supplementary materials for - science...6 effects across different groups, and p>0.05 was required...

32
www.sciencemag.org/cgi/content/full/science.aaa3650/DC1 Supplementary Materials for Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways Elizabeth T. Cirulli, Brittany N. Lasseigne, Slavé Petrovski, Peter C. Sapp, Patrick A. Dion, Claire S. Leblond, Julien Couthouis, Yi-Fan Lu, Quanli Wang, Brian J. Krueger, Zhong Ren, Jonathan Keebler, Yujun Han, Shawn E. Levy, Braden E. Boone, Jack R. Wimbish, Lindsay L. Waite, Angela L. Jones, John P. Carulli, Aaron G. Day-Williams, John F. Staropoli, Winnie W. Xin, Alessandra Chesi, Alya R. Raphael, Diane McKenna-Yasek, Janet Cady, J. M. B. Vianney de Jong, Kevin P. Kenna, Bradley N. Smith, Simon Topp, Jack Miller, Athina Gkazi, FALS Sequencing Consortium, Ammar Al-Chalabi, Leonard H. van den Berg, Jan Veldink, Vincenzo Silani, Nicola Ticozzi, Christopher E. Shaw, Robert H. Baloh, Stanley Appel, Ericka Simpson, Clotilde Lagier-Tourenne, Stefan M. Pulst, Summer Gibson, John Q. Trojanowski, Lauren Elman, Leo McCluskey, Murray Grossman, Neil A. Shneider, Wendy K. Chung, John M. Ravits, Jonathan D. Glass, Katherine B. Sims, Vivianna M. Van Deerlin, Tom Maniatis, Sebastian D. Hayes, Alban Ordureau, Sharan Swarup, John Landers, Frank Baas, Andrew S. Allen, Richard S. Bedlack, J. Wade Harper, Aaron D. Gitler, Guy A. Rouleau, Robert Brown, Matthew B. Harms, Gregory M. Cooper, Tim Harris,* Richard M. Myers, David B. Goldstein *Corresponding author. E-mail: [email protected] Published 19 February 2015 on Science Express DOI: 10.1126/science.aaa3650 This PDF file includes: Materials and Methods Supplementary Text Figs. S1 to S4 Tables S1 to S5 References Other supplementary material for this manuscript includes the following: Table S6 (Excel format) Correction (26 March 2015): Data were changed throughout the supplement PDF and table S6 to reflect a reduction of 5 in the case sample size; the data now correspond to the final version of the main article.

Upload: others

Post on 26-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • www.sciencemag.org/cgi/content/full/science.aaa3650/DC1

    Supplementary Materials for

    Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and

    pathways

    Elizabeth T. Cirulli, Brittany N. Lasseigne, Slavé Petrovski, Peter C. Sapp, Patrick A. Dion, Claire S. Leblond, Julien Couthouis, Yi-Fan Lu, Quanli Wang, Brian J. Krueger, Zhong Ren,

    Jonathan Keebler, Yujun Han, Shawn E. Levy, Braden E. Boone, Jack R. Wimbish, Lindsay L. Waite, Angela L. Jones, John P. Carulli, Aaron G. Day-Williams, John F. Staropoli, Winnie W. Xin,

    Alessandra Chesi, Alya R. Raphael, Diane McKenna-Yasek, Janet Cady, J. M. B. Vianney de Jong, Kevin P. Kenna, Bradley N. Smith, Simon Topp, Jack Miller, Athina Gkazi,

    FALS Sequencing Consortium, Ammar Al-Chalabi, Leonard H. van den Berg, Jan Veldink, Vincenzo Silani, Nicola Ticozzi, Christopher E. Shaw, Robert H. Baloh, Stanley Appel, Ericka Simpson,

    Clotilde Lagier-Tourenne, Stefan M. Pulst, Summer Gibson, John Q. Trojanowski, Lauren Elman, Leo McCluskey, Murray Grossman, Neil A. Shneider, Wendy K. Chung, John M. Ravits,

    Jonathan D. Glass, Katherine B. Sims, Vivianna M. Van Deerlin, Tom Maniatis, Sebastian D. Hayes, Alban Ordureau, Sharan Swarup, John Landers, Frank Baas, Andrew S. Allen, Richard S. Bedlack,

    J. Wade Harper, Aaron D. Gitler, Guy A. Rouleau, Robert Brown, Matthew B. Harms, Gregory M. Cooper, Tim Harris,* Richard M. Myers, David B. Goldstein

    *Corresponding author. E-mail: [email protected]

    Published 19 February 2015 on Science Express DOI: 10.1126/science.aaa3650

    This PDF file includes: Materials and Methods

    Supplementary Text

    Figs. S1 to S4

    Tables S1 to S5

    References

    Other supplementary material for this manuscript includes the following: Table S6 (Excel format)

    Correction (26 March 2015): Data were changed throughout the supplement PDF and table S6 to reflect a reduction of 5 in the case sample size; the data now correspond to the final version of the main article.

