summary of the lectureszczytko/ldsn/14_ldsn_2015...summary of the lecture 2016-08-08 4 9. tunneling...

93
Summary of the lecture Faculty of Physics UW [email protected]

Upload: others

Post on 07-Nov-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Summary of the lecture

Faculty of Physics UW

[email protected]

Page 2: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Summary of the lecture

2016-08-08 2

1. Introduction – semiconductor heterostructuresRevision of solid state physics: Born-Oppenheimer approximation, Hartree-Fock method and one electron Hamiltonian, periodic potential, Bloch states, band structure, effective mass.

2. Nanotechnology Revision of solid state physics: tight-binding approximation, Linear Combination of Atomic Orbitals (LCAO).Nanotechnology. Semiconductor heterostructures. Technology of low dimensional structures. Bandgap engineering: straddling, staggered and broken gap. Valence band offset.

3. Quantum wells (1)Infinite square quantum well. Finite square quantum well. Quantum well in heterostructures: finite square well with different effective masses in the well and barriers.

4. Quantum wells (2)Harmonic potential (parabolic well). Triangular potential. Wentzel – Krammers – Brillouin (WKB) method.Band structure in 3D, 2D. Coulomb potential in 2D

Page 3: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Summary of the lecture

2016-08-08 3

5. Quantum dots, Quantum wells in 1D, 2D and 3DQuantum wells in 1D, 2D and 3D. Quantum wires and quantum dots. Bottom-up approach for low-dimensional systems and nanostructures. Energy gap as a function of the well width.

6. Optical transitions in nanostructuresTime-dependent perturbation theory, Fermi golden rule, interband and intraband transitions in semiconductor heterostructures

7. Work on the article about quantum dotsStudents have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions. Discussion.

8. Carriers in heterostructuresDensity of states of low dimensional systems. Doping of semiconductors. Heterojunction, p-n junction, metal-semiconductor junction, Schotky barrier

Page 4: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Summary of the lecture

2016-08-08 4

9. Tunneling transportContinuity equation. Potential step. Tunneling through the barrier. Transfer matrix approach. Resonant tunneling. Quantum unit of conductance.

10. Quantized conductance Quantized conductance. Coulomb blockade, one-electron transistor.

11. Work on the article about the tunneling or conductanceStudents have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions. Discussion.

12. Electric field in low-dimensional systemsScalar and vector potentials. Carriers in electric field: scalar and vector potential in Schrodinger equation. Schrodinger equation with uniform electric field. Local density of states. Franz-Kieldysh effect.

Page 5: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Summary of the lecture

2016-08-08 5

13. Magnetic field in low-dimensional systemsCarriers in magnetic field. Schrodinger equation with uniform magnetic field – symmetric gauge, Landau gauge. Landau levels, degeneracy of Landau levels.

14. Electric and magnetic fields in low-dimensional systemsSchrodinger equation with uniform electric and magnetic field. Hall effect. Shubnikov-de Haas effect. Quantum Hall effect. Fractional Quantum Hall Effect. Hofstadter butterfly. Fock-Darvinspectra

15. Revision Revision and preparing for the exam.

Page 6: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Summary of the exercises

2016-08-08 6

1. Introduction – semiconductor heterostructuresSchrodinger equation. Wave packet, Gaussian wavepacket .

2. Nanotechnology Tight-binding approximation: graphene bandctructure.

3. Quantum wells (1)Infinite square quantum well. Finite square quantum well. Finite square well with different effective masses in the well and barriers.

4. Quantum wells (2)Harmonic potential (parabolic well). Triangular potential. Wentzel – Krammers – Brillouin (WKB) method.

5. Double quantum wells. Quantum dots.Double quantum wells. Quantum dots (2D and 3D harmonic potential)

Page 7: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Summary of the exercises

2016-08-08 7

6. Optical transitions in nanostructuresInterband and intraband transitions in semiconductor heterostructures. Continuity equation.

7. Carriers in heterostructures (1)Transfer matrix approach. Potential step.

8. Carriers in heterostructures (2)Tunneling through the barrier.

9. Resonant tunnelingResonant tunneling.

10. Quantized conductance Quantized conductance. Coulomb blockade.

11. Local density of states Local density of states.

Page 8: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Summary of the exercises

2016-08-08 8

12. Electric field in low-dimensional systemsCarriers in electric field: scalar and vector potential in Schrodinger equation.

13. Magnetic field in low-dimensional systemsSchrodinger equation with uniform magnetic field – symmetric gauge, Landau gauge. Landau levels, degeneracy of Landau levels.

14. Electric and magnetic fields in low-dimensional systemsSchrodinger equation with uniform electric and magnetic field. Conductivity and resistivity tensors

15. Hall effect. Fock-Darvin spectrumHall effect. Fock-Darvin spectrum.

Page 9: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Assessment criteria:

2016-08-08 9

HomeworksDiscussion of scientific papersTests to check the effective use of the skills acquired during the lectureExam: final test and oral exam

Page 10: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Pakiet falowy

2016-08-08 10

Page 11: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

2016-08-08 11

The solution of the one-electron SchrΓΆdinger equation for a periodic potential has a form of modulated plane wave:

𝑒𝑛,π‘˜ Τ¦π‘Ÿ = 𝑒𝑛,π‘˜ Τ¦π‘Ÿ + 𝑅

πœ‘π‘›,π‘˜ Τ¦π‘Ÿ = 𝑒𝑛,π‘˜ Τ¦π‘Ÿ π‘’π‘–π‘˜ Τ¦π‘Ÿ

We introduced coefficient 𝑛 for different solutions corresponding to the same π‘˜ (index). π‘˜-vector is an element of the first Brillouin zone.

Bloch wave,Bloch function

Bloch amplitude,Bloch envelope

𝑒𝑛,π‘˜ Τ¦π‘Ÿ =

Ԧ𝐺

πΆπ‘˜βˆ’ Ԧ𝐺𝑒𝑖 Ԧ𝐺 Τ¦π‘Ÿ

Bloch theorem

Periodic potential

Page 12: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

2016-08-08 12

𝐸 π‘˜ β‰ˆ1

𝑁Φ𝑗,π‘˜ Τ¦π‘Ÿ 𝐻 Φ𝑗,π‘˜ Τ¦π‘Ÿ =

=

𝑛,π‘š

exp π‘–π‘˜ 𝑅𝑛 βˆ’ π‘…π‘š ΰΆ±πœ‘π‘—βˆ— Τ¦π‘Ÿ βˆ’ π‘…π‘š 𝐸𝑗 + 𝑉′ Τ¦π‘Ÿ βˆ’ 𝑅𝑛 πœ‘π‘— Τ¦π‘Ÿ βˆ’ 𝑅𝑛 𝑑𝑉

When the atomic states πœ‘π‘— Τ¦π‘Ÿ βˆ’ 𝑅𝑛 are spherically symmetric (𝑠-states), then overlap

integrals depend only on the distance between atoms:

𝐸𝑛 π‘˜ β‰ˆ 𝐸𝑗 βˆ’ 𝐴𝑗 βˆ’ 𝐡𝑗

π‘š

exp π‘–π‘˜ 𝑅𝑛 βˆ’ π‘…π‘š

𝐴𝑗 = βˆ’ΰΆ±πœ‘π‘—βˆ— Τ¦π‘Ÿ βˆ’ 𝑅𝑛 𝑉′ Τ¦π‘Ÿ βˆ’ 𝑅𝑛 πœ‘π‘— Τ¦π‘Ÿ βˆ’ 𝑅𝑛 𝑑𝑉

𝐡𝑗 = βˆ’ΰΆ±πœ‘π‘—βˆ— Τ¦π‘Ÿ βˆ’ π‘…π‘š 𝑉′ Τ¦π‘Ÿ βˆ’ 𝑅𝑛 πœ‘π‘— Τ¦π‘Ÿ βˆ’ 𝑅𝑛 𝑑𝑉

Restricted to only the nearest neighbours of 𝑅𝑛

Tight-Binding Approximation

Only diagonal terms 𝑅𝑛 = π‘…π‘š in 𝐸𝑗

Only the vicinity of 𝑅_𝑛

Page 13: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

2016-08-08 13

For 𝑠𝑐 structure: 𝑅𝑛 βˆ’ π‘…π‘š = Β±π‘Ž, 0,0 ; 0, Β±π‘Ž, 0 ; 0,0, Β±π‘Ž ;

𝐸𝑛 π‘˜ β‰ˆ 𝐸𝑗 βˆ’ 𝐴𝑗 βˆ’ 2𝐡𝑗 cos π‘˜π‘₯π‘Ž + cos π‘˜π‘¦π‘Ž + cos π‘˜π‘§π‘Ž

H. I

bac

h, H

. LΓΌ

th, S

olid

-Sta

te P

hys

ics

𝐡𝑗=βˆ’ΰΆ±πœ‘π‘—βˆ—Τ¦π‘Ÿβˆ’π‘…π‘š

π‘‰β€²Τ¦π‘Ÿβˆ’π‘…π‘›

πœ‘π‘—Τ¦π‘Ÿβˆ’π‘…π‘›

𝑑𝑉

Tight-Binding Approximation

Page 14: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

2016-08-08 14

For 𝑠𝑐 structure: 𝑅𝑛 βˆ’ π‘…π‘š = Β±π‘Ž, 0,0 ; 0, Β±π‘Ž, 0 ; 0,0, Β±π‘Ž ;

