supplementary material: dopamine electrodes ...using sce and ag/agcl/kcl as reference electrodes. ν...

12
Page 1 of 12 Supplementary Material: Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine Cristiane Kalinke, Naile V. Neumsteir, Gabriel A. de Oliveira, Thiago V. B. Ferraz, Pãmyla L. dos Santos, Bruno C. Janegitz and Juliano A. Bonacin * SUMMARY: S1 – Comparison between references electrodes .................................................................................3 Fig. S1. Cyclic voltammograms obtained for PLA-G electrodes in the presence of 5.0 mmol L -1 [Ru(NH 3 ) 6 ]Cl 3 , using SCE and Ag/AgCl as references electrodes. ν = 50 mV s -1 . ..........3 S2 – Electrochemical characterization ..................................................................................................4 Fig. S2. Cyclic voltammograms obtained for PLA-G electrodes in the presence of 0.10 mol L -1 KCl (supporting electrolyte). ν = 50 mV s -1 . .....................................................................4 S3 – Electrochemical activation (EC)....................................................................................................5 Fig. S3. Oxidation (A) and reduction (B) of PLA-G electrode in 0.10 mol L -1 phosphate buffer solution (pH 7.4). Cyclic voltammograms obtained at different scan rates (5.0–200 mV s -1 ) in the presence of 5.0 mmol L -1 [Ru(NH 3 ) 6 ]Cl 3 for PLA-G (C) and PLA-G EC electrodes (D). .........................................................................................................................5 S4 – Mechanical Activation (polishing) ................................................................................................6 Fig. S4. Cyclic voltammograms obtained at 25 mV s ‒1 and correlation between peak currents and v 1/2 (5.0–200 mV s -1 ) obtained for PLA-G electrodes after mechanical (A, B), mechanical + EC (C, D), in the presence of 5.0 mmol L -1 [Ru(NH 3 ) 6 ]Cl 3 . ............................6 S5 – Solvent activation (DMF) ...............................................................................................................7 Fig. S5. Cyclic voltammograms obtained at 25 mV s ‒1 and correlation between peak currents and v 1/2 (5.0–200 mV s -1 ) obtained for PLA-G electrodes after DMF (A, B) and DMF + EC activations (C, D), in the presence of 5.0 mmol L -1 [Ru(NH 3 ) 6 ]Cl 3 . ...................7 S6 – Basic activation (NaOH) ................................................................................................................8 * Corresponding author. Phone: +55 19 3521-3103. E-mail: [email protected] (Juliano A. Bonacin). Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 31-Jul-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supplementary Material: dopamine electrodes ...using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1. SCE and Ag/AgCl/KCl, 3.5 mol L −1 references electrodes (RE) were

Page 1 of 12

Supplementary Material:

Comparison of activation processes for 3D printed PLA-graphene

electrodes: electrochemical properties and application for sensing of

dopamine

Cristiane Kalinke, Naile V. Neumsteir, Gabriel A. de Oliveira, Thiago V. B. Ferraz, Pãmyla

L. dos Santos, Bruno C. Janegitz and Juliano A. Bonacin*

SUMMARY:

S1 – Comparison between references electrodes .................................................................................3

Fig. S1. Cyclic voltammograms obtained for PLA-G electrodes in the presence of 5.0 mmol

L-1 [Ru(NH3)6]Cl3, using SCE and Ag/AgCl as references electrodes. ν = 50 mV s-1. ..........3

S2 – Electrochemical characterization..................................................................................................4

Fig. S2. Cyclic voltammograms obtained for PLA-G electrodes in the presence of 0.10 mol

L-1 KCl (supporting electrolyte). ν = 50 mV s-1. .....................................................................4

S3 – Electrochemical activation (EC)....................................................................................................5

Fig. S3. Oxidation (A) and reduction (B) of PLA-G electrode in 0.10 mol L-1 phosphate

buffer solution (pH 7.4). Cyclic voltammograms obtained at different scan rates (5.0–200

mV s-1) in the presence of 5.0 mmol L-1 [Ru(NH3)6]Cl3 for PLA-G (C) and PLA-GEC

electrodes (D). .........................................................................................................................5

S4 – Mechanical Activation (polishing) ................................................................................................6

