super-critical accretion? shin mineshige (kyoto univ.) with k. ohsuga, k. vierdayanti, k. ebisawa,...

35
n? n? Shin Mineshige Shin Mineshige (Kyoto Univ.) (Kyoto Univ.) with K. with K. Ohsuga, K. Ohsuga, K. Vierdayanti, K. Vierdayanti, K. Ebisawa, T. Ebisawa, T. Kawaguc Kawaguc hi hi TIARA Workshop TIARA Workshop (29/11/2006) (29/11/2006) 1. 1. General introduction General introduction 2. 2. Slim disk model (simplified model) Slim disk model (simplified model) 3. 3. Observational tests - Case of ULXs Observational tests - Case of ULXs 4. 4. Multi-dimensional effects Multi-dimensional effects

Upload: ralph-hill

Post on 04-Jan-2016

214 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Super-Critical Accretion?Super-Critical Accretion?Shin MineshigeShin Mineshige (Kyoto Univ.)(Kyoto Univ.)

with K.with K. Ohsuga, K.Ohsuga, K. Vierdayanti, K.Vierdayanti, K. Ebisawa, T.Ebisawa, T. KawaguchiKawaguchi

TIARA Workshop TIARA Workshop (29/11/2006)(29/11/2006)

1.1. General introductionGeneral introduction

2.2. Slim disk model (simplified model)Slim disk model (simplified model)

3.3. Observational tests - Case of ULXsObservational tests - Case of ULXs

4.4. Multi-dimensional effectsMulti-dimensional effects

Page 2: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

1. Introduction 1. Introduction (background)(background)

There are some objects which seem to There are some objects which seem to undergo super-critical (or super-undergo super-critical (or super-Eddington) accretion.Eddington) accretion.

・・What are ULXs? What are NLS1s?What are ULXs? What are NLS1s?

・・What do we know from observations?What do we know from observations?

・・What is key physics in super-critical What is key physics in super-critical accretion?accretion?

Page 3: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

UltraUltra LuminousLuminous X-rayX-ray sourcessources (ULXs)(ULXs) Makishima et al. (2000), van der Karel (2003)

Bright (~1040 erg s-1) compact X-ray sources Successively found in off-center regions of nearby galaxies. If L < LE, black hole mass should be > 100 Msun.

LE ~ 1038 (M/Msun) erg s-1

Two possibilities Sub-critical accretion onto intermediate-mass BHs (M>100Msun). Super-critical accretion onto stellar-mass BHs (M~3-30Msun).

IC342 galaxy

Page 4: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Arguments in favor of intermediate-mass BH (IMBH) Luminosities sometimes exceed ~ 1040erg s-1 (=LE of 100 Msun) Some ULXs show kT ~ 0.1 keV, indicating large MBH (> 100 Msun)

Do ULXs contain IMBHs?Do ULXs contain IMBHs? Miller et al. (2003, 2004)

log Lx

0.1 keV 1.0 keV

low L & highT =stellar-mass BHs

log kT (keV)

1040 erg/s

1037 erg/s

10M

sun

100M

sun

high L & lowT =IMBHs (?)

Page 5: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

4/1BH

1/4

2E

4/1

sun

BH7eff /10

K 10~

M

cL

M

M

MT

WhatWhat determinesdetermines diskdisk temperature?temperature?

Energetics (Newtonian version)

grav.energy: half → radiation energy

half → rotation energy

That is, (1/2)Egrav = Erad

For r ~ 3 rS, we have

.22

1 4

eff2BH Tr

r

MGM

r

GMBH

BH

1 keV for 10 Msun BH, 0.1 keV for 105 Msun BH

Page 6: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Narrow-lineNarrow-line SeyfertSeyfert 11 galaxiesgalaxies (NLS1s)(NLS1s)

What are NLS1s? Narrow “broad lines” (< 2000 km s-1) Seyfert 1 type X-ray features Extreme soft excess & variability

Seem to contain less massive BHs Good analogy with stellar-mass BHs in their ve

ry high (large L ) state. High Tbb (∝MBH

-1/4) ⇒ large soft excess Small (GMBH/RBLR)1/2 ⇒ narrow line width

NLS1s = high L/LE system

Boller et al. (NewA 44, 2000)

Page 7: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Spherical accretion system cannot shine at L > LE.