𝐸𝑛 π‘˜ β‰ˆ 𝐸𝑗 βˆ’ 𝐴𝑗 βˆ’ 2𝐡𝑗 cos π‘˜π‘₯π‘Ž + cos π‘˜π‘¦π‘Ž + cos π‘˜π‘§π‘Ž

H. I

bac

h, H

. LΓΌ

th, S

olid

-Sta

te P

hys

ics

𝐡𝑗=βˆ’ΰΆ±πœ‘π‘—βˆ—Τ¦π‘Ÿβˆ’π‘…π‘š

π‘‰β€²Τ¦π‘Ÿβˆ’π‘…π‘›

πœ‘π‘—Τ¦π‘Ÿβˆ’π‘…π‘›

𝑑𝑉

Tight-Binding Approximation

Page 15: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

2016-08-08 15

Tight-Binding Approximation

Page 16: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

2016-08-08 16

Landolt-Boernstein

Expanding 𝐸𝑛 π‘˜ = 𝐸𝑛 βˆ’β„2π‘˜2

2π‘šaround an extreme point, e.g. π‘˜ = 0:

close bands

kΒ·p perturbation theory – effective mass

Page 17: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

2016-08-08 17

MichaΕ‚ BajSzm

ulo

wic

z, F

., S

egal

l, B

.: P

hys

. Rev

. B2

1,

56

28

(1

98

0).

Density of stateslike for freeelectrons!

Tight-Binding Approximation

Page 18: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Infinite square quantum well

2016-08-08 18

πœ“ π‘₯, 𝑑 =2

𝐿sin π‘˜π‘›π‘₯ π‘’βˆ’π‘–πœ”π‘‘

Inside the quantum well:

π‘˜π‘› =π‘›πœ‹

𝐿

νœ€π‘› =ℏ2π‘˜π‘›

2

2π‘š=ℏ2𝑛2πœ‹2

2π‘šπΏ2

Page 19: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Infinite square quantum well

2016-08-08 19

πœ“ π‘₯, 𝑑 =2

𝐿sin π‘˜π‘›π‘₯ π‘’βˆ’π‘–πœ”π‘‘

Inside the quantum well:

νœ€π‘› = 𝐸𝑐 +ℏ2π‘˜π‘›

2

2π‘š= 𝐸𝑐 +

ℏ2𝑛2πœ‹2

2π‘š0π‘šβˆ—πΏ2

π‘˜π‘› =π‘›πœ‹

𝐿

𝐸𝑐

νœ€1 = 𝐸𝑔 +ℏ2πœ‹2

2π‘š0π‘šβˆ—πΏ2

νœ€2 = 𝐸𝑐 +2ℏ2πœ‹2

π‘š0π‘šβˆ—πΏ2

νœ€3 = 𝐸𝑐 +9ℏ2πœ‹2

2π‘š0π‘šβˆ—πΏ2

Page 20: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Bandgap engineering

2016-08-08 20

W jaki sposób możemy zmieniać strukturę pasmową heterostruktury:‒ wybierając materiał‒ kontrolując skład‒ kontrolując naprężenie

Page 21: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Giacomo Scalari

2016-08-08 21

Page 22: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Giacomo Scalari

2016-08-08 22

Page 23: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Giacomo Scalari

2016-08-08 23

Page 24: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Giacomo Scalari

2016-08-08 24

Page 25: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Finite potential well – square well

2016-08-08 25

Inside the well:

πœ“ 𝑧, 𝑑 = 𝐢 α‰Šcos π‘˜π‘›π‘§

sin π‘˜π‘›π‘§π‘’βˆ’π‘–πœ”π‘›π‘‘

βˆ’π‘Ž

2< 𝑧 <

π‘Ž

2

The barrier:

πœ“ 𝑧 = 𝐷 exp(Β±πœ…π‘›π‘§)

ℏ2πœ…2

2π‘š π‘šπ΅= 𝐸𝐡 βˆ’ 𝐸𝑛 = 𝐡

π‘˜π‘› =1

ℏ2π‘šπ‘šπ‘Š 𝐸𝑛 βˆ’ πΈπ‘Š

πœ…π‘› =1

ℏ2π‘šπ‘šπ΅ 𝐸𝐡 βˆ’ 𝐸𝑛

βˆ’β„2

2π‘š0π‘šπ‘Š

𝑑2

𝑑𝑧2πœ“ 𝑧 = 𝐸𝑛 βˆ’ πΈπ‘Š πœ“ 𝑧

ቀ1

π‘šπ΅

π‘‘πœ“

𝑑𝑧z=

a2

= ቀ1

π‘šπ‘Š

π‘‘πœ“

𝑑𝑧z=

a2

Matching conditions:

πΆπ‘˜

π‘šπ‘Š

βˆ’sin π‘˜π‘›π‘Ž

2

cos π‘˜π‘›π‘Ž

2

= βˆ’π·πœ…

π‘šπ΅exp π‘˜π‘›

π‘Ž

2

Page 26: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Finite potential well – square well

2016-08-08 26

THE DIFFERENT mass in the well and in the barrier:

Page 27: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Harmonic potential

2016-08-08 27

νœ€π‘› = 𝑛 βˆ’1

2β„πœ”0𝑉 𝑧 =

1

2𝐾𝑧2 =

1

2π‘šπœ”0

2𝑧2βˆ’β„2

2π‘š

𝑑2

𝑑𝑧2+ 𝑉(𝑧) πœ“ 𝑧 = νœ€πœ“ 𝑧

Page 28: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Quantum harmonic oscillator

2016-08-08 28

Nat. Phys. 8, 190, (2012)

Page 29: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Triangular well

2016-08-08 29

βˆ’β„2

2π‘š

𝑑2

𝑑𝑧2+ 𝑒𝐹𝑧 πœ“ 𝑧 = νœ€πœ“ 𝑧

Page 30: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

WKB approximation

2016-08-08 30

πΈπœ“ π‘₯

carrier energy

𝑉(π‘₯)

π‘₯

π‘₯𝐿

πœ“ π‘₯ ~2

π‘˜ π‘₯cos ΰΆ±

π‘₯𝐿

π‘₯

π‘˜ π‘₯β€² 𝑑π‘₯β€² βˆ’πœ‹

4, π‘₯ ≫ π‘₯𝐿

πœ“ π‘₯ ~1

πœ… π‘₯exp βˆ’ΰΆ±

π‘₯𝐿

π‘₯

πœ… π‘₯β€² 𝑑π‘₯β€² , π‘₯ β‰ͺ π‘₯𝐿

WKB approximation (Wentzel – Krammers – Brillouin) – for slowly varying potential

Page 31: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Coulomb potential in 2D

2016-08-08 31

Radial therm:

O! joj-joj-joj! (some substitutions, derivations nad equations):

Finally:

π‘…π‘¦βˆ— =𝑒2

4πœ‹νœ€π‘Ÿνœ€0

2π‘šβˆ—

2ℏ2=1

2

𝑒2

4πœ‹νœ€0νœ€π‘Ÿπ‘Žπ΅βˆ— =

π‘šβˆ—

π‘š0

𝑅𝑦

νœ€π‘Ÿ2

𝐸𝑛 = βˆ’π‘…π‘¦βˆ—

𝑛 βˆ’12

2

π‘Žπ΅βˆ— = νœ€π‘Ÿ

π‘š0

π‘šβˆ—

For Hydrogen 𝑅𝑦 = 13.6 eV and π‘Žπ΅ = 0.053 nm

For GaAs semiconductor π‘…π‘¦βˆ— β‰ˆ 5 meV and π‘Žπ΅βˆ— β‰ˆ 10 nm

Page 32: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Polaritons

2016-08-08 32

http://www.stanford.edu/group/yamamotogroup/research/EP/EP_main.html

Page 33: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Time-dependent SchrΓΆdinger equation:

Time-independent potential

πœ“ π‘₯, 𝑑 = π΄πœ‘(π‘₯)π‘’βˆ’π‘–πΈπ‘‘/ℏ𝐻0 = βˆ’β„2

2π‘š

πœ•2

πœ•π‘₯2+π‘ˆ(π‘₯)

Time-independent potential 𝐻 = 𝐻0 + 𝑉(𝑑)

𝑉(𝑑) = α‰Šπ‘Š 𝑑0

dla 0 ≀ 𝑑 ≀ 𝜏dla 𝑑 < 0 i 𝑑 > 𝜏

The simplest case:

t0 t

π‘–β„πœ•

πœ•π‘‘πœ“ = 𝐻0 + 𝑉(𝑑) πœ“ π‘₯, 𝑑 =

𝑛

𝐴𝑛(𝑑)πœ‘π‘›(π‘₯)π‘’βˆ’π‘–πΈπ‘›π‘‘/ℏ

By analogy

2016-08-08 33

Time-dependent perturbation theory

Page 34: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Summary –Fermi golden rule