Fig. S4. Cyclic voltammograms obtained at 25 mV s‒1 and correlation between peak

currents and v1/2 (5.0–200 mV s-1) obtained for PLA-G electrodes after mechanical (A, B),

mechanical + EC (C, D), in the presence of 5.0 mmol L-1 [Ru(NH3)6]Cl3. ............................6

S5 – Solvent activation (DMF)...............................................................................................................7

Fig. S5. Cyclic voltammograms obtained at 25 mV s‒1 and correlation between peak

currents and v1/2 (5.0–200 mV s-1) obtained for PLA-G electrodes after DMF (A, B) and

DMF + EC activations (C, D), in the presence of 5.0 mmol L-1 [Ru(NH3)6]Cl3. ...................7

S6 – Basic activation (NaOH) ................................................................................................................8

* Corresponding author. Phone: +55 19 3521-3103.

E-mail: [email protected] (Juliano A. Bonacin).

Electronic Supplementary Material (ESI) for Analyst.This journal is © The Royal Society of Chemistry 2019

Page 2: Supplementary Material: dopamine electrodes ...using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1. SCE and Ag/AgCl/KCl, 3.5 mol L −1 references electrodes (RE) were

Page 2 of 12

Fig. S6. Cyclic voltammograms obtained at 25 mV s‒1 and correlation between peak

currents and v1/2 (5.0–200 mV s-1) obtained for PLA-G electrodes after NaOH (A, B) and

NaOH + EC activations (C, D), in the presence of 5.0 mmol L-1 [Ru(NH3)6]Cl3. .................8

S7 – Acid activation (HNO3) ..................................................................................................................9

Fig. S7. Cyclic voltammograms obtained at 25 mV s‒1 and correlation between peak

currents and v1/2 (5.0–200 mV s-1) obtained for PLA-G electrodes after HNO3 (A, B) and

HNO3 + EC activations (C, D), in the presence of 5.0 mmol L-1 [Ru(NH3)6]Cl3. ..................9

S8 – Acid activation (H2SO4)................................................................................................................10

Fig. S8. Cyclic voltammograms obtained at 25 mV s‒1 and correlation between peak

currents and v1/2 (5.0–200 mV s-1) obtained for PLA-G electrodes after. H2SO4 (A, B) and

H2SO4 + EC activations (C, D), in the presence of 5.0 mmol L-1 [Ru(NH3)6]Cl3. ...............10

S9 – Comparison between 3D PLA-G activation...............................................................................11

Table S1. Comparison between the Raman and electroactive characteristics of 3D PLA-G

before and after activation treatments. ..................................................................................11

S10 – Dopamine Determination...........................................................................................................12

Table S2. Results obtained (%) for interference study using ascorbic acid (AA) and uric

acid (UA) for DA determination. Supporting electrolyte: 0.10 mol L-1 PBS pH 6.0. CDA: 30

µmol L-1.................................................................................................................................12

Page 3: Supplementary Material: dopamine electrodes ...using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1. SCE and Ag/AgCl/KCl, 3.5 mol L −1 references electrodes (RE) were

Page 3 of 12

S1 – Comparison between references electrodes

-0.9 -0.6 -0.3 0.0 0.3 0.6-100

-50

0

50

I /

A

E / V

Ag/AgCl/KCl SCE

Fig. S1. Cyclic voltammograms obtained for PLA-G electrodes in the presence of 5.0 mmol L-1 [Ru(NH3)6]Cl3,

using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1.

SCE and Ag/AgCl/KCl, 3.5 mol L−1 references electrodes (RE) were used for the

voltammetric performance evaluation using [Ru(NH3)6]Cl3 as electrochemical probe. A

conventional cell of three electrodes was used with PLA-G (without previous activations

treatment) as working electrode, platinum as auxiliary electrode and two evaluated RE. Fig.

S1 shows the cyclic voltammograms correspondent to [Ru(NH3)6]3+/4+ redox reaction. Similar

signals were observed for both electrodes, however a slight baseline variation with the peak

potentials shifting of around 40 mV was observed with SCE RE. In this sense, the variations

of anodic and cathodic peaks (ΔEp ≈ 200 mV) recorded for SCE and Ag/AgCl were similar to

other reported works for 3D printed electrodes by using SCE1 or Ag/AgCl RE2, 3. Considering

the obtained information, the SCE was choice as reference electrode for further

measurements.