What is the Eddington What is the Eddington luminosity?luminosity?

radiationpressure

accretinggas

accretinggas

Gravity > rad. pressure

⇒ GM/r 2 >κF/c ⇒ L < LE=4πCGM/κ (∵ F=L/4πr

2)

Page 8: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Super-Eddington flux (F > LE/4πr2) is possible in the z-directi

on because of radiation anisotropy (!?) .

DiskDisk accretion may achieve accretion may achieve L>LL>LEE

radiation

pressure

accretinggas

accretinggas

Page 9: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

BH

Low-energy photons

trapped photons

Low-energy photons

High-energy photons

radiative diffusion & accretion

  (c) K. Ohsuga

What is Photon trapping?What is Photon trapping? Begelman (1978), Ohsuga et al. (2002)

When photon diffusion time,tdiff~Hτ/c, exceeds accretion time tacc~r/vr, photons are trapped.

rtrap~ (Mc2/LE) rs .

Page 10: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

2. Slim disk model2. Slim disk model

Slim disk model was proposed for Slim disk model was proposed for describing high luminosity flows as an describing high luminosity flows as an extension of the standard disk.extension of the standard disk.

・・What is distinct from the standard disk What is distinct from the standard disk

model?model?

・・What are its observational signatures?What are its observational signatures?

Page 11: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Basics

This occurs within trapping radius

rtrap~ (Mc2/LE) rs

Model Radially 1-D model with radiation entropy advection

Spectrum τ≫ 1 → multicolor blackbody but with higher T

Slim disk modelSlim disk model Abramowicz et al. (1988); Watarai et al. (2000)

-2

-1

0

1

-1 0 1 2 3 4

log

L/L

E L=LE

log m≡log M/(LE/c2)

. .

accretion energy

trapped photons

.

3

8

4

9

)( 42gasrad T

dr

ssdTvr

Page 12: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Slim-disk structureSlim-disk structure Mineshige, Manmoto et al. (2002)

Low M rin~ 3rS ;Teff∝r

-3/4

High M rin~ rS

; Teff∝r -1/2

3 rS

.

M/(LE/c2)=1,10,102,103  

      MBH=105Msun

.

.

Slim-disk signatures 1.small innermost

radius2.flatter temp. profile

Wang & Zhou (1999), Watarai & Fukue (1999)

Page 13: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

What determines the inner edge ofWhat determines the inner edge of aa ddisk? isk? Watarai & Mineshige (PASJ 55, 959, 2003)

Classical argument:Circular orbits of a test particle become unstable at r < rms (=3 rS for no spin BH)

Case of slim disk:

Usual stability analysis    cannot apply because of  no force balance.

Same is true for ADAF.

The disk inner disk is not always at rin = rms.

potential minimum

slim-disksolutions

Page 14: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Standard disk: Constant fraction of grav. energy is radiated away.

Slim disk: Fraction of energy which is radiated away decreases inward: tdiff=tacc → Mc2/LE ~r/rtrap∝r

What determines temp. What determines temp. profile?profile?

4/3eff

1BH4eff

2

2

rT

rr

MGMTr

2/1eff

0BH4eff

2

2

rT

rr

MGMTr

.

Page 15: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Disk spectra = multi-color blackbody radiation

Temperature profiles affect spectra

T ∝r -p ⇒ F ∝ν3-(2/p)

・standard disk (p =3/4)

⇒ F ∝ν1/3

・slim disk (p =1/2)

        ⇒ F ∝ν-1

Spectral propertiesSpectral properties (e.g. Kato et al. 1998)

ν1/3

ν-1hν

(small r)

(small r)

Page 16: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

3. Observational tests: 3. Observational tests: Case of ULXsCase of ULXs

We examined the XMM/Newton data We examined the XMM/Newton data of several ULXs which were of several ULXs which were suggested to contain suggested to contain intermediate-mass black holes.intermediate-mass black holes.

・・ How to test the theory?How to test the theory?

・・What did we find?What did we find?