π‘Š 𝑑 = π‘€Β±π‘’Β±π‘–πœ”π‘‘

0 ≀ 𝑑 ≀ 𝜏

Transitions are possible only for states, for which

π‘ƒπ‘›π‘š =π“Œπ‘›π‘š

𝜏=2πœ‹

ℏ𝑛 𝑀± π‘š

2

𝛿 𝐸𝑛 βˆ’ πΈπ‘š Β± β„πœ”

πΈπ‘š = 𝐸𝑛 Β± β„πœ”

The probability of transition per unit time:

π‘ƒπ‘šπ‘› =π“Œπ‘šπ‘›

𝜏=2πœ‹

β„π‘š π‘Š 𝑛 2𝛿 πΈπ‘š βˆ’ 𝐸𝑛

π‘Š 𝑑 = π‘Š

0 ≀ 𝑑 ≀ 𝜏

Transitions are possible only for states, for which

πΈπ‘š = 𝐸𝑛

The perturbation in a form of an electromagnetic wave:

π΄π‘›π‘š =πœ”π‘›π‘š

3𝑒2

3πœ‹νœ€0ℏ𝑐3 π‘š Τ¦π‘Ÿ 𝑛 2 =

4𝛼

3

πœ”π‘›π‘š3

𝑐2π‘š Τ¦π‘Ÿ 𝑛 2

π‘ƒπ‘›π‘š = π΄π‘›π‘šπ›Ώ 𝐸𝑛 βˆ’ πΈπ‘š Β± β„πœ”

2016-08-08 34

Page 35: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Selction rules in condensed matter

8/8/2016 35

Proof sketchBloch function of a carrier in the crystal:

Ξ¨ Τ¦π‘Ÿ =

𝑛,π‘˜

𝑐𝑛,π‘˜π‘’π‘›,π‘˜ Τ¦π‘Ÿ π‘’π‘–π‘˜ Τ¦π‘Ÿ

Ξ¨c Τ¦π‘Ÿ β‰ˆ

π‘˜

𝑐1,π‘˜π‘’Ξ“6,0 Τ¦π‘Ÿ π‘’π‘–π‘˜ Τ¦π‘Ÿ = 𝑒Γ6,0 Τ¦π‘Ÿ 𝐹𝑒 Τ¦π‘Ÿ

For the electron:

For the hole:

Ξ¨v Τ¦π‘Ÿ β‰ˆ

𝐽𝑧=Β±3/2,Β±1/2,π‘˜

𝑐𝐽𝑧,π‘˜π‘’Ξ“8,𝐽𝑧 Τ¦π‘Ÿ π‘’π‘–π‘˜ Τ¦π‘Ÿ =

𝐽𝑧=Β±3/2,Β±1/2,π‘˜

𝑒Γ8,𝐽𝑧 Τ¦π‘Ÿ 𝐹𝐽𝑧 Τ¦π‘Ÿ

Intersubband dipole optical transitions:

Ξ¨c Τ¦π‘Ÿ Ԧ𝑝 Ξ¨v,𝐽𝑧 Τ¦π‘Ÿ = 𝑒Γ6,0 Τ¦π‘Ÿ 𝑒Γ8,𝐽𝑧 Τ¦π‘Ÿ 𝐹𝑒 Τ¦π‘Ÿ Ԧ𝑝 𝐹𝐽𝑧 Τ¦π‘Ÿ + 𝑒Γ6,0 Τ¦π‘Ÿ Ԧ𝑝 𝑒Γ8,𝐽𝑧 Τ¦π‘Ÿ 𝐹𝑒 Τ¦π‘Ÿ 𝐹𝐽𝑧 Τ¦π‘Ÿ

Page 36: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Opticial transitions

2016-08-08 36

𝐸𝑓 final energy

𝐸𝑖 initial energy

𝐸𝑓 = 𝐸𝑖 + ℏ𝑐𝑄 energy conservation rule

𝐾𝑓 = 𝐾𝑖 + 𝑄 momentum conservation rule

Photon momentum β„πœ” = ℏ𝑐𝑄. For β„πœ” = 1 eV we got 𝑄 β‰ˆ 107π‘šβˆ’1. The size of the Brillouin

zone is aboutπœ‹

π‘Žβ‰ˆ

πœ‹

0.5 π‘›π‘š= 1010π‘šβˆ’1. Therefore 𝐾𝑓 = 𝐾𝑖 + 𝑄 β‰ˆ 𝐾𝑖

Page 37: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Opticial transitions

2016-08-08 37

νœ€π‘’,𝑛𝑒 = πΈπ‘πΊπ‘Žπ΄π‘  +

ℏ2πœ‹2𝑛𝑒2

2π‘š0π‘šπ‘’π‘Ž2

νœ€β„Ž,π‘›β„Ž = πΈπ‘£πΊπ‘Žπ΄π‘  βˆ’

ℏ2πœ‹2π‘›β„Ž2

2π‘š0π‘šβ„Žπ‘Ž2

β„πœ”π‘› = νœ€π‘’,𝑛𝑒 βˆ’ νœ€β„Ž,π‘›β„Ž = πΈπ‘”πΊπ‘Žπ΄π‘  +

ℏ2πœ‹2𝑛2

2π‘š0π‘Ž2

1

π‘šπ‘’+

1

π‘šβ„Ž= 𝐸𝑔

πΊπ‘Žπ΄π‘  +ℏ2πœ‹2𝑛2

2π‘š0π‘šπ‘’β„Žπ‘Ž2

1

π‘šπ‘’β„Ž=

1

π‘šπ‘’+

1

π‘šβ„ŽOptical effective mass

Page 38: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

THE ARTICLE

2016-08-08 38

Page 39: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Low dimensional structures

2016-08-08 39

The particle moves in the well which potential depends on π’Œ, in fact π‘˜ = π’Œ

βˆ’β„2

2π‘š0 π‘šπ‘Š

𝑑2

𝑑𝑧2+

ℏ2π’Œ2

2π‘š0 π‘šπ‘Š+ πΈπ‘Š 𝑒𝑛 𝑧 = νœ€π‘’π‘› 𝑧

βˆ’β„2

2π‘š0 π‘šπ΅

𝑑2

𝑑𝑧2+

ℏ2π’Œ2

2π‘š0 π‘šπ΅+ 𝐸𝐡 𝑒𝑛 𝑧 = νœ€π‘’π‘› 𝑧

𝑉0 π‘˜ = 𝐸𝐡 βˆ’ πΈπ‘Š +ℏ2π‘˜2

2π‘š0

1

π‘šπ΅βˆ’

1

π‘šπ‘Š

The particle gains partially the effective mass of the barrier:

𝐸𝑛 π‘˜ = νœ€π‘›(π‘˜) +ℏ2π‘˜2

2π‘š0π‘šπ‘Šβ‰ˆ νœ€π‘›(π‘˜ = 0) +

ℏ2π‘˜2

2π‘š0π‘šπ‘’π‘“π‘“

π‘šπ‘’π‘“π‘“ β‰ˆ π‘šπ‘Šπ‘ƒπ‘Š +π‘šπ΅π‘ƒπ΅

the probability of finding a particle

E.g. in GaAs-AlGaAs heterostructureπ‘šπ΅ > π‘šπ‘Š thus the well gets β€žshallow”

energy of the bound state depends on π‘˜

Page 40: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Low dimensional structures

2016-08-08 40

The particle moves in the well which potential depends on π’Œ, in fact π‘˜ = π’Œ

βˆ’β„2

2π‘š0 π‘šπ‘Š

𝑑2

𝑑𝑧2+

ℏ2π’Œ2

2π‘š0 π‘šπ‘Š+ πΈπ‘Š 𝑒𝑛 𝑧 = νœ€π‘’π‘› 𝑧

βˆ’β„2

2π‘š0 π‘šπ΅

𝑑2

𝑑𝑧2+

ℏ2π’Œ2

2π‘š0 π‘šπ΅+ 𝐸𝐡 𝑒𝑛 𝑧 = νœ€π‘’π‘› 𝑧

𝑉0 π‘˜ = 𝐸𝐡 βˆ’ πΈπ‘Š +ℏ2π‘˜2

2π‘š0

1

π‘šπ΅βˆ’

1

π‘šπ‘Š

The particle gains partially the effective mass of the barrier:

𝐸𝑛 π‘˜ = νœ€π‘›(π‘˜) +ℏ2π‘˜2

2π‘š0π‘šπ‘Šβ‰ˆ νœ€π‘›(π‘˜ = 0) +

ℏ2π‘˜2

2π‘š0π‘šπ‘’π‘“π‘“

π‘šπ‘’π‘“π‘“ β‰ˆ π‘šπ‘Šπ‘ƒπ‘Š +π‘šπ΅π‘ƒπ΅

the probability of finding a particle

E.g. in GaAs-AlGaAs heterostructureπ‘šπ΅ > π‘šπ‘Š thus the well gets β€žshallow”

energy of the bound state depends on π‘˜

Page 41: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Quantum wire

2016-08-08 41

Marc Baldo MIT OpenCourseWare Publication May 2011

𝐸𝑛 π‘˜π‘₯, π‘˜π‘¦ = νœ€π‘š,𝑛 +ℏ2π‘˜π‘§

2

2π‘š

πœ“π‘˜π‘₯,π‘š,𝑛 π‘₯, 𝑦, 𝑧 = π‘’π‘š,𝑛 π‘₯, 𝑦 exp π‘–π‘˜π‘§π‘§ = albo np. = 𝑒𝑛,𝑙(π‘Ÿ, πœƒ) exp π‘–π‘˜π‘§π‘§