Page 4: Supplementary Material: dopamine electrodes ...using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1. SCE and Ag/AgCl/KCl, 3.5 mol L −1 references electrodes (RE) were

Page 4 of 12

S2 – Electrochemical characterization

-0.9 -0.6 -0.3 0.0 0.3 0.6

-200

-100

0

100

I /

A

E / V (vs SCE)

PLA-G PLA-GEC

PLA-GMec-1

PLA-GMec-1-EC

PLA-GDMF-10

PLA-GDMF-10-EC

PLA-GNaOH-30

PLA-GNaOH-30-EC

A

-0.9 -0.6 -0.3 0.0 0.3 0.6

BPLA-GNaOH-30-EC

PLA-GNaOH-30

PLA-GDMF-10-EC

PLA-GDMF-10

PLA-GMec-1-EC

PLA-GMec-1

PLA-GEC

I /

A

E / V (vs. SCE)

PLA-G

50 A

Fig. S2. Cyclic voltammograms obtained for PLA-G electrodes in the presence of 0.10 mol L-1 KCl (supporting

electrolyte). ν = 50 mV s-1.

Page 5: Supplementary Material: dopamine electrodes ...using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1. SCE and Ag/AgCl/KCl, 3.5 mol L −1 references electrodes (RE) were

Page 5 of 12

S3 – Electrochemical activation (EC)

0 200 400 600 800-180

-120

-60

0

I /

A

E / V (vs SCE)

OxidationA

-1.8 -1.2 -0.6 0.0-600

-400

-200

0

I /

A

E / V (vs SCE)

ReductionB

-0.9 -0.6 -0.3 0.0 0.3 0.6-160

-120

-80

-40

0

40

80

I /

A

E / V (vs SCE)

5 mV s-1

200 mV s-1

C PLA-G

-0.6 -0.3 0.0 0.3 0.6

-100

-50

0

50

100

I /

A

E / V (vs SCE)

5.0 mV s-1

200 mV s-1

PLA-GECD

Fig. S3. Oxidation (A) and reduction (B) of PLA-G electrode in 0.10 mol L-1 phosphate buffer solution (pH 7.4).

Cyclic voltammograms obtained at different scan rates (5.0–200 mV s-1) in the presence of 5.0 mmol L-1

[Ru(NH3)6]Cl3 for PLA-G (C) and PLA-GEC electrodes (D).

Page 6: Supplementary Material: dopamine electrodes ...using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1. SCE and Ag/AgCl/KCl, 3.5 mol L −1 references electrodes (RE) were

Page 6 of 12

S4 – Mechanical Activation (polishing)

-0.9 -0.6 -0.3 0.0 0.3 0.6

-150

-100

-50

0

50

100

I /

A

E / V (vs SCE)

1.0 min 3.0 min 5.0 min 10 min

Mechanical activationA

0.0 0.1 0.2 0.3 0.4 0.5-150

-100

-50

0

50

100

1.0 min 3.0 min 5.0 min 10 min

I /

A

v1/2 / (V s)-1/2

B

-0.9 -0.6 -0.3 0.0 0.3 0.6

-150

-100

-50

0

50

100

1.0 min 3.0 min 5.0 min 10 min

I /

A

E / V (vs SCE)

C Mechanical + EC

0.0 0.1 0.2 0.3 0.4 0.5

-200

-100

0

100

1.0 min 3.0 min 5.0 min 10 min

I /

A

v1/2 / (V s)-1/2

D

EquationWeightResidual Sum of SquaresPearson's rAdj. R-Squar

1.0 min

E

3.0 min

I

5.0 min

M

10 min

Q

Fig. S4. Cyclic voltammograms obtained at 25 mV s‒1 and correlation between peak currents and v1/2 (5.0–200

mV s-1) obtained for PLA-G electrodes after mechanical (A, B), mechanical + EC (C, D), in the presence of 5.0

mmol L-1 [Ru(NH3)6]Cl3.