  • 2

    Materials and Methods Samples

    Subjects for whole exome analysis were drawn from IRB-approved genetic studies of

    ALS subjects at Consortium member institutions: the Columbia University Medical

    Center (which included Coriell samples), University of Massachusetts at Worchester,

    Stanford University (which included contributions from Emory University School of

    Medicine, the Johns Hopkins University School of Medicine, and the University of

    California, San Diego), Massachusetts General Hospital Neurogenetics DNA Diagnostic

    Lab Repository, Duke University, McGill University (which included contributions from

    Saint-Luc and Notre-Dame Hospital of the Centre Hospitalier de l'Université de Montréal

    (CHUM) (University of Montreal), Gui de Chauliac Hospital of the CHU de Montpellier

    (Montpellier University), Pitié Salpêtrière Hospital, Fleurimont Hospital of the Centre

    Hospitalier Universitaire de Sherbrooke (CHUS) (University of Sherbrooke), Enfant-

    Jésus Hospital of the Centre hospitalier affilié universitaire de Québec (CHA) (Laval

    University), and Montreal General Hospital and Montreal Neurological Institute and

    Hospital of the McGill University Health Centre), and Washington University in St.

    Louis (which included contributions from Houston Methodist Hospital, Virginia Mason

    Medical Center, University of Utah, and Cedars Sinai Medical Center). Subjects for

    follow-up sequencing came from the same centers plus the University of Pennsylvania

    and University of Amsterdam. Genotypes for the 51 genes used in the replication analysis

    were also provided for FALS exomes sequenced as previously described(17). All patients

    were diagnosed according to El Escorial revised criteria as suspected, possible, probable,

    or definite ALS by neuromuscular physicians. Subjects were considered sporadic if no

    first or second-degree relatives had been diagnosed with ALS or died of an ALS-like

    syndrome. Details are presented in Table S1.

    All samples known to be carriers of the C9orf72 expansion were excluded from all

    analyses. There were 883 case exomes used in the discovery phase that were not screened

    for this variant. Additionally, prior to exome sequencing, some samples were screened

    for variants in known ALS genes and were only sequenced if they were found to be

    negative for a mutation in that gene. The number of pre-screened discovery samples for

  • 3

    each gene were 430 for SOD1, 334 for TARDBP and FUS, and 143 for VAPB, DCTN1,

    ANG, FIG4, OPTN, VCP, UBQLN2, EWSR1, DAO, SQSTM1, SETX, and TAF15. The

    543 exomes used in the replication stage were also screened for variants in TARDBP,

    FUS, SOD1, VCP, PFN1, and TUBA4A prior to use in this study.

    Control samples were sequenced as part of other studies at Duke University,

    HudsonAlpha, and McGill University and were not enriched for (but not specifically

    screened for) ALS or other neurodegenerative disorders. Control samples were matched

    to case samples in terms of similar capture kits and coverage levels (Tables S2 and S3).

    Except for the exome cases used in the replication phase, all samples used within each

    analysis subset were processed using identical pipelines.

    Only genetically European ethnicity samples were included in the analysis. Samples were

    also screened with KING(55) to remove duplicate samples between the custom capture

    and exome datasets and to remove second-degree or higher relatives in the exome

    datasets; exomes with incorrect sexes according to X:Y coverage ratios were removed, as

    were contaminated samples according to VerifyBamID(56).

    Sequencing

    Sequencing of DNA was performed at Duke University, McGill University, Stanford

    University, HudsonAlpha, and University of Massachusetts, Worcester. Samples were

    either exome sequenced using the Agilent All Exon (37MB, 50MB or 65MB) or the

    Nimblegen SeqCap EZ V2.0 or 3.0 Exome Enrichment kit or whole-genome sequenced

    using Illumina GAIIx or HiSeq 2000 or 2500 sequencers according to standard protocols

    (see Table S2). Follow-up custom capture sequencing was performed using the same

    methods as the exome sequencing with the Nimblegen SeqCap EZ Choice to an average

    coverage of 144.60x within the capture regions, with an average of 99.37% bases covered

    at least 5x.

