supplementary information to the paper on … · 2018-05-02 · 1 supplementary information to the...

17
1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH 2 -TiH 2 ON HYDROGEN STORAGE PERFORMANCE by M. Lotoskyy a , R. Denys b , V.Yartys c , J. Eriksen b , J. Goh a , S. Nyallang Nyamsi a , C. Sita a , and F. Cummings d a. HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa, [email protected] b. HYSTORSYS AS, P.O. Box 45, Kjeller NO‐2027, Norway, [email protected] c. Institute for Energy Technology, P.O. Box 40, Kjeller NO‐2027, Norway, [email protected] d. Electron Microscope Unit, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa, [email protected] Table S1. Summary of experimental conditions used during kinetic studies (“low‐temperature” H absorption) A. Mg 0.9 Ti 0.1 : Absorption Desorption Cycle No. T, °C P 0 , bar P f , bar Cmax , wt.% T, °C P 0 , bar P f , bar Cmax , wt.% 0 330 0.001 0.23 6.3 1 100 10.25 5.5 5.19 330 0.19 0.40 5.58 2 100 10.2 5.9 4.74 330 0.2 0.39 5.29 3 100 10.3 6.2 4.5 330 0.2 0.39 5.04 4 330 10 8.9 5.82 330 1.05 2.14 5.95 5 100 10.3 6.65 4.01 330 0.22 0.38 4.78 B. Mg 0.9 Ti 0.1 + 5% C: Absorption Desorption Cycle No. T, °C P 0 , bar P f , bar Cmax , wt.% T, °C P 0 , bar P f , bar Cmax , wt.% 0 330 0.001 0.235 5.96 1 100 10.3 4.7 5.58 330 0.19 0.42 5.78 2 100 10.4 4.8 5.6 330 0.19 0.42 5.77 3 100 10.5 4.7 5.68 330 0.19 0.42 5.78 4 330 10 8.7 6.01 330 1.0 2.2 5.97 5 100 10.5 4.8 5.67 330 0.19 0.42 5.78 6 150 10.5 4.7 5.74 330 0.19 0.42 5.79 7 100 10.4 4.8 5.64 330 0.19 0.42 5.78 8 24 10.3 5.5 4.85 330 0.18 0.41 5.79 9 200 10.4 4.5 5.89 330 0.19 0.42 5.80 10 100 10.5 4.8 5.62 330 0.2 0.42 5.77 11 125 10.4 4.7 5.75 330 0.19 0.42 5.77 12 75 10.3 5.1 5.23 330 0.19 0.42 5.75 13 125 10.4 4.7 5.65 330 0.19 0.42 5.80 14 150 10.4 4.8 5.60 330 0.2 0.42 5.78 15 100 10.35 6.67 5.65 330 1 2.20 5.94 1 16 200 10.25 4.45 5.93 330 0.18 0.40 5.79 (to be continued) 1 After holding the sample at the H 2 pressure and room temperature for 1 week Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Upload: others

Post on 10-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

1

SUPPLEMENTARY INFORMATION TO THE PAPER

AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

by M. Lotoskyya, R. Denysb, V.Yartysc, J. Eriksenb, J. Goha, S. Nyallang Nyamsia, C. Sitaa, and F. Cummingsd

a. HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa, [email protected]

b. HYSTORSYS AS, P.O. Box 45, Kjeller NO‐2027, Norway, [email protected]

c. Institute for Energy Technology, P.O. Box 40, Kjeller NO‐2027, Norway, [email protected]

d. Electron Microscope Unit, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa, [email protected]

Table S1. Summary of experimental conditions used during kinetic studies (“low‐temperature” H absorption)

A. Mg0.9Ti0.1:

Absorption DesorptionCycle No. T, °C P0, bar Pf, bar Cmax

, wt.%T, °C P0, bar Pf, bar Cmax

, wt.%0 330 0.001 0.23 6.31 100 10.25 5.5 5.19 330 0.19 0.40 5.582 100 10.2 5.9 4.74 330 0.2 0.39 5.293 100 10.3 6.2 4.5 330 0.2 0.39 5.044 330 10 8.9 5.82 330 1.05 2.14 5.955 100 10.3 6.65 4.01 330 0.22 0.38 4.78