Page 7: Supplementary Material: dopamine electrodes ...using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1. SCE and Ag/AgCl/KCl, 3.5 mol L −1 references electrodes (RE) were

Page 7 of 12

S5 – Solvent activation (DMF)

-0.9 -0.6 -0.3 0.0 0.3 0.6-150

-100

-50

0

50

100

5.0 min 10 min 20 min

I /

A

E / V (vs SCE)

DMF A

0.0 0.1 0.2 0.3 0.4 0.5-100

-50

0

50

100

5 min 10 min 20 min

I /

A

v1/2 / (V s)-1/2

B

EquationWeightResidual Sum of SquaresPearson's rAdj. R-Square

Ipa

Ipc

-0.9 -0.6 -0.3 0.0 0.3 0.6-200

-100

0

100

I /

A

E / V (vs SCE)

5.0 min 10 min 20 min

C DMF + EC

0.0 0.1 0.2 0.3 0.4 0.5-800

-400

0

400

5.0 min 10 min 20 min

I /

A

v1/2 / (V s)-1/2

EquationWeightResidual Sum of SquaresPearson's rAdj. R-Square

Ipa

Ipc

D

Fig. S5. Cyclic voltammograms obtained at 25 mV s‒1 and correlation between peak currents and v1/2 (5.0–200

mV s-1) obtained for PLA-G electrodes after DMF (A, B) and DMF + EC activations (C, D), in the presence of

5.0 mmol L-1 [Ru(NH3)6]Cl3.

Page 8: Supplementary Material: dopamine electrodes ...using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1. SCE and Ag/AgCl/KCl, 3.5 mol L −1 references electrodes (RE) were

Page 8 of 12

S6 – Basic activation (NaOH)

-0.9 -0.6 -0.3 0.0 0.3 0.6

-500

0

500

30 min 1.0 h 3.0 h

I /

A

E / V (vs SCE)

NaOHA

0.0 0.1 0.2 0.3 0.4 0.5

-600

0

600

1200

30 min 60 min 180 min

I /

A

v1/2 / (V s)-1/2

B

-0.9 -0.6 -0.3 0.0 0.3 0.6-1000

-500

0

500

I /

A

E / V (vs SCE)

30 min 60 min 180 min

NaOH + ECC

0.0 0.1 0.2 0.3 0.4 0.5-3000

-1500

0

1500

3000

30 min 60 min 180 min

I /

A

v1/2 / (V s)-1/2

DEquationWeightResidual Sum of SquaresPearson's rAdj. R-Square

?$OP:A=1

?$OP:A=2

?$OP:A=3

?$OP:A=4

?$OP:A=5

?$OP:A=6

Fig. S6. Cyclic voltammograms obtained at 25 mV s‒1 and correlation between peak currents and v1/2 (5.0–200

mV s-1) obtained for PLA-G electrodes after NaOH (A, B) and NaOH + EC activations (C, D), in the presence of

5.0 mmol L-1 [Ru(NH3)6]Cl3.

Page 9: Supplementary Material: dopamine electrodes ...using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1. SCE and Ag/AgCl/KCl, 3.5 mol L −1 references electrodes (RE) were

Page 9 of 12

S7 – Acid activation (HNO3)

-0.9 -0.6 -0.3 0.0 0.3 0.6-150

-100

-50

0

50

100

I /

A

E / V (vs SCE)

30 min 60 min 180 min

HNO3A

0.0 0.1 0.2 0.3 0.4 0.5-120

-80

-40

0

40

80

30 min 60 min 180 min

I /

A

v1/2 / (V s)-1/2

B

-1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6

-200

-100

0

100

200

I /

A

E / V (vs SCE)

30 min 60 min 180 min

HNO3 + ECC

0.1 0.2 0.3 0.4 0.5-400

-200

0

200

30 min 60 min 180 min

I /

A

v1/2 / V

D

Fig. S7. Cyclic voltammograms obtained at 25 mV s‒1 and correlation between peak currents and v1/2 (5.0–200

mV s-1) obtained for PLA-G electrodes after HNO3 (A, B) and HNO3 + EC activations (C, D), in the presence of

5.0 mmol L-1 [Ru(NH3)6]Cl3.