Page 42: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Quantum wire

2016-08-08 42

Marc Baldo MIT OpenCourseWare Publication May 2011

𝐸𝑛 π‘˜π‘₯, π‘˜π‘¦ = νœ€π‘š,𝑛 +ℏ2π‘˜π‘§

2

2π‘š

πœ“π‘˜π‘₯,π‘š,𝑛 π‘₯, 𝑦, 𝑧 = π‘’π‘š,𝑛 π‘₯, 𝑦 exp π‘–π‘˜π‘§π‘§ = albo np. = 𝑒𝑛,𝑙(π‘Ÿ, πœƒ) exp π‘–π‘˜π‘§π‘§

Square quantum well 2D 𝐿π‘₯𝐿𝑦, infinite potential:

πœ“π‘˜π‘₯,π‘š,𝑛 π‘₯, 𝑦, 𝑧 = π‘’π‘š,𝑛 π‘₯, 𝑦 exp π‘–π‘˜π‘§π‘§ = exp π‘–π‘˜π‘šπ‘₯ exp π‘–π‘˜π‘›π‘¦ exp π‘–π‘˜π‘§π‘§

With boundary conditions 𝐿π‘₯π‘˜π‘š = 𝑛π‘₯πœ‹ and πΏπ‘¦π‘˜π‘› = π‘›π‘¦πœ‹ (dicrete spectrum)

Page 43: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Quantum wire

2016-08-08 43

Rectangular wire π‘Ž Γ— 𝑏 – solutions like: νœ€π‘›π‘₯,𝑛𝑦 =

ℏ2πœ‹2

2π‘š

𝑛π‘₯2

𝐿π‘₯2 +

𝑛𝑦2

𝐿𝑦2

http://wn.com/2d_and_3d_standing_wave

Page 44: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Quantum wells 2D and 3D

2016-08-08 44

Cylindrical well

htt

p:/

/ww

w.a

lmad

en.ib

m.c

om

/vis

/stm

/co

rral

.htm

l#st

m1

6low temperature scanning tunnelingmicroscope (STM)

Page 45: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Quantum wells 2D and 3D

2016-08-08 45

htt

p:/

/ww

w.a

lmad

en.ib

m.c

om

/vis

/stm

/co

rral

.htm

l#st

m1

6low temperature scanning tunnelingmicroscope (STM)

Cylindrical well

Page 46: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Harmonic potential 2D

2016-08-08 46

𝐸𝑛π‘₯ = β„πœ”0 𝑛π‘₯ +

1

2in the π‘₯-direction and the same in 𝑦

𝐸𝑛𝑦= β„πœ”0 𝑛𝑦 +

1

2

𝐸𝑛 = 𝐸𝑛π‘₯ + 𝐸𝑛

𝑦= β„πœ”0 𝑁 + 1

Degeneracy? 𝑁 = 𝑛π‘₯ + 𝑛𝑦

Page 47: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Harmonic potential 2D

2016-08-08 47

𝐸𝑛π‘₯ = β„πœ”0 𝑛π‘₯ +

1

2

𝐸𝑛𝑦= β„πœ”0 𝑛𝑦 +

1

2

𝐸𝑛 = 𝐸𝑛π‘₯ + 𝐸𝑛

𝑦= β„πœ”0 𝑁 + 1

𝑡 (𝒏𝒙, π’π’š)

0 (0,0)

1 (1,0) (0,1)

2 (2,0) (1,1) (0,2)

3 (3,0) (2,1) (1,2) (0,3)

𝑔𝑁 = 𝑁 + 1

𝑁 = 𝑛π‘₯ + 𝑛𝑦

in the π‘₯-direction and the same in 𝑦

Degeneracy?

Page 48: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Density of states

2016-08-08 48

The density of states in π‘˜-space of 𝑛 dimension (and the unite volume)

kx

ky

Fermi sphereT=0 K

πœŒπ‘˜π‘›π· = 2

1

2πœ‹

𝑛

𝜌3𝐷 𝐸 𝑑𝐸 = πœŒπ‘˜3π·π‘‘π‘˜ = 2

1

2πœ‹

3

4πœ‹π‘˜2π‘‘π‘˜

πœŒπ‘3𝐷 𝐸 =

1

2πœ‹22π‘š0π‘šπ‘

βˆ—

ℏ2

3/2

𝐸 βˆ’ 𝐸𝑐

πœŒπ‘£3𝐷 𝐸 =

1

2πœ‹22π‘š0π‘šβ„Ž

βˆ—

ℏ2

3/2

𝐸𝑣 βˆ’ 𝐸

For a spherical and parabolic band:

3D case

Density of states Number of states per unit energy πœŒπ‘›π·(𝐸) depends on the dimension

2πœ‹

𝐿𝑦 2πœ‹

𝐿π‘₯

Page 49: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

2016-08-08 49

𝐸𝑛 π‘˜π‘₯, π‘˜π‘¦ = νœ€π‘› +ℏ2π‘˜π‘₯

2

2π‘š+ℏ2π‘˜π‘¦

2

2π‘š

πœ“π‘˜π‘₯,π‘˜π‘¦,𝑛 π‘₯, 𝑦, 𝑧 = exp π‘–π‘˜π‘₯π‘₯ exp π‘–π‘˜π‘¦π‘¦ 𝑒𝑛 𝑧 = πœ“π’Œ,𝑛 𝒓, 𝑧 = exp π‘–π’Œ βˆ™ 𝒓 𝑒𝑛 𝑧

𝐸𝑛 π’Œ = νœ€π‘› +ℏ2π’Œ2

2π‘š

Density of states – 2D

Page 50: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

1D density of states

2016-08-08 50

𝜌1𝐷 𝐸 𝑑𝐸 = πœŒπ‘˜1π·π‘‘π‘˜ = 2

1

2πœ‹

1

2 π‘‘π‘˜

𝜌1𝐷 𝐸 𝑑𝐸 =2

πœ‹

π‘š0π‘šβˆ—

2ℏ2

π‘Žπ‘₯,π‘Žπ‘¦

πœƒ 𝐸 βˆ’ πΈπ‘Žπ‘₯,π‘Žπ‘¦

𝐸 βˆ’ πΈπ‘Žπ‘₯,π‘Žπ‘¦

𝑑𝐸

for a spherical and parabolic band:

Mar

c B

ald

oM

IT O

pen

Co

urs

eWar

eP

ub

licat

ion

May

20

11

Density of states – 1D

Page 51: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

The Fermi-Dirac distribution

-0.1

-0.0

50

0.0

50.1

0.1

50.2

0

0.2

0.4

0.6

0.81

Energ

ia (

eV

)

Prawdopodobienstwo obsadzenia

1K

100K

300K

k

Occupation probability2016-08-08 51

𝑓0 =1

π‘’πΈβˆ’πΈπΉπ‘˜π΅π‘‡ + 1

The probability that a state of the energy 𝐸 will be occupiedEF – chemical potential

Page 52: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Electrons statistics in crystals

2016-08-08 52

The case of a semiconductor, in which both the electron gas and hole gas are far from the degeneracy:

the probability of filling of the electronic states:

𝑓𝑒 β‰ˆ π‘’βˆ’

𝐸𝐺2π‘˜π΅π‘‡

βˆ’πΈπ‘’π‘˜π΅π‘‡

+πœ‰

π‘˜π΅π‘‡

and of holes π‘“β„Ž = 1 βˆ’ 𝑓𝑒

π‘“β„Ž β‰ˆ π‘’βˆ’

𝐸𝐺2π‘˜π΅π‘‡

βˆ’πΈβ„Žπ‘˜π΅π‘‡

βˆ’πœ‰

π‘˜π΅π‘‡

ΰΆ±

0

∞

π‘₯π‘’βˆ’π‘₯ 𝑑π‘₯ =πœ‹

2

Thus:

𝑛 πœ‰ = 2π‘šπ‘’βˆ—π‘˜π΅π‘‡

2πœ‹β„2

3/2

π‘’βˆ’

𝐸𝐺2π‘˜π΅π‘‡ β‹… 𝑒

πœ‰π‘˜π΅π‘‡ = 𝑁𝑐 𝑇 𝑒

βˆ’ πΈπ‘βˆ’πœ‰π‘˜π΅π‘‡

𝑝 πœ‰ = 2π‘šβ„Žβˆ—π‘˜π΅π‘‡

2πœ‹β„2

3/2

π‘’βˆ’