B. Mg0.9Ti0.1 + 5% C:

Absorption DesorptionCycle No. T, °C P0, bar Pf, bar Cmax

, wt.%T, °C P0, bar Pf, bar Cmax

, wt.%0 330 0.001 0.235 5.961 100 10.3 4.7 5.58 330 0.19 0.42 5.782 100 10.4 4.8 5.6 330 0.19 0.42 5.773 100 10.5 4.7 5.68 330 0.19 0.42 5.784 330 10 8.7 6.01 330 1.0 2.2 5.975 100 10.5 4.8 5.67 330 0.19 0.42 5.786 150 10.5 4.7 5.74 330 0.19 0.42 5.797 100 10.4 4.8 5.64 330 0.19 0.42 5.788 24 10.3 5.5 4.85 330 0.18 0.41 5.799 200 10.4 4.5 5.89 330 0.19 0.42 5.8010 100 10.5 4.8 5.62 330 0.2 0.42 5.7711 125 10.4 4.7 5.75 330 0.19 0.42 5.7712 75 10.3 5.1 5.23 330 0.19 0.42 5.7513 125 10.4 4.7 5.65 330 0.19 0.42 5.8014 150 10.4 4.8 5.60 330 0.2 0.42 5.7815 100 10.35 6.67 5.65 330 1 2.20 5.941

16 200 10.25 4.45 5.93 330 0.18 0.40 5.79(to be continued)

1 After holding the sample at the H2 pressure and room temperature for 1 week

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2018

Page 2: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

2

Table S1 (B) – continued

Absorption DesorptionCycle No. T, °C P0, bar Pf, bar Cmax

, wt.%T, °C P0, bar Pf, bar Cmax

, wt.%17 50 10.24 5.32 4.96 330 0.2 0.41 5.7718 135 10.5 4.69 5.76 330 0.2 0.44 5.8419 170 10.5 4.68 5.80 330 0.19 0.41 5.7720 100 10.33 4.495 5.79 330 0.19 0.41 5.7321 120 10.53 4.797 5.69 330 0.2 0.427 5.7422 80 10.37 5.152 5.23 330 0.19 0.417 5.7323 140 10.36 4.563 5.75 330 0.188 0.413 5.7424 160 10.5 4.647 5.84 330 0.189 0.415 5.7425 100 10.34 4.948 5.35 330 0.2 0.415 5.7126 180 10.48 4.684 5.81 330 0.181 0.407 5.7727 330 9.9 8.6 6.01 330 1.04 2.21 5.9428 220 10.5 4.62 5.93 330 0.192 0.416 5.7629 200 10.5 4.48 5.92 330 0.189 0.414 5.7530 100 10.42 4.9 5.47 330 0.065 0.29 5.7531 350 10.3 9.1 6.01 350 0.12 0.35 5.8332 320 10.3 9.1 6.01 320 0.12 0.35 5.8433 300 10.2 9.0 6.0 300 0.12 0.35 5.8334 280 10.2 9.0 5.97 280 0.12 0.35 5.8335 100 10.41 4.725 5.64 330 0.181 0.401 5.6936 100 10.38 4.88 5.51 330 0.188 0.41 5.6637 330 9.9 8.7 5.97 330 1.04 2.22 5.9738 330 10.1 8.85 6.01 330 1.04 2.22 5.9839 200 10.6 4.6 5.92 330 0.188 0.413 5.7540 100 10.39 4.865 5.49 330 0.185 0.406 5.6541 330 10 8.8 6.02 330 1.06 2.24 5.9742 330 10 8.8 5.98 330 1.04 2.21 5.9643 330 10.1 8.9 5.97 330 1.04 2.22 5.9644 330 10 8.8 5.99 330 1.04 2.22 5.9545 100 10.5 4.84 5.62 330 0.189 0.412 5.6546 330 9.9 8.68 6.02 330 1.04 2.22 5.9447 330 10 8.8 5.99 330 1.04 2.22 5.9548 330 10 8.8 5.97 330 1.04 2.22 5.9749 200 10.5 4.56 5.93 330 0.191 0.416 5.7350 100 10.33 4.65 5.63 Unloaded in the hydrogenated state

Page 3: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

3

0 50 100 150 200 250 300 350 400 450 500 550 600

T [C]

Figure S1.

