the amount of data to be uploaded can vary from a few GB’s to over 100 GB. 100GB takes ~13 minutes on 1Gbps single hop link.

Environment: Environments variable; e.g. indoor garage, outdoor car port, car parked at curb. Size of station and construction materials used varies. Range/throughput expectation is high; deployment at station based on relative proximity to car parking lot / garage. Distance between AP and car likely to be 10 – 60 m, 1 – 3 walls. Objective is to minimize up times.

July 2009 doc.:IEEE 802.11-09/849r0

Slide 11

Page 12: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.12

Enterprise Usage Model 6: Manufacturing Floor Automation

Traffic Conditions: Hundreds or thousands of independent links and data streams with varying QoS, reliability, and throughput, requirements. Aggregate data flows range into multiple Gbps requirements.

Use Case:1. Multiple systems in factory; starting, stopping, and flowing network traffic in a largely asynchronous environment.2. Some data flows have significant integrity requirements (large material-handling machines; cranes, crawlers, etc.)3. Some data flows have significant QoS requirements (VoIP, Video streams, etc.)4. Factory is VERY electrically noisy; spark-gap noise (electric motors, etc.), microwave ovens, other technologies (RFID, RTLS, etc.), and competing 802.x wireless systems.

Pre-Conditions: A WLAN is operational in manufacturing space that has hundreds to thousands of individual tasks happening each minute. Many of these tasks require communications.

Application: All types of information required to run large manufacturing floor. Large variances in data transfer size, time sensitivity, and reliability exist. Here are some examples:• Streaming of live or CAD video requires high throughput, time sensitive, and reliable transfers. • Voice requires lower bandwidth and time sensitive transfers; reliability is less of a concern.• Machine-machine communications, robotic material handling requires high reliability but is less time sensitive.• Data loading machines is high bandwidth but low in time sensitivity. Application layer protocols would ensure reliability.

Environment: Communication is within a large metallic building. High reverberation, long propagation distances (10’s~100’s meters), long delay spreads. Constantly moving equipment changing RF propagation channel model.

July 2009 doc.:IEEE 802.11-09/849r0

Slide 12

Page 13: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

Example Topology for Manufacturing Floor Automation Usage Model

Surveillance Video Monitor

(Portable) Software Source

(Portable)CAD Drawing Source

Quality Assurance Video Monitor

Software Sink

CAD Drawing Sink

Quallity Control Video Cam

+ Many Other Systems Generating Upstream and Downstream Traffic (see WFA VHT Use Case write up)

July 2009 doc.:IEEE 802.11-09/0849r0

Slide 13

Page 14: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

Video Surveillance System

Surveillance Video Monitor

Usage Model Characteristics:• Each Link of SDMA Quality (6 Mbps)• Simultaneous Video Streaming• Scales up to 20+ Video Cameras• Video Cams at varying distance from .11ac AP

Surveillance Video Cam

Surv

eillan

ce V

ideo C

am

Surveillance Video Cam

July 2009 doc.:IEEE 802.11-09/0849r0

Slide 14

Page 15: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

Enterprise PC Back Up

Usage Model Characteristics:• Each Link Best Effort / Max Offer Load• Simultaneous Back Up to Enterprise NAS• Laptops at varying distance from .11ac AP

NAS

July 2009 doc.:IEEE 802.11-09/0849r0

Slide 15

Page 16: Submission Rolf de Vegt, Qualcomm, et al. July 2009 doc.:IEEE 802.11-09/0849r0 Slide 1 Uplink Intensive Usage Models Date: 2009-07-15 Authors:

Submission Rolf de Vegt, Qualcomm, et al.

Closing Observations• Cursory analysis led to insights about a number of Use Cases

driving intense upstream traffic

• Depending on the physical lay-out of the network, TDLS will likely play a role in some of the cases presented as well

• Powerful industry trends driving need for upstream WLAN traffic:– Cloud computing (locally generated content needs to be stored in the

internet cloud)

– Place shifting of digital content

– Internet Peer to Peer networking

• Lastly, limiting the number of antenna’s on client devices is a key requirement from WLAN enabled device vendors

July 2009 doc.:IEEE 802.11-09/0849r0

Slide 16