𝐸𝐺2π‘˜π΅π‘‡ β‹… 𝑒

βˆ’πœ‰

π‘˜π΅π‘‡ = 𝑁𝑣 𝑇 π‘’βˆ’ πœ‰βˆ’πΈπ‘£π‘˜π΅π‘‡

𝐸 =𝐸𝐺2+ 𝐸𝑒

𝐸 = βˆ’πΈπΊ2βˆ’ πΈβ„Ž πΈβ„Ž

𝐸𝑒𝐸𝑐

𝐸𝑣

Page 53: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

The occupation of impurity levels

8/8/2016 53

The ratio of the probability of finding dopant / defect of 𝑛 + 1 electrons and of 𝑛 electrons:

𝑝𝑛+1𝑝𝑛

=𝑁𝑛+1/π‘π‘‘π‘œπ‘‘π‘Žπ‘™π‘π‘›/π‘π‘‘π‘œπ‘‘π‘Žπ‘™

=σ𝑗:𝑛𝑗=𝑛+1

π‘’βˆ’π›½ πΈπ‘—βˆ’ 𝑛+1 πœ‰

Οƒπ‘˜;π‘›π‘˜=π‘›π‘’βˆ’π›½ πΈπ‘˜βˆ’π‘›πœ‰

=𝑔𝑛+1𝑔𝑛

β‹… π‘’βˆ’π›½ 𝐸𝑛+1βˆ’πΈπ‘› βˆ’πœ‰

σ𝑛𝑁𝑛 = 𝑁 – impurity (dopants) concentration

𝐸𝑛+1 i 𝐸𝑛 – the lowest of all subsystem energies 𝐸𝑗with 𝑛 + 1 and 𝑛 electrons respectively

Successive impurity energy levels are filled with the increase of the Fermi level.

𝐸𝑛+1/𝑛 – so-called energy level of the impurity/ defect β€žnumbered” by charge states 𝑛 + 1 and 𝑛

𝑔𝑛+1, 𝑔𝑛 – so-called degeneration of states of subsystem of 𝑛 + 1 and 𝑛 electrons

Page 54: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Dopants, impurities and defects

x

The carrier concentration in extrinsicsemiconductor (niesamoistny)Consider a semiconductor, in which:NA – concentration of acceptorsND – concentration of donorspA – concentration of neutral acceptorsnD – concentration of neutral donorsnc – concentration of electrons in conductionbandpv – concentration of holes in valence band

From the charge neutrality of the crystal:

nc +(NA - pA)= pv + (ND - nD)nc + nD = (ND - NA)+ pv + pA

2016-08-08 54

Doping

Eg/2

-Eg/2

0

ED

EA

EF

Ele

ctro

nen

erg

y conduction band

vallence band

donor level

acceptor level

Page 55: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Dopants, impurities and defects

x2016-08-08 55

Eg/2

-Eg/2

0

ED

EA

EF

Ele

ctro

nen

erg

y conduction band

vallence band

donor level

acceptor level

Equation of Charge Neutrality

π‘’βˆ’

𝐸𝑔2π‘˜π΅π‘‡

π‘’βˆ’

𝐸𝐷2π‘˜π΅π‘‡

Page 56: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

The construction of energy band diagrams

2016-08-08 56

ZΕ‚Δ…cze metal-metal

Electrical properties of materials Solymar, Walsh (6.11)Pg. 143

Suppose, that πœ™2 βˆ’ πœ™1 β‰ˆ 1 𝑒𝑉Estimate the number of electrons that pass from one metal to another to create equilibrium potential difference. Assume that the distance between the metals is 5 Γ— 10βˆ’10π‘š.

Electric field: 𝐸 =Ξ”πœ™

𝑑= 2 Γ— 109

𝑉

π‘š

The surface charge: 𝜎 = νœ€0𝐸

The concentration: 𝑛2𝐷 =𝜎

𝑒= 1.12 Γ— 1013π‘π‘šβˆ’2

The concnetration in metal𝑛3𝐷 = 5 Γ— 1022π‘π‘šβˆ’3

𝑛2𝐷 = 1.5 Γ— 1015π‘π‘šβˆ’2

Within the width of 1 lattice parameter ~1% of charge

Page 57: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

The doping of semiconductors

2016-08-08 57

π‘₯𝑝

π‘₯𝑛

+

βˆ’

𝑁𝐷𝑁𝐴

𝐸

π‘₯𝑛π‘₯𝑝

πΈπ‘šπ‘Žπ‘₯ = βˆ’1

πœ–π‘„

𝑝 𝑛

Poisson equation:𝑑2π‘ˆ

𝑑π‘₯2= βˆ’

1

πœ–πœŒπ‘  =

1

πœ–π‘’π‘π΄

𝛻𝐷 = πœŒπ‘  - net charge density

From the Maxwell equations:

𝐸 = βˆ’π›»πœ™ = βˆ’π›»π‘ˆ

𝛻𝐷 = νœ€0νœ€ 𝛻𝐸 = βˆ’νœ€0νœ€ 𝛻2πœ™ ≝ βˆ’πœ–Ξ”π‘ˆ = πœŒπ‘ 

Thus the electric field in the range π‘₯𝑝, 0 :

𝐸 = βˆ’π‘‘π‘ˆ

𝑑π‘₯=1

πœ–π‘’π‘π΄ π‘₯ + 𝐢 =

1

πœ–π‘’π‘π΄ π‘₯ βˆ’ π‘₯𝑝

Similarly for 0, π‘₯𝑛 :

𝐸 = βˆ’π‘‘π‘ˆ

𝑑π‘₯=1

πœ–π‘’π‘π· π‘₯ + 𝐢 =

1

πœ–π‘’π‘π· π‘₯ βˆ’ π‘₯𝑛

Charge conservation𝑒𝑁𝐴π‘₯𝑝 = 𝑒𝑁𝐷π‘₯𝑛 = 𝑄

Net charge densities

Page 58: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

The doping of semiconductors

2016-08-08 58

π‘₯𝑝

π‘₯𝑛

+

βˆ’

𝑁𝐷𝑁𝐴

𝐸

π‘₯𝑛π‘₯𝑝

πΈπ‘šπ‘Žπ‘₯ = βˆ’1

πœ–π‘„

π‘₯𝑝 π‘₯𝑛

𝑒

2νœ€π‘π΄π‘₯𝑃

2

π‘ˆπ‘ˆ0 =𝑒

2νœ€π‘π΄π‘₯𝑃

2 + 𝑁𝐷π‘₯𝑛2

The total width of the depletion region 𝑀

𝑀 = π‘₯𝑛 βˆ’ π‘₯𝑝 =2νœ€π‘ˆ0

𝑒 𝑁𝐴 + 𝑁𝐷

𝑁𝐴𝑁𝐷

+𝑁𝐷𝑁𝐴

Charge conservation𝑒𝑁𝐴π‘₯𝑝 = 𝑒𝑁𝐷π‘₯𝑛 = 𝑄

If, say, 𝑁𝐴 ≫ 𝑁𝐷 (𝑝-type doping) then:

𝑀 =2πœ€π‘ˆ0

𝑒𝑁𝐷i π‘₯𝑛 > π‘₯𝑝

if the 𝑝-region is more highly doped, practically all of thepotential drop is in the 𝑛-region. The less donors are the wider this region is. (for 𝑁𝐴 β‰ͺ 𝑁𝐷 is vice-versa!)

𝑝 𝑛

E.g. 𝑁𝐷 = 1015cm-3 for typical π‘ˆ0 = 0.3 V We have 𝑀 β‰ˆ 180 nm. If the change from acceptor impurities to donor impurities is gradual, then 𝑀 β‰ˆ 1 πœ‡m

Net charge densitiesDepletion regions

Page 59: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Heterojunction

2016-08-08 59

π‘₯𝑝 π‘₯𝑛

𝑒

2νœ€π‘π΄π‘₯𝑃

2

π‘ˆπ‘ˆ0 =𝑒

2νœ€π‘π΄π‘₯𝑃

2 + 𝑁𝐷π‘₯𝑛2

π‘₯𝑝 π‘₯𝑛

π‘’π‘ˆ0 (𝑒 < 0)

𝐸𝑔

Charge conservation𝑒𝑁𝐴π‘₯𝑝 = 𝑒𝑁𝐷π‘₯𝑛 = 𝑄

TUTAJ 20151126

Page 60: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

The construction of energy band diagrams

2016-08-08 60

Restore ഀ𝐸𝑐𝐴 on side 𝐸𝑐

𝐴 and ഀ𝐸𝑣𝐴 on side 𝐸𝑣

𝐴, including discontinuities at the junction.

