succinimide 2

11
A Mechanism-Based Kinetic Analysis of Succinimide-Mediated Deamidation, Racemization, and Covalent Adduct Formation in a Model Peptide in Amorphous Lyophiles The succinimide intermediate generated during deamidation of asparaginecontaining peptides and proteins has been implicated as having a role in the formation of multiple types of degradants in addition to hydrolysis products, including racemization products and, more recently, amide-linked, nonreducible protein and peptide aggregates. The formation of alternative degradants may be particularly important in solid-state formulations. This study quantitatively examines the role of the succinimide intermediate in hydrolysis, racemization, and covalent, amide-linked adduct formation in amorphous lyophiles. The degradation of a model peptide, Gly–Phe–L-Asn–Gly, and its L- or D-succinimide intermediates were examined in lyophiles containing hydroxypropyl methylcellulose and varying amounts of excess Gly–Val. Disappearance of the starting reactants and formation of up to 10 degradants were monitored when lyophiles were exposed to either 27◦C/40% relative humidity (RH) or 40◦C/75 RH using a stability indicating high-performance liquid chromatography method. Terminal degradant profiles were the same when the starting reactant was either Gly–Phe–L-Asn– Gly or its succinimide intermediate. Nucleophilic attack occurred preferentially at the a-carbonyl of the succinimide intermediate at ratios of approximately 2:1 for both water and the N-terminus of Gly–Val as the attacking nucleophiles. A mechanism-based kinetic model analysis indicates that hydrolysis, racemization, and covalent, amide-linked adduct formation all proceed via the succinimide intermediate. MATERIALS AND METHODS Reagents The peptide Gly–Phe–L-Asn–Gly and its hydrolysis products were synthesized by GenScript (Piscataway, New Jersey) as trifluoroacetate salts with purities greater than 95% as determined by highperformance liquid chromatography (HPLC). These

Upload: gd-padmawijaya

Post on 20-Apr-2017

215 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: SUCCINIMIDE 2

A Mechanism-Based Kinetic Analysis of Succinimide-Mediated Deamidation, Racemization, and Covalent Adduct Formation in a Model Peptide

in Amorphous LyophilesThe succinimide intermediate generated during deamidation of asparaginecontaining peptides and proteins has been implicated as having a role in the formation of multiple types of degradants in addition to hydrolysis products, including racemization products and, more recently, amide-linked, nonreducible protein and peptide aggregates. The formation of alternative degradants may be particularly important in solid-state formulations. This study quantitatively examines the role of the succinimide intermediate in hydrolysis, racemization, and covalent, amide-linked adduct formation in amorphous lyophiles. The degradation of a model peptide, Gly–Phe–L-Asn–Gly, and its L- or D-succinimide intermediates were examined in lyophiles containing hydroxypropyl methylcellulose and varying amounts of excess Gly–Val. Disappearance of the starting reactants and formation of up to 10 degradants were monitored when lyophiles were exposed to either 27◦C/40% relative humidity (RH) or 40◦C/75 RH using a stability indicating high-performance liquid chromatography method. Terminal degradant profiles were the same when the starting reactant was either Gly–Phe–L-Asn– Gly or its succinimide intermediate. Nucleophilic attack occurred preferentially at the a-carbonyl of the succinimide intermediate at ratios of approximately 2:1 for both water and the N-terminus of Gly–Val as the attacking nucleophiles. A mechanism-based kinetic model analysis indicates that hydrolysis, racemization, and covalent, amide-linked adduct formation all proceed via the succinimide intermediate.