Page 10: Supplementary Material: dopamine electrodes ...using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1. SCE and Ag/AgCl/KCl, 3.5 mol L −1 references electrodes (RE) were

Page 10 of 12

S8 – Acid activation (H2SO4)

-0.9 -0.6 -0.3 0.0 0.3 0.6

-100

-50

0

50

I /

A

E / V (vs SCE)

30 min 60 min 180 min

H2SO4A

0.1 0.2 0.3 0.4 0.5

-200

-100

0

100

200

30 min 60 min 180 mim

I /

A

v1/2 / (V s)-1/2

B

-1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6

-150

-100

-50

0

50

100

I /

A

E / V (vs SCE)

30 min 60 min 180 min

H2SO4 + ECC

0.1 0.2 0.3 0.4 0.5-200

-100

0

100

30 min 60 min 180 min

I /

A

v1/2 / (V s)-1/2

D

EquationWeightResidual Sum of SquaresPearson's rAdj. R-Square

ipa 30 min

ipc 30 min

ipa 1h

ipc 1h

ipa 3h

ipc 3h

Fig. S8. Cyclic voltammograms obtained at 25 mV s‒1 and correlation between peak currents and v1/2 (5.0–200

mV s-1) obtained for PLA-G electrodes after. H2SO4 (A, B) and H2SO4 + EC activations (C, D), in the presence

of 5.0 mmol L-1 [Ru(NH3)6]Cl3.

Page 11: Supplementary Material: dopamine electrodes ...using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1. SCE and Ag/AgCl/KCl, 3.5 mol L −1 references electrodes (RE) were

Page 11 of 12

S9 – Comparison between 3D PLA-G activation

Table S1. Comparison between the Raman and electroactive characteristics of 3D PLA-G before and after

activation treatments (n=3).

3D Electrode ID/IG (cm s-1)𝑘 𝑜𝑜𝑏𝑠 𝜃𝑒𝑑𝑔𝑒 Ae (cm²)

PLA-G 0.634±0.002 2.73 x 10-4±0.43 x 10-4 0.07±0.01 0.020±0.006

PLA-GEC 0.668±0.001 1.53 x 10-3±0.11 x 10-3 0.38±0.03 0.095±0.009

PLA-GMec-1 0.631±0.003 1.20 x 10-4±0.28 x 10-4 0.04±0.01 0.20±0.08PLA-GMec-3 0.540±0.004 9.56 x 10-5±2.63 x 10-5 0.024±0.007 0.19±0.07PLA-GMec-5 0.517±0.001 9.60 x 10-5±1.97 x 10-5 0.024±0.005 0.17±0.03PLA-GMec-10 0.571±0.002 1.03 x 10-4±0.14 x 10-4 0.026±0.004 0.16±0.06

PLA-GMec-1-EC 0.730±0.006 1.53 x 10-4±0.32 x 10-4 0.038±0.008 0.31±0.09PLA-GMec-3-EC 0.612±0.003 1.15 x 10-4±0.24 x 10-4 0.029±0.006 0.29±0.08PLA-GMec-5-EC 0.634±0.002 1.20 x 10-4±0.08 x 10-4 0.030±0.002 0.11±0.02PLA-GMec-10-EC 0.624±0.003 1.25 x 10-4±0.35 x 10-4 0.031±0.009 0.159±0.005

PLA-GDMF-5 0.549±0.002 2.26 x 10-4±0.97 x 10-4 0.06±0.02 0.15±0.01PLA-GDMF-10 0.622±0.008 3.85 x 10-4±0.86 x 10-4 0.10±0.02 0.18±0.01PLA-GDMF-20 0.556±0.003 2.92 x 10-4±4.45 x 10-4 0.07±0.01 0.15±0.03

PLA-GDMF-5-EC 0.649±0.008 3.47 x 10-4±0.43 x 10-4 0.09±0.01 0.88±0.04PLA-GDMF-10-EC 0.889±0.009 5.01 x 10-4±0.13 x 10-4 0.125±0.003 1.11±0.09PLA-GDMF-20-EC 0.567±0.002 4.69 x 10-4±0.44 x 10-4 0.18±0.01 1.02±0.04