TDS curves for the as‐prepared materials. The values in brackets next to the curve labels specify the total amounts of hydrogen [wt.%] desorbed from the samples.

Mg Ti (5.22)0.5 0.5

Mg Ti (6.13)0.75 0.25

Mg Ti (6.79)0.9 0.1

Mg Ti +5%C (6.66)0.9 0.1

Hyd

roge

n flo

w 5 N

cm3 g-1

min

-1

Page 4: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

4

220 A 8 (270)200

180

160

140

120

100 4 (251)

80

60

40

2 (236)

1 (220)

0.5 (207)20

0

100 150 200 250 300 350

T [oC]

-10.0 B

-10.5

-11.0

3 6-11.5

4 5

-12.0 2

-12.5 1

-13.0

-13.5

0.0017 0.0018 0.0019 0.0020 0.0021 0.0022 0.0023

1/Tm

[K]

Figure S2.

A – TDS curves for Mg0.9Ti0.1+5% C; curve labels correspond to the heating rates [°C min–1] followed by the peak temperature [oC] in brackets.

B – Kissinger plots for Mg (1), Mg + 5% C (2), Mg0.9Ti0.1 (3), Mg0.9Ti0.1 + 5% C (4), Mg0.75Ti0.25 (5), and Mg0.5Ti0.5 (6).

2Ln

(/(T

[K

]) )

H f

low

[Ncm

3 g-1

min

-1]

m2

Page 5: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

5

0.300.280.260.240.220.200.180.160.140.120.100.080.060.040.020.00

A 6 (7.5)

7 (4.9)

5 (4.0)1 (4.9)

2 (2.0)

3 (1.0)4 (0.6)

0.32

450 500 550 600 650

T [K]

1.4 B

7 (4.9) 4 (0.6)1.2

2 (2.0)1.0

6 (7.5)0.8

0.6 1 (4.9)5 (4.0)

0.4 3 (1.0)

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

X=C/Cmax

Figure S3.

Experimental (points) and calculated (lines) thermal desorption spectra (A) and rate dependence functions (B) derived from the experimental TDS data for Mg + 5% C.

Curve captions correspond to cycle number followed by the average heating rate [K min–1] (in brackets).

r = d

X/d

t [m

in-1]

f(X) /

f(X

) m

Page 6: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

6

A1.8

1.6 N

1.4

1.2

1.0 M

0.8

0.6

0.4P

0.2

0.0

2.0

1 2 3 4 5 6 7

Cycle number

2.0

1.5

1.0

0.5

0.0

1 2 3 4 5 6 7

Cycle number

Figure S4.

Dependence of fitting parameters (Eq. 4 in the main text) on the number of re‐hydrogenation – dehydrogenation cycle for Mg0.9Ti0.1 (A) and Mg0.9Ti0.1 + 5% C (B).

B

N

M

P

M, N

, PM

, N, P

Page 7: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

7

wt.%

Hw

t.% H

wt.%

H

2

A D 22

5 5 55

104 10 4

30

303 3

2 2

1 1

0 0

0 1 2 3 4 10 15 20 25 30

Time [min]0 1 5 10

Time [min]

6 B

55 10

4

3

2

50

101

6 E2

10 55

450

3

101

2 2

1 1

0 0

0 1 2 3 4 10 15 20 25 30

Time [min]0 1 5 10

Time [min]

C5

4 4

3 10 3

302 2

1 1

0 0

0 1 2 3 4 10 15 20 25 30

Time [min]0 1 5 10

Time [min]

Figure S5.

Hydrogen absorption (A–C) and desorption (D–F) kinetics at T=350 °C (experimental points and calculated curves) for the samples Mg0.9Ti0.1 (A, D), Mg0.9Ti0.1 + 5% C (B, E) and Mg0.75Ti0.25 (C, F). Curve labels correspond to the numbers of the absorption/desorption cycle.

F 52

10 40

wt.%

Hw

t.% H

wt.%

H

Page 8: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

8

Table S2. Parameters of H absorption kinetics during cycling (T=350 °C).