Page 61: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

The current and charge density

2016-08-08 61

Current density: 𝐽 Τ¦π‘Ÿ, 𝑑 = 𝐽 Τ¦π‘Ÿ =ℏ π‘ž

2 𝑖 π‘šΞ¨βˆ—π›»Ξ¨ βˆ’Ξ¨π›»Ξ¨βˆ—

Ξ¨ π‘₯, 𝑑 = 𝐴+π‘’π‘–π‘˜π‘₯ + π΄βˆ’π‘’

βˆ’π‘–π‘˜π‘₯ π‘’βˆ’π‘–πœ”π‘‘

𝐽 Τ¦π‘Ÿ =ℏ π‘ž π‘˜

π‘šπ΄+

2 βˆ’ π΄βˆ’2

In the case of de Broigle wave:

In the case of the evanescent (decaying) wave: Ξ¨ π‘₯, 𝑑 = 𝐡+π‘’πœ…π‘₯ + π΅βˆ’π‘’

πœ…π‘₯ π‘’βˆ’π‘–πœ”π‘‘

𝐽 Τ¦π‘Ÿ =ℏ π‘ž πœ…

𝑖 π‘šπ΅+π΅βˆ’

βˆ— βˆ’ 𝐡+βˆ—π΅βˆ’ =

2 ℏ π‘ž πœ…

π‘šIm 𝐡+π΅βˆ’

βˆ—

Only the superpositoion of + i –amplitudes gives real current!

The calssical wave:

each wave carry current

Page 62: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Tunnelling

2016-08-08 62

𝐴 π‘’π‘–π‘˜1𝑧

𝐡 π‘’βˆ’π‘–π‘˜1𝑧

𝐢 π‘’π‘–π‘˜2𝑧

𝐷 π‘’βˆ’π‘–π‘˜2𝑧b

arri

er

𝑇 21 (0) =1/π‘‘βˆ— βˆ’π‘Ÿβˆ—/π‘‘βˆ—

βˆ’π‘Ÿ/𝑑 1/𝑑

𝐢𝐷

= 𝑇 21 𝐴𝐡

=𝑇11 𝑇12𝑇12βˆ— 𝑇11

βˆ—π΄π΅

π‘Ÿ = βˆ’π‘‡12βˆ—

𝑇11βˆ— 𝑑 = βˆ’

1

𝑇11βˆ—

𝑇 21 𝑑 = π‘’βˆ’π‘–π‘˜2𝑑 00 π‘’π‘–π‘˜2𝑑

𝑇 21 0 π‘’π‘–π‘˜1𝑑 00 π‘’π‘–π‘˜1𝑑

= 𝐴2βˆ’1 𝑑 𝑇 0 𝐴1(𝑑)

The other direction:𝐡𝐴

= 𝑇 12 𝐷𝐢

𝑇 12 (0) =1/π‘‘βˆ— π‘Ÿ/π‘‘π‘Ÿβˆ—/π‘‘βˆ— 1/𝑑

region 1 region 2

Page 63: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Tunnelling

2016-08-08 63

Examples:

𝑇 =4π‘˜1π‘˜2π‘˜1 + π‘˜2

2

𝑅 =π‘˜1 βˆ’ π‘˜2π‘˜1 + π‘˜2

2

𝑇 + 𝑅 = 1

Page 64: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Tunnelling

2016-08-08 64

PrzykΕ‚ady:

𝑇 =4π‘˜1

2π‘˜22

4π‘˜12π‘˜2

2 + π‘˜12 βˆ’ π‘˜2

2 2 sin2 π‘˜2π‘Ž=

= 1 +𝑉02

4𝐸 𝐸 βˆ’ 𝑉0sin2 π‘˜2π‘Ž

βˆ’1

𝑇 =4π‘˜1

2πœ…22

4π‘˜12πœ…2

2 + π‘˜12 + πœ…2

2 2 sinh2 π‘˜2π‘Ž=

= 1 +𝑉02

4𝐸 𝑉0 βˆ’ 𝐸sinh2 πœ…2π‘Ž

βˆ’1

𝐸 > 𝑉0

𝐸 < 𝑉0

Anti-well energy levels!

Page 65: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Tunnelling

2016-08-08 65

𝑑 =𝑑𝐿𝑑𝑅

1 βˆ’ π‘ŸπΏπ‘Ÿπ‘… exp 2π‘–π‘˜π‘Ž

𝑇 = 𝑑 2 =𝑇𝐿𝑇𝑅

1 βˆ’ 𝑅𝐿𝑅𝑅2+ 4 𝑅𝐿𝑅𝑅 sin

2 12πœ™

πœ™ = 2π‘˜π‘Ž + 𝜌𝐿 + πœŒπ‘…

π‘‡π‘π‘˜ =𝑇𝐿𝑇𝑅

1 βˆ’ 𝑅𝐿𝑅𝑅2 β‰ˆ

4𝑇𝐿𝑇𝑅𝑇𝐿 + 𝑇𝑅

2

Page 66: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Tunnelling

2016-08-08 66

𝑇 = 𝑑 2 =𝑇𝐿𝑇𝑅

1 βˆ’ 𝑅𝐿𝑅𝑅2+ 4 𝑅𝐿𝑅𝑅 sin

2 12πœ™

π‘‡π‘π‘˜ =𝑇𝐿𝑇𝑅

1 βˆ’ 𝑅𝐿𝑅𝑅2 β‰ˆ

4𝑇𝐿𝑇𝑅𝑇𝐿 + 𝑇𝑅

2

Page 67: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Tunnelling

2016-08-08 67

𝑇 β‰ˆπ‘‡π‘π‘˜

1 +π›Ώπœ™12πœ™0

2 π‘‡π‘π‘˜ =𝑇𝐿𝑇𝑅

1 βˆ’ 𝑅𝐿𝑅𝑅2 β‰ˆ

4𝑇𝐿𝑇𝑅𝑇𝐿 + 𝑇𝑅

2profil Lorentza

πœ™0 = 𝑇𝐿 + 𝑇𝑅

Page 68: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Quantized conductance

2016-08-08 68

𝑓 𝐸, πœ‡πΏ βˆ’ 𝑓 𝐸, πœ‡π‘… β‰ˆ

β‰ˆ π‘’π‘ˆπœ•π‘“ 𝐸, πœ‡

πœ•πœ‡= βˆ’π‘’π‘ˆ

πœ•π‘“ 𝐸, πœ‡

πœ•πΈ

πœ‡π‘…

πœ‡π‘…

πœ‡π‘…

πœ‡πΏ

πœ‡πΏ

πœ‡πΏ

𝐸𝐿

𝐸𝐿

𝐸𝐿

𝐸𝑅

𝐸𝑅

𝐸𝑅

π‘’π‘ˆ

π‘’π‘ˆ

𝐼 =2𝑒2π‘ˆ

β„ŽΰΆ±πΈπΏ

βˆžπœ•π‘“ 𝐸, πœ‡

πœ•πΈπ‘‡ 𝐸 𝑑𝐸

For metals πœ‡πΏ = πœ‡ +1

2π‘’π‘ˆ i πœ‡π‘… = πœ‡ βˆ’

1

2π‘’π‘ˆ :

𝑒2

β„Ž= 38,7 πœ‡π‘†

β„Ž

𝑒2= 25,8 π‘˜Ξ©

𝐺 =𝑑𝐼

π‘‘π‘ˆ=2𝑒2

β„ŽΰΆ±πΈπΏ

βˆžπœ•π‘“ 𝐸, πœ‡

πœ•πΈπ‘‡ 𝐸 𝑑𝐸 β‰ˆ

2𝑒2

β„Žπ‘‡ πœ‡

Resistance is finite even for the ideal conductor!

Quantized conductance (S – Simens)

Page 69: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Triangular well

2016-08-08 69

𝐸𝑛 =3

2πœ‹ 𝑛 βˆ’

1

4

2/3𝑒𝐹ℏ 2

2π‘š

1/3

http://www.phys.unsw.edu.au/QED/research/2D_scattering.htm

WKB approximation (Wentzel – Krammers – Brillouin) – for slowly varying potential

Page 70: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Quantized conductance

2016-08-08 70

𝑒2

β„Ž= 38,7 πœ‡π‘†πΊ =

𝑑𝐼

π‘‘π‘ˆ=2𝑒2

β„ŽΰΆ±πΈπΏ

βˆžπœ•π‘“ 𝐸, πœ‡

πœ•πΈπ‘‡ 𝐸 𝑑𝐸 β‰ˆ

2𝑒2

β„Žπ‘‡ πœ‡ = 𝐺0𝑇 πœ‡

𝐺 = 𝐺0

𝑛

𝑇𝑛 πœ‡

B. J. van Wees et al. Quantized conductance of point contacts in a two-dimensional electron gas Phys. Rev. Lett. 60, 848–850 (1988)

Page 71: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Quantized conductance

2016-08-08 71

B. J. van Wees et al. Quantum ballistic and adiabatic electron transport studied with quantum point contacts Phys. Rev. B 43, 12431–12453 (1991)

𝐺 =2𝑒2

β„Žπ‘‡ πœ‡ = 𝐺0𝑇 πœ‡

Page 72: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Quantized conductance

2016-08-08 72

R.M. Westervelt, M. A. Topinka et al. Physica E 24 (2004) 63–69

Page 73: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Quantized conductance