Page 17: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Extended disk-blackbody modelExtended disk-blackbody model (Mitsuda et al. 1984; Mineshige et al. 1994)

Fitting with superposition of blackbody (Bν) spectra:

Fitting parameters:

Tin = temp.of innermost region (~ max. temp.)

rin = size of the region emitting with Bν(Tin)

p = temperature gradient

Corrections: Real inner edge is at ~ ξrin with ξ~0.4

Higher color temp.; Tc =κTin with κ~1.7

⇒ Good fits to the Galactic BBHs with p=0.75

pr

r

rrTrTrdrrTBiFout

in

)/()( ;2)]([cos inin

Page 18: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Fitting with disk blackbody (p=0.75) + power-law

We fit XMM-Newton data of several ULXs ⇒ low Tin ~0.2 keV and photon index ofΓ=1.9 

If we set rin~ 3 rS, BH mass is MBH~ 300 Msun.

SpectralSpectral fittingfitting 1.1. ConventionalConventional modelmodel (Roberts et al. 2005)

NGC 5204 X-1

log hν

log conts

Page 19: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Spectral decomposition of DBB & PL components

DBB comp. is entirely dominated by PL comp.

Can we trust values derived from the minor component?

Problem with DBB+PLProblem with DBB+PL fittingfitting

log hν

log conts

NGC 5204 X-1

Page 20: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Model fitting, assuming T ∝ r -p

We fit the same data but with the extended DBB model ⇒ high Tin ~ 2.5 keV and p =0.50±0.03 (no PL comp.)

MBH~ 12 Msun & L/LE~ 1, supporting slim disk model.

SpectralSpectral fittingfitting 2.2. ExtendedExtended DBBDBB modelmodel (Vierdayanti, SM, Ebisawa, Kawaguchi 2006)

NGC 5204 X-1

log hν

log conts

Page 21: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Why can both models give good Why can both models give good fits?fits?

Because the spectral shapes are similar below ~10 keV.

Both show fν ∝ν-1

in 0.1~10keV range.

power-law (Γ=2)

extended DBB with p=0.5

Page 22: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

log kT (keV)

log Lx

Temperature-Luminosity diagramTemperature-Luminosity diagram

(Vierdayanti et al. 2006, PASJ 58, 915)

No evidence of IMBHs so far

New model fitting gives MBH <30Msun.

Low-temperature results should be re-examined!!

The same test is needed for NLS1s

DBB + PL ext. DBB

Page 23: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

FateFate ofof Prad-drivenPrad-driven instabilityinstability

Radiation pressure-dominated SS disk is unstable.

(1) relaxation oscillation?Honma et al. (1991),Szuszkiewicz & Miller (1998)

(2) soft-to-hard transition? Takeuchi & Mineshige (1998),Gu & Lu (2000)

(3) strongly clumped disk?Krolik (1998)

(4) disk-corona structure?Nakamura & Osaki (1993), Svensson & Zdziarski (1994)

Σ

M・

(1)(2)

Page 24: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Bursting behavior of micro-Bursting behavior of micro-

quasarquasar                                          (Yamaoka, Ueda & Inoue 2002)

GRS 1915+105 e

xhibits state transitions between

peak (slim disk)

and

valley (thin disk)

log rin

log

Tin

time

cou

nts

(T ∝ r -1/2 )

(T ∝ r -3/4 )

Page 25: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

4. Multi-dimensional effects4. Multi-dimensional effects

The slim-disk model applies only to the flow with L ~ LThe slim-disk model applies only to the flow with L ~ LEE. For even higher L, we need to perform radiation-hyd. For even higher L, we need to perform radiation-hydrodynamical (RHD) simulations.rodynamical (RHD) simulations.

・・ What are the multi-dimensional effects?What are the multi-dimensional effects?

・・ What can we understand them?What can we understand them?

Page 26: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

A simple modelA simple model (Ohsuga et al. 2002, ApJ 574, 315; 2003, ApJ 596, 429)

Problem with the slim-disk formulation Radiative cooling rate is evaluated as ~ 4σT 4/3τ (at same r)

Consider a part of the disk which is moving inward Dynamics is given. Solve radiation transfer in z-direction.

Can approximately evaluate 2D photon trapping effects.