PLA-GNaOH-30 0.489±0.003 9.34 x 10-4±1.08 x 10-4 0.23±0.03 0.88±0.09PLA-GNaOH-60 0.500±0.001 1.10 x 10-3±0.59 x 10-3 0.28±0.01 1.23±0.05PLA-GNaOH-180 0.544±0.004 1.15 x 10-3±0.20 x 10-3 0.29±0.05 2.35±0.07

PLA-GNaOH-30-EC 0.852±0.06 1.11 x 10-3±0.28 x 10-3 0.28±0.02 3.19±0.02PLA-GNaOH-60-EC 0.522±0.001 1.13 x 10-3±0.04 x 10-3 0.28±0.01 3.13±0.09PLA-GNaOH-180-EC 0.578±0.003 9.11 x 10-4±1.27 x 10-4 0.23±0.03 6.87± 0.03

PLA-GHNO3-30 0.624±0.003 1.02 x 10-4±0.06 x 10-4 0.03±0.01 0.15±0.05PLA-GHNO3-60 0.522±0.001 1.53 x 10-4±0.31 x 10-4 0.04±0.02 0.20±0.04PLA-GHNO3-180 0.544±0.008 2.11 x 10-4±0.41 x 10-4 0.05±0.01 0.18±0.04

PLA-GHNO3-30-EC 0.656±0.002 1.60 x 10-4±0.14 x 10-4 0.040±0.004 0.49±0.09PLA-GHNO3-60-EC 0.578±0.001 2.50 x 10-4±0.71 x 10-4 0.063±0.008 0.67±0.02PLA-GHNO3-180-EC 0.611±0.002 9.02 x 10-5±8.46 x 10-5 0.02±0.02 0.31±0.06

PLA-GH2SO4-30 0.523±0.005 3.25 x 10-4±1.06 x 10-4 0.08±0.03 0.45±0.03PLA-GH2SO4-60 0.518±0.001 4.31 x 10-4±1.14 x 10-4 0.11±0.03 0.24±0.06PLA-GH2SO4-180 0.511±0.001 3.00 x 10-4±0.71 x 10-4 0.08±0.02 0.199±0.002

PLA-GH2SO4-30-EC 0.591±0.004 6.76 x 10-4±0.22 x 10-4 0.169±0.005 0.36±0.09PLA-GH2SO4-60-EC 0.586±0.002 7.00 x 10-4±0.28 x 10-4 0.175±0.007 0.11±0.02PLA-GH2SO4-180-EC 0.575±0.002 2.90 x 10-4±0.14 x 10-4 0.073±0.004 0.12±0.04

ID/IG: G and D bands ratio; : heterogeneous rate constant; : amount of edge sites; Ae: electroactive area.𝑘 𝑜𝑜𝑏𝑠 𝜃𝑒𝑑𝑔𝑒

Page 12: Supplementary Material: dopamine electrodes ...using SCE and Ag/AgCl/KCl as reference electrodes. ν = 50 mV s-1. SCE and Ag/AgCl/KCl, 3.5 mol L −1 references electrodes (RE) were

Page 12 of 12

S10 – Dopamine Determination

Table S2. Results obtained (%) for interference study using ascorbic acid (AA) and uric acid (UA) for DA

determination. Supporting electrolyte: 0.10 mol L-1 PBS pH 6.0. CDA: 30 µmol L-1.

ConcentrationSpecie

3.0 mol L1 30 mol L1 300 mol L1

AA 0.99 +3.43 +6.45

UA +0.54 +1.91 +5.66

AA + UA +1.57 +2.63 +6.89

References

1. P. L. dos Santos, V. Katic, H. C. Loureiro, M. F. dos Santos, D. P. dos Santos, A. L. Formiga and J. A. Bonacin, Sensors and Actuators B: Chemical, 2018, 281, 837-848.

2. R. M. Cardoso, D. M. H. Mendonça, W. P. Silva, M. N. T. Silva, E. Nossol, R. A. B. da Silva, E. M. Richter and R. A. A. Muñoz, Analytica chimica acta, 2018, 1033, 49-57.

3. C. L. Manzanares Palenzuela, F. Novotný, P. Krupička, Z. Sofer and M. Pumera, Analytical Chemistry, 2018, 90, 5753-5757.