superhumps. brun a., petit m.,1952, bull. de l'assoc. franc. d'obser. d'etoiles var., 12

Download SUPERHUMPS. Brun A., Petit M.,1952, Bull. De L'Assoc. Franc. d'Obser. D'Etoiles Var., 12

If you can't read please download the document

Upload: amarion-tattersall

Post on 15-Dec-2015

220 views

Category:

Documents


1 download

TRANSCRIPT

  • Slide 1

SUPERHUMPS Slide 2 Brun A., Petit M.,1952, Bull. De L'Assoc. Franc. d'Obser. D'Etoiles Var., 12 Slide 3 Kraft, Robert P. Binary Stars among Cataclysmic Variables. I. U Geminorum Stars (dwarf Novae). Astrophysical Journal 135, 408, 1962 Slide 4 Slide 5 Slide 6 Slide 7 Brian Marino and Stan Walker Inf Bull Var Stars No 864, 1974 Slide 8 Slide 9 Slide 10 Slide 11 VW Hyi superoutburst of December 1972 N. Vogt A & A 36, 369, 1974 B. Warner MNRAS 170, 219, 1975 Slide 12 Slide 13 Slide 14 Slide 15 Slide 16 Comprehensive simulations of superhumps Authors:Amanda J. Smith (1), Carole A. Haswell (1), James R. Murray (2), Michael R. Truss (3), Stephen B. Foulkes (1) ((1) The Open University, (2) Swinburne University of Technology, (3) Durham UniversityAmanda J. SmithCarole A. HaswellJames R. MurrayMichael R. Truss Stephen B. Foulkes Slide 17 (Abridged) We use 3D SPH calculations with higher resolution, as well as with more realistic viscosity and sound-speed prescriptions than previous work to examine the eccentric instability which underlies the superhump phenomenon in semi- detached binaries. We illustrate the importance of the two-armed spiral mode in the generation of superhumps. Differential motions in the fluid disc cause converging flows which lead to strong spiral shocks once each superhump cycle. The dissipation associated with these shocks powers the superhump. We compare 2D and 3D results, and conclude that 3D simulations are necessary to faithfully simulate the disc dynamics. We ran our simulations for unprecedented durations, so that an eccentric equilibrium is established except at high mass ratios where the growth rate of the instability is very low. Our improved simulations give a closer match to the observed relationship between superhump period excess and binary mass ratio than previous numerical work. The observed black hole X-ray transient superhumpers appear to have systematically lower disc precession rates than the cataclysmic variables. This could be due to higher disc temperatures and thicknesses. The modulation in total viscous dissipation on the superhump period is overwhelmingly from the region of the disc within the 3:1 resonance radius. As the eccentric instability develops, the viscous torques are enhanced, and the disc consequently adjusts to a new equilibrium state, as suggested in the thermal-tidal instability model. We quantify this enhancement in the viscosity, which is ~10 per cent for q=0.08. We characterise the eccentricity distributions in our accretion discs, and show that the entire body of the disc partakes in the eccentricity. Slide 18 Slide 19 Slide 20 Slide 21 Slide 22 Slide 23 Slide 24 Slide 25 Slide 26 Slide 27 Slide 28 Slide 29 Slide 30