MATERIALS AND METHODSReagents

The peptide Gly–Phe–L-Asn–Gly and its hydrolysis products were synthesized by GenScript (Piscataway, New Jersey) as trifluoroacetate salts with purities greater than 95% as determined by highperformance liquid chromatography (HPLC). These compounds were further characterized as previously described.32 The synthesis of the succinimide intermediates(Gly–Phe–D-Asu–Gly and Gly–Phe–LAsu–Gly) and the characterization of covalent adductstandards are described elsewhere.32 Hydroxypropyl methylcellulose (HPMC, Methocel E5) was received as a free sample from Dow Chemical (Midland, Michigan) and used as received. Gly–Val was purchased from Bachem (Torrance, California) as the zwitterions (purity 99.0% by thin layer chromatography). HPLC grade acetonitrile was purchased from Fisher Scientific (Springfield, New Jersey). Sodium bicarbonate (ACS grade) was purchased from EM Science(Gibbstown, New Jersey) and succinic acid was purchased from Aldrich (St. Louis, Missouri). Deionized water was used throughout the experiments.

Kinetic StudiesLyophiles containing Gly–Phe–L-Asn–Gly in formulation A (7.5-fold molar excess of

Gly–Val) were preequilibrated at 75% relative humidity (RH; over saturated sodium chloride solution) and ambient temperature for 15 min then placed in a dessicator at the same RH and 40◦C. A lower temperature and RH were necessary to monitor the reactivities of formulations B1, B2, and B3 to ensure that the breakdown of the succinimide intermediates would be slow

Page 2: SUCCINIMIDE 2

enough to allow the collection of multiple samples from which complete concentration versus time profiles could begenerated. Therefore, lyophiles of formulations B1, B2, and B3 (-30-fold molar excess of Gly–Val) were placed directly in a dessicator at 27◦C containing a saturated solution of potassium carbonate to provide an RH of 40%. At specific time points, samples were removed from the chamber and reconstituted with the original fill volume of water. Hydrochloric acid (1N) was used to adjust the pH of the reconstituted samples to quench the reactions and provide a similar pH value as the HPLC mobile phase. Samples were either analyzedimmediately by HPLC or frozen until the time of analysis.

Mechanism-Based Kinetic Model DevelopmentA comprehensive reaction scheme based on the known mechanism of deamidation of Asn-containing peptides coupled with the assumption that racemization and covalent, amide-linked adduct formation also proceed through a succinimide intermediate is shown inFigure 1. Differential equations based on the various pathways depicted in Figure 1 were derived to simultaneously fit the concentration versus time profiles of each analyte (Eqs. 1–11). To simplify the differential equations, the primary sequences of the individual compounds have been removed and replaced with Roman numerals and subscripts to denote stereochemistryas listed in Figure 1. The reaction scheme shown does not include possible additional, potential decomposition products formed, for example, by reactions between the succinimide intermediate and a second Gly–Phe–L-Asn–Gly molecule or with excipient (i.e., HPMC) molecules, orsecondary degradation of the degradants described in Figure 1 to produce other covalent adducts or hydrolysis products. In cases where mass balance was not achieved (e.g., in formulations containing succinimide as the initial reactant), an additional pathway leading from either succinimide to unknown products was included as designated by a rate constant kx. Included in kx were rate constants for any pathways that were not explicitly included in fitting the data because of the lack of ability to detect or quantify degradantconcentrations.

RESULTSLyophile CharacterizationAfter lyophilization, the cakes obtained were white in color and occupied the same volume as the original fill height. After storage at 75% RH and 40◦C, lyophiles of formulation A exhibited partial collapse as indicated by some retraction of the cakes from the vial walls. However, no evidence of crystallization was observed as indicated by the lack of birefringence under a polarizing microscope. Upon exposure to storage conditions of 27◦C and 40% RH, lyophiles of formulation B underwent partial collapse to approximately half of their original height. Evidence of partial recrystallization of Gly–Val was previously reported when lyophiles stored at 40◦C and 40% RH were examined by polarized light microscopy (data not shown). Because of the overwhelming excess of Gly–Val in relation to succinimide in these formulations, the impactof partial recrystallization of Gly–Val on the reaction kinetics of interest in this study was considered to be inconsequential. The average pH of samples reconstituted with the original volume of water was 9.58± 0.02 for formulation A and 9.36± 0.06 for formulation B. The watercontent for formulation A lyophiles was 2.4± 0.6% and increased to 13.6± 0.8% when exposed to 40◦C and 75% RH. The water content of formulation B lyophiles was 3.5± 0.7% after lyophilization and 4.53± 0.99% after storage at 40% RH and 27◦C.