    Case and control samples were processed at Duke University (discovery Duke and

    McGill/Stanford datasets and replication custom capture dataset), HudsonAlpha

    (discovery HudsonAlpha dataset) and University of Massachusetts, Worcester

    (replication exome dataset) as follows. The Illumina lane-level fastq files were aligned to

  • 4

    the Human Reference Genome (NCBI Build 37) using the Burrows-Wheeler Alignment

    Tool (BWA)(57). We then used Picard software (http://picard.sourceforge.net) to remove

    duplicate reads and process these lane-level SAM files, resulting in a sample-level BAM

    file that is used for variant calling. We used GATK to recalibrate base quality scores,

    realign around indels, and call variants(58). The Duke, McGill/Stanford, custom capture

    and replication exome variants were required to have a quality score (QUAL) of at least

    20 (30 for replication exomes), a genotype quality (GQ) score of at least 20, and at least

    10x coverage. Additionally, Duke, McGill/Stanford and custom capture variants were

    required to have a quality by depth (QD) score of at least 2 and a mapping quality (MQ)

    score of at least 40. For Duke and McGill/Stanford exomes and custom capture samples,

    indels were also required to have a maximum strand bias (FS) of 200 and a minimum

    read position rank sum (RPRS) of -20. Other variants were restricted according to VQSR

    tranche (calculated using the known SNV sites from HapMap v3.3, dbSNP, and the Omni

    chip array from the 1000 Genomes Project): the cutoffs for Duke, McGill/Stanford and

    custom capture variants were a tranche of 99.9% for SNVs in genomes and exomes and

    99% for indels in genomes; the cutoffs for HudsonAlpha were a 99% tranche for SNVs

    and 95% tranche for indels; and the cutoff for the replication exomes was a 97% tranche

    for SNVs and indels. Variants were excluded if they were determined to be sequencing,

    batch-specific or kit-specific artifacts; they were also excluded in the Duke,

    McGill/Stanford and custom capture datasets if marked by EVS as being failures(59).

    Variants were annotated to Ensembl 73 using SnpEff.

    Predisposition analysis

    This study first analyzed whole exome sequence data for discovery purposes and then

    performed follow-up custom capture sequencing of 51 genes and interrogated these 51

    genes in additional case exomes. We analyzed the discovery samples in separate groups

    to control for differences in sequencing methods and coverage levels. The Duke analysis

    used genomes and Nimblegen and Agilent 65MB exomes with at least 90% of the

    consensus coding sequence (CCDS) bases covered to at least 10x, the HudsonAlpha

    analysis used Nimbelgen exomes with at least 90% of the CCDS bases covered to at least

  • 5

    10x, and the McGill/Stanford University analysis used genomes and Agilent 37MB and

    50MB exomes with 75% of the CCDS covered at least 10x.

    Our study focused on gene-based collapsing analyses. First, the number of bases with at

    least 10x coverage was calculated for each CCDS exon plus 10 bp into each intron for

    each sample. Because differences in coverage can cause biased results, exons with

    coverage differences (cutoff tailored to each analysis (see Table S3)) between cases and

    controls were excluded from analysis.

    For each gene, each sample was then indicated as carrying or not carrying a qualifying

    variant. Qualifying variants were defined for dominant (one qualifying variant per gene;

    minor allele frequency (MAF) cutoff of 0.05% internally and 0.005% in ExAC) and

    recessive (two qualifying variants per gene, including homozygous and potentially

    compound heterozygous samples as carriers; MAF cutoff 1%) models. These allele

    frequency thresholds used a leave-one-out method for the combined sample of cases and

    controls in each analysis group (where the MAF of each variant was calculated using all

    samples except for the sample in question). Variants were also required to pass this MAF

    cutoff in the publically available ExAC global frequencies; HudsonAlpha analyses

    additionally required a MAF below 0.01 in the 1000 Genomes Data (50, 60). We

    performed analyses of CCDS genes using three methods to identify qualifying variants:

    1) all non-synonymous and canonical splice variants (coding model), 2) all non-

    synonymous coding variants except those predicted by PolyPhen-2 HumVar(13) to be

    benign (not benign model), and 3) only stop gain, frameshift and canonical splice variants

    (loss-of-function [LoF] model). Qualifying variants were identified using Analysis Tools

    for Annotated Variants (http://humangenome.duke.edu/software) at Duke and an in-house

    pipeline at HudsonAlpha.