2016-08-08 73

𝐺 =2𝑒2

β„Žπ‘‡ πœ‡ = 𝐺0𝑇 πœ‡

M. A. Topinka et al. Nature 410, 183 (2001)

Experiment

Modeling

Page 74: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Coulomb blockade

2016-08-08 74

𝑉𝑏 = 0𝑉𝑔 = 0

𝑉𝑏 = 𝑉1𝑉𝑔 = 0

𝐼

𝑉𝑏

𝑉𝑏 = 𝑉2 < 𝑉1𝑉𝑔 β‰  0

𝑉𝑏 = 0𝑉𝑔 β‰  0

𝑉1𝑉2

Dot behaves like a small capacitor of energy 𝐸𝑐~1

2

𝑒2

𝐢

Page 75: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Coulomb blockade

2016-08-08 75

Clive EmaryTheory of Nanostructures nanoskript.pdf

Page 76: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Scalar and vector fields

2016-08-08 76

Maxwell’s equations in matter

𝛻 Γ— 𝐸 = βˆ’πœ•π΅

πœ•π‘‘

𝛻 Γ— 𝐻 = Ԧ𝑗𝑠𝑀 +πœ•π·

πœ•π‘‘

𝛻𝐷 = πœŒπ‘ π‘€

𝛻𝐡 = 0

𝐡 = πœ‡0𝐻 +𝑀 = πœ‡0 1 + πœ’π‘š 𝐻 = πœ‡π» = πœ‡π‘Ÿπœ‡0𝐻

Ԧ𝑗𝑠𝑀 = ො𝜎𝐸

𝐷 = νœ€0𝐸 + 𝑃 = νœ€0 1 + πœ’π‘’ 𝐸 = νœ€πΈ = νœ€0νœ€π‘ŸπΈ

𝑣2 =1

πœ‡0νœ€0

1

πœ‡π‘Ÿνœ€π‘Ÿ=

𝑐2

πœ‡π‘Ÿνœ€π‘Ÿ=𝑐2

𝑛2

Material equations (linear)

The equations written in the form of a scalar πœ‘ and vector 𝐴 potentials:

𝐡 = 𝛻 Γ— 𝐴

Then 𝛻 Γ— 𝐸 = βˆ’πœ•π΅

πœ•π‘‘= βˆ’

πœ•

πœ•π‘‘π›» Γ— 𝐴 β‡’ 𝛻 Γ— 𝐸 +

πœ•

πœ•π‘‘π›» Γ— 𝐴 = 0 β‡’ 𝛻 Γ— 𝐸 +

πœ• Ԧ𝐴

πœ•π‘‘= 0

If the rotation of the gradient is zero, then: βˆ’π›»πœ‘ = 𝐸 +πœ• Ԧ𝐴

πœ•π‘‘thus 𝐸 = βˆ’π›»πœ‘ βˆ’

πœ• Ԧ𝐴

πœ•π‘‘

Page 77: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Scalar and vector fields

2016-08-08 77

Example:

𝐡 = 𝛻 Γ— 𝐴

We call it the gauge

Landau gauge: field 𝐡 = 0,0, 𝐡𝑧 β‡’ 𝐡𝑧 =πœ•π΄π‘¦

πœ•π‘₯βˆ’

πœ•π΄π‘₯

πœ•π‘¦

𝐸 = βˆ’π›»πœ‘ βˆ’πœ• Ԧ𝐴

πœ•π‘‘

πœ‘ = βˆ’πΈ Τ¦π‘Ÿ + πΆπœ‘ Ԧ𝐴 = βˆ’πΈπ‘‘ + 𝐢𝐴

Ԧ𝐴 β†’ Ԧ𝐴 + π›»πœ’πœ‘ β†’ πœ‘ βˆ’π‘‘πœ’

𝑑𝑑

Not only constants πΆπœ‘ and 𝐢𝐴 we can add for the scalar and vector potentials:

eg.: πœ’ = ±𝐸 Τ¦π‘Ÿπ‘‘

𝐴𝑦 = 𝐡𝑧π‘₯ lub 𝐴π‘₯ = βˆ’π΅π‘§π‘¦

Coulomb gauge: 𝛻 Ԧ𝐴 = 0 field 𝐡 = 0,0, 𝐡𝑧 β‡’ Ԧ𝐴 =1

2𝐡𝑧 βˆ’π‘¦, π‘₯, 0 =

1

2𝐡 Γ— Τ¦π‘Ÿ

(unfortunately distinguishes direction)

(unfortunately complicates calculations)

Lorentz gauge: 𝛻 Ԧ𝐴 +πœ•πœ‘

πœ•π‘‘= 0

Maxwell’s equations in matter

Page 78: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Local density of states

2016-08-08 78

Franz-Keldysh effect - in the electric field optical transitions occur at lower energies - the energy gap is β€žblurred”, the wavefunctions are β€žleaking" into the band gap:

The density of states (in general) can be defined as:

𝑁3𝐷 𝐸, 𝑧 ~π‘š

πœ‹β„32π‘šνœ€0ΰΆ±

βˆ’βˆž

𝐸

𝐴𝑖2𝑒𝐹𝑧 βˆ’ νœ€

νœ€0π‘‘νœ€ =

π‘š

πœ‹β„32π‘šνœ€0 𝐴𝑖′ 𝑠 2 βˆ’ 𝑠 𝐴𝑖 𝑠 2

Page 79: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Homogenous magnetic field

2016-08-08 79

βˆ’β„2

2π‘šπ›»2 βˆ’

𝑖𝑒ℏ

π‘šπ΅π‘₯

πœ•

πœ•π‘¦+

𝑒𝐡π‘₯ 2

2π‘š+ π‘ˆ 𝑧 πœ“ Τ¦π‘Ÿ = πΈπœ“ Τ¦π‘Ÿ

Vector potential does not depend on 𝑦, we can assume the function of the form:

πœ“ Τ¦π‘Ÿ = 𝑀 𝑧 𝑒 π‘₯ exp π‘–π‘˜π‘¦π‘¦

βˆ’β„2

2π‘š

𝑑2

𝑑π‘₯2+1

2π‘š πœ”π‘

2 π‘₯ +β„π‘˜π‘¦

𝑒𝐡

2

𝑒 π‘₯ = νœ€π‘’ π‘₯ πœ”π‘ =𝑒𝐡

π‘šπ‘…π‘ =

𝑣

πœ”π‘=

2π‘šπΈ

𝑒𝐡

Cyclotron radius (gyroradius)Cyclotron frequency

The parabolic potential of the form of π‘₯π‘˜ = βˆ’β„π‘˜π‘¦/𝑒𝐡

π‘˜π‘¦ wave vector. What interesting in νœ€ THERE IS NO π‘˜π‘¦.

Page 80: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Hall effect

2016-08-08 80

𝜎 = π‘›π‘’πœ‡

1

1 + 𝑠2βˆ’π‘ 

1 + 𝑠20

𝑠

1 + 𝑠21

1 + 𝑠20

0 0 1

𝑠 =π‘’π΅πœ

π‘šβˆ—= πœ”π‘πœ

πœ‡ =π‘’πœ

π‘šβˆ—

𝜌 = πœŽβˆ’1 =1

π‘›π‘’πœ‡

1 𝑠 0βˆ’π‘  1 00 0 1

The full coductivity tensor

The full resistivity tensor

𝐸 = πœŒΤ¦π‘— =

𝑗π‘₯π‘›π‘’πœ‡

βˆ’π‘—π‘₯𝐡

𝑛𝑒0

π‘ˆπ‘₯𝑦 = 𝐸𝑦𝑀 =𝐼π‘₯𝑀𝑑

𝐡

𝑛𝑒𝑀 =

𝐼π‘₯𝑑𝑛𝑒

𝐡 = 𝑅𝐻𝐼π‘₯𝐡

𝑑

𝑑

𝑅𝐻 =1

𝑛𝑒

π‘Ž

Hall constant

Page 81: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Homogenous magnetic field

2016-08-08 81

The Landau gauge solution

1

2π‘šΖΈπ‘ βˆ’ π‘ž Ԧ𝐴 Τ¦π‘Ÿ, 𝑑

2+ π‘žπœ‘ Τ¦π‘Ÿ, 𝑑 + π‘ˆ Τ¦π‘Ÿ, 𝑑 πœ“ Τ¦π‘Ÿ, 𝑑 = 𝑖ℏ

𝑑

π‘‘π‘‘πœ“ Τ¦π‘Ÿ, 𝑑

Landau gauge: magnetic field 𝐡 = 0,0, 𝐡𝑧 β‡’ 𝐡𝑧 =πœ•π΄π‘¦

πœ•π‘₯βˆ’

πœ•π΄π‘₯

πœ•π‘¦

Ԧ𝐴 = 0, 𝐡𝑧π‘₯, 0 czyli 𝐴𝑦 = 𝐡𝑧π‘₯ ≝ 𝐡π‘₯

(unfortunately distinguishesdirection)

1

2π‘šβˆ’β„2

πœ•2

πœ•π‘₯2+ βˆ’π‘–β„

πœ•

πœ•π‘¦+ 𝑒𝐡π‘₯

2

βˆ’ ℏ2πœ•2

πœ•π‘§2+ π‘ˆ 𝑧 πœ“ Τ¦π‘Ÿ = πΈπœ“ Τ¦π‘Ÿ

βˆ’β„2

2π‘šπ›»2 βˆ’

𝑖𝑒ℏ

π‘šπ΅π‘₯

πœ•

πœ•π‘¦+

𝑒𝐡π‘₯ 2

2π‘š+ π‘ˆ 𝑧 πœ“ Τ¦π‘Ÿ = πΈπœ“ Τ¦π‘ŸWhich gives:

The evidence of the Lorentz force Parabolic potential!