Page 3: SUCCINIMIDE 2

DISCUSSIONAs mentioned at the outset, many of the reaction pathways most prominent in pharmaceutical systems are relatively well understood mechanistically, at least in aqueous solution, as a result of many detailed investigative studies over several decades. Given the importance of reactive intermediates in a majority of these pathways, an underlying hypothesis of the present work was that this wealth of understanding of the mechanisms of formation and the ultimate fate of reactive intermediates based on solution studies may prove useful in predicting or at least rationalizing differences in reaction kinetics in amorphous solid formulations when compared with solutions. Deamidation of asparagine residues in peptides and proteins, for example, is well known to occur via a reactive cyclic imide intermediate, both in aqueous solutions11,12 and in amorphous lyophiles,21,22 leading to both isoaspartyl and aspartyl hydrolysis products accompanied by racemization. Recently, we demonstrated in aqueous solution that a more diverse set of heretofore unidentified degradants may form from Asn-containing peptides and proteins when other nucleophiles such as amines are present at sufficiently high effective concentrations to compete with water for the succinimide intermediate.12 More recently, this finding was extended to reactions of a model asparagine-containing peptide (Gly–Phe–LAsn–Gly) in amorphous lyophiles containing an excess of a second peptide (Gly–Val).32 A total of10 degradation products were identified, including hydrolysis and racemization products as well as four covalent adducts resulting from the attack of Gly–Val on the D- and L-succinimide intermediates. The same degradant profiles were found when the succinimide was the starting reactant in lyophile formulations, implicating the cyclic imide as the intermediate for formation of all degradants. The rationale for the incorporation of a second peptide (Gly–Val) in these studies was to reduce the number of potential degradants that might form. Because both Gly–Val and any amide-linked covalent adducts produced in the reaction of these two peptides would no longer have an Asn residue, the tendency of the adducts to form higher order aggregates was reduced. In this manuscript, studies of the same model peptides and the D- and L-succinimide intermediates have been conducted with the aim of developing a comprehensive, mechanism-based model to describe the kinetics of degradant formation in two different Gly–Phe–L-Asn–Gly lyophile formulations and storage conditions that produce dramatic disparities in degradant profiles.

CONCLUSIONA mechanism-based kinetic model that assigns a central role to the D- and L-succinimide intermediates has been employed to quantitatively account for theformation of hydrolysis and covalent, amide-linked degradants resulting from the deamidation of a model tetrapeptide in the presence of excess Gly–Val in lyophilized formulations. Terminal degradant profiles were the same when the starting reactant was either Gly–Phe–L-Asn–Gly or its L-succinimide intermediate, further indicating that hydrolysis, racemization, and covalent, amide-linked adduct formation all proceed via the succinimide intermediate. Nucleophilic attack occurred preferentially at the "-carbonyl of the succinimide intermediate when the nucleophile waseither water or the N-terminus of Gly–Val. The bimolecular reaction between the succinimide intermediate and the free amine of another peptide reported here in suggests a likely mechanism for the formation of amide-linked nonreducible aggregates in solidstate formulations of proteins and peptides. Future studies will examine in a more systematic fashion the kinetics of formation

Page 4: SUCCINIMIDE 2

of hydrolysis and covalent adducts in similar formulations as a function of such variables as water content and excipient dilution.

Sebuah Kinetic Analysis Mekanisme Berbasis suksinimida - Mediated deamidasi , rasemisasi , dan Formasi kovalen aduk dalam Peptida Model di Amorphous Lyophiles