Fitting parameters (Eq. 6) 2

Sample

Cycle number (wt.% H

observed)

A1[wt%

H]k1 [min–1] n1

A2[wt% H] k2 [min–1] n2

Nmax= A1+A2[wt%

H]

w2= A2/Nmax R2

2 (5.38) 4.94(8) 1.032(4) 1.092(8) 0.5(1) 0.072(6) 0.8(2) 5.44 0.09 0.99955 (4.80) 3.91(6) 1.132(7) 1.28(2) 1.01(8) 0.105(9) 0.57(5) 4.92 0.21 0.9993

10 (4.19) 3.05(5) 1.163(8) 1.41(2) 1.24(6) 0.15(1) 0.57(3) 4.29 0.29 0.9992Mg0.9Ti0.1

30 (3.61) 2.11(6) 1.25(1) 1.47(4) 1.77(1.9) 0.096(4) 0.61(3) 3.88 0.46 0.99902 (5.85) 4.07(8) 1.35(5) 0.93(1) 1.77(8) 0.234(4) 2.13(6) 5.84 0.30 0.99975 (5.88) 4.2(1) 1.45(6) 1.04(1) 1.6(1) 0.330(9) 2.2(1) 5.80 0.28 0.9997

10 (5.83) 5.78(2) 1.066(5) 0.962(4) 0.2(1) 0.01(9) 1.3(5) 5.98 0.03 0.999450 (5.73) 5.5(1) 0.678(5) 1.175(8) 0.3(1) 0.10(3) 1.0(4) 5.80 0.05 0.9996

Mg0.9Ti0.1 + 5%C

101 (5.78) 5.2(2) 0.50(1) 1.37(1) 0.6(2) 0.12(3) 1.6(4) 5.80 0.10 0.99972 (4.36) 3.80(7) 1.00(2) 0.901(6) 0.58(8) 0.10(1) 1.0(1) 4.38 0.13 0.99955 (4.29) 3.16(9) 1.13(1) 1.00(1) 1.2(1) 0.13(1) 0.83(7) 4.36 0.28 0.9995

10 (4.13) 2.24(8) 1.24(1) 1.23(3) 2.02(9) 0.148(7) 0.64(3) 4.26 0.47 0.9994Mg0.75Ti0.25

40 (3.79) 1.64(6) 1.41(1) 1.49(5) 2.39(7) 0.118(3) 0.64(2) 4.03 0.59 0.9993

Table S3. Parameters of H desorption kinetics during cycling (T=350 °C).

Fitting parameters (Eq. 5)

Sample

Cycle number (wt.% H

observed)

Nmax

[wt% H] k [min–1] n R2

2 (5.37) 5.374(2) 1.899(5) 1.230(6) 0.99965 (4.80) 4.790(2) 2.064(8) 1.29(1) 0.999210 (4.21) 4.188(2) 2.111(9) 1.36(1) 0.9992Mg0.9Ti0.1

30 (3.58) 3.580(3) 2.14(1) 1.43(2) 0.99842 (5.85) 5.855(4) 1.419(6) 1.26(1) 0.99915 (5.84) 5.852(4) 1.455(6) 1.261(9) 0.999210 (5.83) 5.835(5) 1.506(5) 1.262(8) 0.999350 (5.74) 5.752(5) 1.236(6) 1.39(1) 0.9987

Mg0.9Ti0.1 + 5%C

101 (5.76) 5.767(5) 1.104(5) 1.40(1) 0.99952 (4.37) 4.375(2) 2.86(2) 1.09(1) 0.99875 (4.31) 4.310(2) 2.53(1) 1.10(1) 0.998710 (4.14) 4.145(2) 2.50(1) 1.16(1) 0.9989Mg0.75Ti0.25

40 (3.80) 3.807(2) 2.57(1) 1.19(1) 0.9989

2 Here and below the references relate to the main text of the paper

Page 9: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

9

wt.%

H

1

0

-1

-2 y=12.7(1) - 5690(50) * xR2=0.9996

-3

-4

-1-5 E =47.3(4) kJ molA

-6

-7

0.0020 0.0022 0.0024 0.0026 0.0028 0.0030 0.0032 0.0034

x=1/T [K]

Figure S6.