BH accretio

nradiativ

e diffusio

n

Page 27: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

•The slim-disk model overestimates the luminosity.•The frequency of the SED peak first increases then   decreases with increase of mass-accretion rate.   (c) K. Ohsug

a

Photon trapping:Photon trapping: observable observable effectseffects

Lu

min

osit

y [L/LE] Slim disk

Our results

(Photon-trapping)

Mass-accretion rate

m=10・

m=100・

30

m=10・MCD

Luminosity SED Variations

Photon-trapping Slim disk

Ohsuga et al. 2003Ohsuga et al. 2002

Black hole mass: 10BHM M 2

Em M L c

Page 28: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Our 2D RHD simulationsOur 2D RHD simulations Ohsuga, Mori, Nakamoto, SM (2005, ApJ 628, 368)

• First simulations of super-critical accretion flows in quasi-steady regimes.

• Matter with 0.45 Keplerian A.M. is continuously added through the outer boundary

→ disk-outflow structure

• Flux-limited diffusion adopted.

• α viscosity with α=0.1.

• Mass input rate: 1000 (LE/c2)  → luminosity of ~3 LE

Injection

BH r/rs

z/r

s

50050

0

Initially empty disk

Page 29: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

  (c) K. Ohsuga

Overview of 2D super-critical Overview of 2D super-critical flowflow

Ohsuga et al. (2005, ApJ 628,368)

gas energy radiation energy density density

BH r/rs

z/r

s

density contours & velocity fields

disk flow

outflow

Case of M =10 Msun & M =1000 LE/c

2・

Page 30: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Why is accretion Why is accretion possible?possible?

Ohsuga & S.M. (2006, submitted)

Low ρ and steep Erad profile yields super-Eddington flux.

Radiation energy density is high; Erad ≫ EE≡LE/4πr 2c .

Then why is the radiation   pressure force so weak?

Note radiation energy flux is    Frad ∝(κρ)-1∇Erad.

→ Because of high ρ and     relatively flat Erad profile.

Page 31: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

  (c) K. Ohsuga

Photon Photon trappingtrapping

BH

z/r

s

r/rsRadiation flux (F r ) is

inward!

Photon trapping also helps reduced radiation pressure force.

F r=radiation flux in   

the rest frame

F0r=radiation flux in  

the comoving frame

F r~F0r+vrE0

Page 32: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

The observed luminosity is sensitive to the viewing-angle; Maximum L ~ 12 LE !!

cos

luminosity

BH

Density contours

12

8

44

D2 F(

)/L E

our simulations

  (c) K. Ohsuga

SignificantSignificant radiationradiation

anisotropyanisotropy

⇒ mild beaming

Ohsuga et al. (2005, ApJ 628,368)

0

viewing angle

Page 33: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Why beaming?Why beaming?

Photon energy increases as θ decreases, why? - Because we see photons from deeper, hot region. - Because of Doppler effect.

Why photon number increases as θ decreases, why? - Because of anisotropic gas distribution. - Because Iν/ν3 is Lorentz invariant & hν increases.

radiation

gasgas

Heinzeller, S.M. & Ohsuga (2006, MNRAS 372, 1208,)

Page 34: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

Future issueFuture issueInteraction with magnetic Interaction with magnetic fieldsfields

Magnetic fields are essential ingredients in disks• Photon-bubble instability (Begelman 2002) • Magnetic tower jet → global RHD+MHD simulations necessary

(Kato, SM, & Shibata 2004)

Page 35: Super-Critical Accretion? Shin Mineshige (Kyoto Univ.) with K. Ohsuga, K. Vierdayanti, K. Ebisawa, T. Kawaguchi TIARA Workshop (29/11/2006) 1.General introduction

ConclusionsConclusions

• Near- and super-critical accretion flows seem to occur in some systems (ULXs, NLS1s…?).

• Slim disk model predicts flatter temperature profile. Spectral fitting with variable p proves the presence of supercritical accretion in ULXs. How about NLS1s?

• 2D RHD simulations of super-critical flow show super- Eddington luminosity, significant radiation anisotropy (beaming), high-speed outflow, large absorption, etc.

L can be ~10 LE !!

• Issues: magnetic fields, line spectra, instability,…