The suksinimida menengah yang dihasilkan selama deamidasi dari asparaginecontaining peptida dan protein telah terlibat sebagai memiliki peran dalam pembentukan beberapa jenis degradants selain produk hidrolisis , termasuk produk rasemisasi dan , baru-baru ini , amida -linked , nonreducible protein dan peptida agregat . Pembentukan degradants alternatif mungkin sangat penting dalam formulasi solid-state . Penelitian ini mengkaji secara kuantitatif peran suksinimida menengah dalam hidrolisis , rasemisasi , dan kovalen , pembentukan aduk amida -linked di lyophiles amorf . Degradasi model peptida , Gly - Phe - L - Asn - Gly , dan intermediet L - atau D - succinimide yang diperiksa dalam lyophiles mengandung hidroksipropil metilselulosa dan berbagai jumlah kelebihan Gly - Val . Hilangnya reaktan awal dan pembentukan hingga 10 degradants dipantau ketika lyophiles terkena baik 27 ◦ C/40 % kelembaban relatif ( RH ) atau 40 ◦ C/75 RH menggunakan stabilitas yang menunjukkan kinerja tinggi metode kromatografi cair . Profil urai Terminal yang sama ketika reaktan awal adalah baik Gly - Phe - L - Asn - Gly atau succinimide menengah nya . Serangan nukleofilik terjadi secara istimewa di a - karbonil dari suksinimida menengah pada rasio sekitar 2:01 untuk air dan N - terminus dari Gly - Val sebagai nukleofil menyerang . Sebuah kinetik model analisis berbasis mekanisme menunjukkan bahwa hidrolisis , rasemisasi , dan kovalen , pembentukan aduk amida -linked semua melanjutkan melalui suksinimida menengah.

BAHAN DAN METODEReagenPeptida Gly - Phe - L - Asn - Gly dan produk hidrolisis yang disintesis oleh GenScript ( Piscataway , New Jersey ) sebagai garam trifluoroacetate dengan kemurnian lebih dari 95 % seperti yang ditentukan dengan kromatografi cair berkinerja tinggi ( HPLC ) . Senyawa ini lebih lanjut ditandai seperti sebelumnya described.32 Sintesis intermediet suksinimida( Gly - Phe - D - Asu - Gly dan Gly - Phe - Lasu - Gly ) dan karakterisasi kovalen adisistandar dijelaskan elsewhere.32 hidroksipropil metilselulosa ( HPMC , Methocel E5 ) diterima sebagai sampel gratis dari Dow Chemical ( Midland , Michigan ) dan digunakan sebagai diterima . Gly- Val dibeli dari BACHEM ( Torrance , California ) sebagai Zwitterions ( kemurnian 99,0 % dengan kromatografi lapis tipis ) . HPLC asetonitril dibeli dari Fisher Scientific ( Springfield , New Jersey ) . Sodium bikarbonat ( ACS grade) dibeli dari Ilmu EM( Gibbstown , New Jersey ) dan asam suksinat dibeli dari Aldrich ( St Louis , Missouri ) . Air deionisasi digunakan di seluruh percobaan .

Studi KineticLyophiles mengandung Gly - Phe - L - Asn - Gly dalam formulasi A ( molar 7,5 kali lipat lebih dari Gly - Val ) yang preequilibrated pada 75 % kelembaban relatif ( RH , lebih larutan natrium klorida jenuh ) dan suhu lingkungan selama 15 menit kemudian ditempatkan dalam dessicator

Page 5: SUCCINIMIDE 2

pada saat yang sama RH dan 40 ◦ C. Sebuah suhu yang lebih rendah dan RH yang diperlukan untuk memantau reaktivitas formulasi B1 , B2 , dan B3 untuk memastikan bahwa kerusakan pada intermediet suksinimida akan cukup lambat untuk memungkinkan pengumpulan sampel dari beberapa yang konsentrasi penuh terhadap waktu profil bisadihasilkan . Oleh karena itu , lyophiles formulasi B1 , B2 , dan B3 ( - 30 - kali lipat molar kelebihan Gly - Val ) ditempatkan langsung di dessicator pada 27 ◦ C yang mengandung larutan jenuh kalium karbonat untuk memberikan RH 40 % . Pada titik waktu tertentu , sampel dikeluarkan dari ruangan dan dilarutkan dengan volume mengisi asli air . Asam klorida ( 1N ) digunakan untuk mengatur pH sampel dilarutkan untuk memadamkan reaksi dan memberikan nilai pH yang sama seperti fase gerak HPLC . Sampel yang baik analyzedimmediately oleh HPLC atau beku sampai waktu analisis .