Arrhenius plot of the rate constant for hydrogen absorption in Mg0.9Ti0.1 + 5% C calculated by the fitting of the experimental data (Figure 4A) with Eq. 5.

6 A 916

B 466 37

5 529 2739

4 49 4 4

3 3

2 2

1 1

0 0

0 2 4 10 20 30 40 50

Time [min]0 1 5 10 15 20 25 30

Time [min]

Figure S7.

Hydrogen absorption kinetics for the sample Mg0.9Ti0.1 + 5% C. A – at T=200°C; B – at T=330 °C.

Curve labels correspond to the number of the absorption/desorption cycle.

wt.%

H

y=ln

k [m

in-1]

Page 10: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

10

C

A2

A1

k [m

in-1],

nk

[min

-1]

1

TableS4. Parameters of H absorption kinetics during cycling (T=100 °C).

Fitting parameters (Eq. 6)

Sample

Cycle number (wt.% H

observed)

A1

[wt% H]

k1 [min–1] n1A2

[wt% H]k2

[min–1] n2

Nmax= A1+A2

[wt% H]

w2= A2/Nmax R2

1 (5.19) 4.03(3) 0.481(4) 0.500(2) 1.35(4) 0.0041(1) 0.47(2) 5.38 0.25 0.99822 (4.74) 3.21(5) 0.481(3) 0.500(4) 1.93(7) 0.00274(5) 0.40(2) 5.14 0.38 0.99743 (4.50) 3.37(5) 0.318(2) 0.500(4) 1.8(2) 0.0007(1) 0.40(3) 5.17 0.35 0.9964Mg0.9Ti0.1

5 (4.01) 2.48(3) 0.2839(8) 0.500(2) 2.02(5) 0.00182(2) 0.400(9) 4.50 0.45 0.99971 (5.61) 4.22(4) 0.0396(1) 0.820(2) 1.44(5) 0.0055(2) 0.74(2) 5.66 0.25 0.99992 (5.63) 4.18(7) 0.03551(5) 0.822(3) 1.45(7) 0.0086(5) 0.71(2) 5.63 0.26 0.99993 (5.71) 4.33(5) 0.03801(5) 0.836(3) 1.38(5) 0.0121(5) 0.667(8) 5.71 0.24 0.99995 (5.70) 4.47(7) 0.0565(1) 0.885(5) 1.22(7) 0.017(1) 0.68(1) 5.69 0.21 0.99977 (5.67) 4.4(1) 0.0753(2) 0.820(6) 1.3(1) 0.016(2) 0.66(3) 5.70 0.23 0.9995

10 (5.65) 3.69(8) 0.1067(2) 0.856(6) 1.95(8) 0.023(1) 0.67(1) 5.64 0.35 0.999615 (5.65) 3.23(2) 0.1458(2) 0.912(3) 2.45(2) 0.0262(3) 0.645(3) 5.68 0.43 0.999820 (5.79) 2.83(4) 0.1272(4) 0.932(7) 2.97(4) 0.0208(5) 0.578(5) 5.80 0.51 0.999625 (5.35) 2.64(4) 0.1285(5) 0.949(7) 2.70(4) 0.0254(6) 0.582(5) 5.35 0.51 0.999530 (5.47) 2.64(6) 0.1028(4) 0.851(8) 2.83(7) 0.0169(6) 0.598(8) 5.47 0.52 0.999635 (5.64) 2.75(7) 0.0767(3) 0.763(7) 2.91(7) 0.0122(4) 0.566(8) 5.66 0.51 0.999636 (5.51) 2.81(7) 0.0707(3) 0.796(7) 2.70(7) 0.0130(5) 0.571(7) 5.51 0.49 0.999440 (5.49) 2.71(6) 0.0722(2) 0.825(6) 2.80(7) 0.0116(4) 0.663(9) 5.51 0.51 0.999845 (5.62) 2.77(7) 0.0584(2) 0.791(7) 2.88(7) 0.0096(3) 0.607(9) 5.65 0.51 0.9997