We assume that in a plane π‘₯𝑦there is no other potential

π‘ž = βˆ’π‘’

Page 82: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Homogenous magnetic field

2016-08-08 82

Solutions νœ€π‘›π‘˜ = 𝑛 βˆ’1

2β„πœ”π‘ + 𝐸𝑛 (does not depend on π‘˜π‘¦; 𝐸𝑛- is any 2D energy).

πœ™π‘›π‘˜ π‘₯, 𝑦 ∝ π»π‘›βˆ’1π‘₯ βˆ’ π‘₯π‘˜π‘™π΅

exp βˆ’π‘₯ βˆ’ π‘₯π‘˜

2

2𝑙𝐡2 exp π‘–π‘˜π‘¦π‘¦

Wave functions are the functions of the oscillator (along π‘₯, of the order of 𝑙𝐡/ 2) and travelling waves (along 𝑦) – weird, right? Why?

The energy does not depend on π‘˜ vector – states of different π‘˜ have the same energy, so they are degenerated (therefore any combination of them does not change the energy).

The density of states is reduced from the constantπ‘š

πœ‹β„2to a series of discrete values 𝛿

given by the equation of νœ€π‘›π‘˜ - they are called Landau levels.

Full energy (including binding potential in 𝑧 direction):

𝑛 = 1, 2, 3…

𝐡

𝐸

𝐸1

𝐸2

𝐸 = 𝐸𝑧 + νœ€π‘›π‘˜ = 𝐸𝑧 + 𝑛 βˆ’1

2β„πœ”π‘

𝑛 = 1, 2, 3…

The 2D case:

Page 83: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Homogenous magnetic field

2016-08-08 83

𝑛 = 1, 2, 3…

Solutions νœ€π‘›π‘˜ = 𝑛 βˆ’1

2β„πœ”π‘ + 𝐸𝑛 (does not depend on π‘˜π‘¦; 𝐸𝑛- is any 2D energy).

πœ™π‘›π‘˜ π‘₯, 𝑦 ∝ π»π‘›βˆ’1π‘₯ βˆ’ π‘₯π‘˜π‘™π΅

exp βˆ’π‘₯ βˆ’ π‘₯π‘˜

2

2𝑙𝐡2 exp π‘–π‘˜π‘¦π‘¦

The 2D case:

Page 84: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Landau levels

2016-08-08 84

The solution of the SchrΓΆdinger equation in a magnetic field gives a discrete spectrum.

What is the number of states per one level? The sample S = 𝐿π‘₯ Γ— 𝐿𝑦, in the Landau gauge for 𝑦

coordnate we have plane wave condition π‘˜ = 2πœ‹/𝐿𝑦 𝑛𝑦 (where 𝑛𝑦 is an integer number).

For π‘₯ coordinate the wavefunction is centered in π‘₯π‘˜ = βˆ’β„π‘˜

𝑒𝐡= βˆ’ 2πœ‹β„π‘›π‘¦/𝑒𝐡𝐿𝑦 .

The condition for π‘₯π‘˜ to be in the sample (rather than outside):

βˆ’πΏπ‘₯ <2πœ‹β„π‘›π‘¦

𝑒𝐡𝐿𝑦< 0 czyli

Ξ¦0 =β„Ž

𝑒= 4.135667516 Γ— 10βˆ’15 Wb

The magnetic flux quantum (pol. flukson) (In a superconductor β„Ž/2𝑒, so this is not a β€žquantum”)

Ξ¦ = 𝐡𝑆 the total magnetic flux in the sample S = 𝐿π‘₯ Γ— 𝐿𝑦

[Wb]=[T m2]

0 < 𝑛𝑦Φ0 < Ξ¦

The amount of allowed states is related to the amount of magnetic flux quanta passing through the sample!

flux

0 < 𝑛𝑦 <𝑒𝐡

β„ŽπΏπ‘₯𝐿𝑦 = 𝑛𝐡𝑆 =

𝑒

β„Žπ΅π‘† =

Ξ¦

Ξ¦0

Page 85: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Landau levels

2016-08-08 85

The Fermi level lies between Landau levels -there is no DOS, change of 𝐸𝐹 does not changeDOS –incompressible states (stany nieΕ›ciΕ›liwe)

The Fermi level lies inside the Landau level –large DOS, change of 𝐸𝐹 strongly affects the DOS – compressible states (stany Ε›ciΕ›liwe)

Page 86: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Landau levels

2016-08-08 86

𝜈 =𝑛2𝐷𝑛𝐡

=β„Žπ‘›2𝐷𝑒𝐡

=Ξ¦0𝑛2𝐷𝐡

= 2πœ‹π‘™π΅2𝑛2𝐷The Fermi level in the magnetic field:

Page 87: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Shubnikov-de Haas effect

08/08/2016 87

Shubnikov-de Haas effect

Density of states oscillates - falls to 0 for 𝜈 = 𝑛 and

is highest for 𝜈 β‰ˆ 𝑛 +1

2- the easiest measurement

is the magnetoresistance 𝑅π‘₯π‘₯.

http://groups.physics.umn.edu/zudovlab/content/sdho.htm

Oscillations depend on the ratio of the Fermi energy 𝐸𝐹 to the cyclotron frequency β„πœ”π‘ = 𝑒𝐡/π‘šβˆ—. Oscillations are periodic in 1/𝐡.

𝜈 =𝑛2𝐷𝑛𝐡

=β„Žπ‘›2𝐷𝑒𝐡

=Ξ¦0𝑛2𝐷𝐡

= 2πœ‹π‘™π΅2𝑛2𝐷

From SdH we can determine the effective mass π‘šβˆ—

and quantum time πœπ‘ž. The amplitude of oscillation is

given byΞ”πœŒπ‘†π‘‘π» = 4𝜌0𝛿 cos 4πœ‹πœˆ

πœ‰ 𝑇

sinh πœ‰ 𝑇exp βˆ’

πœ‹

πœ”π‘πœπ‘ž

πœ‰ 𝑇 = 2πœ‹2π‘˜π‘‡/β„πœ”π‘

Temperature dependence gives π‘šβˆ—, damping πœπ‘ž.

Page 88: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Shubnikov-de Haas effect

2016-08-08 88

Shubnikov-de Haas effect

Density of states oscillates - falls to 0 for 𝜈 = 𝑛 and

is highest for 𝜈 β‰ˆ 𝑛 +1

2- the easiest measurement

is the magnetoresistance 𝑅π‘₯π‘₯.

Page 89: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Integer Quantum Hall Effect (IQHE)

2016-08-08 89

Integer Quantum Hall effect (IQHE) – for 2D gas: if the Fermi level is located in localized statesthe Hall resistance (opΓ³r hallowski) is quantized

𝑅𝐻 =1

𝜈

β„Ž

𝑒2

Page 90: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Quantum dots

2016-08-08 90

𝐸𝑛𝑙 = 2𝑛 + 𝑙 βˆ’ 1 β„πœ”02 +

1

2β„πœ”π‘

2

+1

2β„πœ”π‘ 𝑙

𝑛 = 1, 2, 3… 𝑙 = 0,Β±1,Β±2,Β±3…

Page 91: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Hofstadter butterfly

2016-08-08 91

The Hofstadter butterfly is the energy spectrum of an electron, restricted to move in two-dimensional periodic potential under the influence of a perpendicular magnetic field. The horizontal axis is the energy and the vertical axis is the magnetic flux through the unit cell of the periodic potential. The flux is a dimensionless number when measured in quantum flux units (will call it a). It is an example of a fractal energy spectrum. When the flux parameter a is rational and equal to p/q with p and q relatively prime, the spectrum consists of q non-overlapping energy bands, and therefore q+1 energy gaps (gaps number 0 and q are the regions below and above the spectrum accordingly). When a is irrational, the spectrum is a cantor set.

htt

p:/

/ph

ysic

s.te

chn

ion

.ac.

il/~o

dim

/ho

fsta

dte

r.h

tml

Page 92: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Integer Quantum Hall Effect (IQHE)

2016-08-08 92

Stromer, Nobel Lecture

𝑅𝐻 =1

𝜈

β„Ž

𝑒2

Yu, Cardona

Integer Quantum Hall effect (IQHE) – for 2D gas: if the Fermi level is located in localized statesthe Hall resistance (opΓ³r hallowski) is quantized

Page 93: Summary of the lectureszczytko/LDSN/14_LDSN_2015...Summary of the lecture 2016-08-08 4 9. Tunneling transport Continuity equation. Potential step. Tunneling through the barrier. Transfer

Fractional Quantum Hall Effect (FQHE)

2016-08-08 93

Stromer, Nobel Lecture

𝑅𝐻 =1

πœˆβˆ—β„Ž

𝑒2

Fractional Quantum Hall Effect (FQHE) – for 2D gas 𝜈 ≀ 1: if the Fermi level is located in localized states the Hall resistance (opΓ³r hallowski) is quantized