Mekanisme Berbasis Kinetic Pengembangan ModelSkema Reaksi komprehensif berdasarkan mekanisme yang dikenal dari deamidasi dari Asn mengandung peptida ditambah dengan asumsi bahwa racemization dan kovalen , pembentukan aduk amida -linked juga dilanjutkan melalui suksinimida antara ditunjukkan padaPersamaan diferensial Gambar 1 . Didasarkan pada berbagai jalur digambarkan pada Gambar 1 berasal untuk secara bersamaan sesuai dengan konsentrasi terhadap profil waktu dari masing-masing analit ( Eqs. 1-11 ) . Untuk menyederhanakan persamaan diferensial , urutan utama dari senyawa individu telah dihapus dan diganti dengan angka Romawi dan subscript untuk menunjukkan stereokimiaseperti yang tercantum pada Gambar 1 . Skema reaksi ditunjukkan tidak termasuk kemungkinan tambahan , produk dekomposisi potensial terbentuk , misalnya, dengan reaksi antara suksinimida menengah dan molekul Gly - Phe - L - Asn - Gly kedua atau dengan eksipien (yaitu , HPMC ) molekul , ataudegradasi sekunder dari degradants dijelaskan pada Gambar 1 untuk menghasilkan adduct kovalen lain atau produk hidrolisis . Dalam kasus di mana keseimbangan massa tidak tercapai ( misalnya, dalam formulasi yang mengandung suksinimida sebagai reaktan awal) , jalur tambahan terkemuka baik dari succinimide produk yang tidak diketahui dimasukkan sebagai ditunjuk oleh kx konstanta laju . Termasuk dalam konstanta adalah tingkat kx untuk setiap jalur yang tidak secara eksplisit dimasukkan dalam data pas karena kurangnya kemampuan untuk mendeteksi atau mengukur uraikonsentrasi .

HASILLyophile KarakterisasiSetelah liofilisasi , kue yang diperoleh berwarna putih dan menduduki volume yang sama dengan ketinggian mengisi original . Setelah penyimpanan pada 75 % RH dan 40 ◦ C , lyophiles formulasi A dipamerkan runtuhnya parsial seperti yang ditunjukkan oleh beberapa pencabutan dari kue dari dinding botol . Namun, tidak ada bukti kristalisasi diamati seperti yang ditunjukkan oleh kurangnya birefringence di bawah mikroskop polarisasi . Setelah terpapar kondisi penyimpanan 27 ◦ C dan 40 % RH , lyophiles formulasi B mengalami keruntuhan parsial untuk sekitar setengah dari tinggi aslinya . Bukti rekristalisasi parsial Gly - Val sebelumnya dilaporkan ketika lyophiles disimpan pada 40 ◦ C dan 40 % RH diperiksa dengan mikroskop cahaya terpolarisasi ( data tidak ditampilkan ) . Karena kelebihan yang luar biasa dari Gly - Val dalam kaitannya dengan succinimide dalam formulasi ini , dampak

Page 6: SUCCINIMIDE 2

rekristalisasi parsial Gly - Val pada kinetika reaksi menarik dalam penelitian ini dianggap tidak penting . PH rata-rata dari sampel dilarutkan dengan volume asli dari air adalah 9,58 ± 0,02 untuk formulasi A dan 9,36 ± 0,06 untuk formulasi B. Airkonten untuk lyophiles Formulasi adalah 2,4 ± 0,6 % dan meningkat menjadi 13,6 ± 0,8 % bila terkena 40 ◦ C dan 75 % RH . Kadar air lyophiles formulasi B adalah 3,5 ± 0,7 % setelah lyophilization dan 4,53 ± 0,99% setelah penyimpanan pada 40 % RH dan 27 ◦ C.