Mg0.9Ti0.1

+ 5%C

50 (5.63) 2.80(7) 0.0511(1) 0.802(6) 2.86(7) 0.0090(3) 0.609(8) 5.66 0.50 0.9997

A 5.06

4.5

5 4.0A2

3.5 k 4 1

n3.0 1

3 2.5

1.05

1.00

0.95

0.90

0.85

0.80

0.75

2A1

1

010 20 30 40 50

2.0

1.5n

21.0

0.5 k2

0.70

0.65

0.60

0.55

0.50

Cycle #10 20 30 40 50

Cycle #

6 2.8 D2.6

5 2.4

2.2

4 2.0

1.8

3 1.6 k1n

1.4 1

2 1.2

1.0

1 0.8

0.60 0.4

1.0

0.9

0.8

0.7

0.6

n 0.52

0.4

0.3k

2 0.2

0.1

0.010 20 30 40 50 60 70 80 90 100

Cycle #

Figure S8.

0 10 20 30 40 50 60 70 80 90 100

Cycle #

Changes of kinetic parameters (Eq. 6) of H absorption during cycling for the sample Mg0.9Ti0.1 + 5% C at T=200°C (A, B) and 330°C (C, D).

Nm

axN

max

-1k

[min

]n

2

B

Page 11: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

11

2 2

2 2

XRD patterns of dehydrogenated Mg0.9Ti0.1 (A, B) and Mg0.9Ti0.1 + 5% C(C, D). A, C – before cycling, B – after 30 H absorption/desorption cycles,D – after 105 absorption/desorption cycles. Background subtracted after the refinement.

Inte

nsity

Inte

nsity

Inte

nsity

Inte

nsity

4000 4000A B

3000 3000

2000 2000

1000 1000

0 0

-1000 Mg -1000 MgTiH TiH

-2000 -200020 30 40 50 60

2 [o]

70 80 90 20 30 40 50 60

2 [o]

70 80 90

4000 4000C D

3000 3000

2000 2000

1000 1000

0 0

-1000 Mg -1000 MgTiH TiH

-2000 -200020 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90

2 [o]

Figure S9.2 [o]

Page 12: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

12

EDS

Figure S10.Top: TEM image of the sample Mg0.9Ti0.1. SAD patterns from areas 1, 2 and 3, and EDS3 are shown below.

3 The observed Cu peaks in all the EDS spectra originate from the carbon-coated Cu grid, onto which the specimen is placed. This is also the reason of the overestimation of carbon content in the samples derived from the EDS data.

Page 13: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

13

EDS 1

EDS 2

Figure S11. Top: TEM images of the sample Mg0.9Ti0.1 (30 cycles). SADP from areas 1, 2 and 3, and EDS4

are shown below.

4 In average, the oxygen and carbon contents in the cycled samples determined by EDS were found to be higherthan in the non‐cycled ones. It allows us to conclude that sample contamination with oxygen and carbon mainly took place during cyclic H absorption / desorption due to traces of O2, H2O and hydrocarbons in residual atmosphere.

Page 14: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

14

EDS 1

EDS 2

Figure S12.Top: TEM images of the sample Mg0.9Ti0.1 + 5% C. SADP from areas 1, 2 and 3, and EDS are shown below.Two spots with d4.9 Å (marked in the pattern 1) may belong to the second‐order reflection from (1 0 1) plane of Mg, or (1 1 1) plane of TiH2.

Page 15: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

15

Figure S13.Top left: filtered image of Mg0.9Ti0.1 + 5% C. Top right: Mg map (red), Middle left: Ti map (green). Middle right: C map (blue). Bottom: overlayed map.

Page 16: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

16

EDS 1

EDS 2

Figure S14.

Top, mid‐left: TEM images of the sample Mg0.9Ti0.1 + 5% C after 105 H absorption/desorption cycles. SADP from areas 1and 2, and EDS5 are shown below.

5 See footnote 4

Page 17: SUPPLEMENTARY INFORMATION TO THE PAPER ON … · 2018-05-02 · 1 SUPPLEMENTARY INFORMATION TO THE PAPER AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH2-TiH2 ON HYDROGEN STORAGE PERFORMANCE

17

Figure S15.Top left: filtered image of Mg0.9Ti0.1 + 5%C (105 cycles). Top right: Mg map (red), Middle left: Ti map (green). Middle right: C map (blue). Bottom: overlayed map.