PEMBAHASANSeperti disebutkan di awal , banyak jalur reaksi yang paling menonjol dalam sistem farmasi relatif dipahami dengan baik secara mekanis , setidaknya dalam larutan berair , sebagai hasil dari banyak studi investigasi rinci selama beberapa dekade . Mengingat pentingnya intermediet reaktif dalam mayoritas jalur ini , hipotesis yang mendasari penelitian ini adalah bahwa kekayaan ini pemahaman tentang mekanisme pembentukan dan nasib akhir intermediet reaktif berdasarkan studi solusi mungkin berguna dalam memprediksi atau setidaknya rasionalisasi perbedaan kinetika reaksi dalam formulasi padat amorf bila dibandingkan dengan solusi . Deamidasi residu asparagin di peptida dan protein , misalnya, dikenal terjadi melalui imida siklik reaktif menengah, baik dalam solutions11 berair , 12 dan lyophiles amorf , 21,22 mengarah ke kedua isoaspartyl dan produk hidrolisis aspartil disertai racemization . Baru-baru ini , kami menunjukkan dalam larutan berair bahwa satu set lebih beragam degradants sampai sekarang tak dikenal mungkin terbentuk dari Asn mengandung peptida dan protein ketika nukleofil lainnya seperti amina hadir pada konsentrasi yang efektif cukup tinggi untuk bersaing dengan air untuk intermediate.12 suksinimida Baru-baru ini , temuan ini diperpanjang sampai reaksi dari model asparagin yang mengandung peptida ( Gly - Phe - LAsn -Gly ) di lyophiles amorf yang mengandung kelebihan peptida kedua ( Gly - Val ) .32 Sebanyak10 produk degradasi diidentifikasi , termasuk hidrolisis dan racemization produk serta empat adisi kovalen akibat serangan Gly - Val pada D - dan L - succinimide intermediet . Profil urai sama ditemukan ketika succinimide adalah reaktan mulai formulasi lyophile , melibatkan para imida siklik sebagai perantara untuk pembentukan semua degradants . Alasan untuk penggabungan kedua peptida ( Gly - Val ) dalam studi ini adalah untuk mengurangi jumlah degradants potensial yang mungkin terbentuk . Karena kedua Gly - Val dan setiap adduct kovalen amida - linked yang dihasilkan pada reaksi dari dua peptida ini tidak lagi memiliki residu Asn , kecenderungan adisi untuk membentuk agregat yang lebih tinggi agar berkurang . Dalam naskah ini , studi tentang peptida model yang sama dan D - dan L - succinimide intermediet telah dilakukan dengan tujuan untuk mengembangkan komprehensif , model berbasis mekanisme untuk menggambarkan kinetika pembentukan urai dalam dua berbeda Gly - Phe - L - Asn - Gly lyophile formulasi dan kondisi penyimpanan yang menghasilkan perbedaan dramatis dalam profil urai .

KESIMPULANSebuah model kinetik berbasis mekanisme yang memberikan peran sentral bagi L - suksinimida intermediet D - dan telah digunakan untuk kuantitatif account untuk theformation hidrolisis dan kovalen , degradants amida -linked yang dihasilkan dari deamidasi model tetrapeptide dengan adanya kelebihan Gly- Val dalam formulasi lyophilized . Profil urai Terminal yang sama ketika reaktan awal adalah baik Gly - Phe - L - Asn - Gly atau nya L - suksinimida menengah, lanjut menunjukkan bahwa hidrolisis , rasemisasi , dan kovalen , pembentukan aduk amida -linked

Page 7: SUCCINIMIDE 2

semua melanjutkan melalui suksinimida menengah. Serangan nukleofilik terjadi secara istimewa di " - karbonil dari suksinimida perantara ketika nukleofil itubaik air atau N - terminus dari Gly - Val . Reaksi biomolekuler antara suksinimida menengah dan amina bebas dari peptida lain yang dilaporkan di sini menunjukkan mekanisme kemungkinan untuk pembentukan amida -linked agregat nonreducible dalam formulasi solidstate protein dan peptida . Penelitian selanjutnya akan memeriksa dengan cara yang lebih sistematis kinetika pembentukan hidrolisis dan kovalen aduk dalam formulasi yang sama sebagai fungsi dari variabel seperti kadar air dan eksipien pengenceran .