    The total number of cases and controls with qualifying variants in each gene for each

    model were calculated, and a Cochran-Mantel-Haenszel (CMH) test was performed in R

    to generate a combined, stratified p-value across all three discovery groups. Genes were

    only considered if they were assessed in all three discovery cohorts and had more than

    one case or control sample with a genetic variant meeting the inclusion criteria for the

    genetic model being tested. A Breslow-Day test was applied to assess homogeneity of

  • 6

    effects across different groups, and p>0.05 was required for the gene to be considered.

    The adjusted alpha after correcting for the number of genes tested over all six genetic

    models is p

  • 7

    samples(59). Linear regression analysis was performed to analyze age at onset, Firth

    logistic regression was used to analyze the site of onset, and Cox Proportional-Hazards

    Regression was used to analyze survival in R(62). These analyses always included sex,

    analysis group and EIGENSTRAT axes (which were calculated for EIGENSTRAT-

    pruned whites only and were created using the genotypes for variants from the Illumina

    HumanCore chip that overlap exons and were not found to be influenced by sequencing

    or genotyping method) as covariates, and the analysis of survival additionally included

    age at onset as a covariate and required at least 1% of cases to have variants in a given

    gene for it to be included in the analysis (with the exception of previously reported ALS

    genes, which we analyzed separately and included regardless of the number of carriers).

    Cell Culture, Transfection, and Reagents

    All cell lines were grown in Dulbecco’s modified Eagle’s medium supplemented with

    10% fetal calf serum (FBS) and maintained at 5% CO2/37oC. Plasmid were transfected

    using lipid-based reagents (Lipofectamine 2000). Lentiviruses were made in 293T cells

    and used to infect 293T cells followed by selection on puromycin.

    Immunoprecipitation and Proteomic Analysis

    AP-MS and CompPASS analysis using the (Comparative Proteomics Analysis Software

    Suite) were performed as previously described(63, 64). Briefly, 107 cells were lysed in

    lysis buffer [50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% NP-40 and

    supplemented with protease inhibitors (Roche)] for 30 min on ice to obtain whole cell

    extracts. Lysates were incubated with 30 l of anti-HA resin (Covance) and after

    extensive washing with lysis buffer, proteins were eluted with HA peptide prior to

    trichloroacetic acid precipitation, trypsinization, and stage tipping. Samples were ran in

    technical duplicate on an LTQ Velos (Thermo) mass spectrometer, and spectra search

    with Sequest prior to target-decoy peptide filtering, and linear discriminant analysis(65).

    Protein Assembler was used to convert spectral counts to average protein spectral

    matches (APSMs), which takes into account peptides, which match more than one protein

    in the database. Peptides were identified with a false discovery rate of < 1.0% and the

    protein false discovery rate was

  • 8

    used: Activation Type – Collision induced dissociation; Minimum Signal Required -

    2000.0; Isolation width (m/z) - 1.00; Normalized Collision Energy - 35.0; Default Charge

    State – 2; Activation Q - 0.250; Activation Time (ms) - 10.000. Peptide data (APSMs)

    were uploaded into the CompPASS algorithm housed within the CORE environment. For

    CompPASS analysis, we employed a stats table of 170 unrelated bait proteins analyzed in

    an analogous manner, including deubiquitinating enzymes and autophagy

    components(63, 64). The CompPASS system identifies high confidence candidate

    interacting proteins (HCIPs) based on the normalized weighted D (NWD)-score, which

    incorporates the frequency with which they identified within the stats table, the

    abundance (APSMs, average peptide spectral matches) when found, and the

    reproducibility of identification in technical replicates, and also determines a z-score

    based on APSMs(63, 64). Proteins with NWD-scores >1.0 are considered HCIPs,

    although we also note that some proteins that may be bona fide interacting proteins may

    not reach the strict threshold set by a NWD-score of > 1.0.

    For IP of endogenous NEK1, VAPB or ALS2 in NSC-34 cells expressing either HA-

    ALS2, HA-VAPB or FLAG-NEK1, respectively, ~0.5 mg of lysate was incubated with

    0.5 µg of the indicated antibody (anti-HA Abcam ab9110, anti-Nek1 Bethyl Labs A304-

    570A, anti-FLAG Sigma F1804, anti-ALS2 Sigma SAB4200137, anti-VAPB Bethyl

    Labs A302-894A) or control IgG (Cell Signaling Technologies) overnight at 4°C. Protein

    G resin (25 µl) was then added to the IP reaction and incubated for a further 2 hours at

    4°C. Beads were washed three times with lysis buffer. After washing, 4x SDS loading

    buffer was added and the samples were boiled for 5 min. Samples were separated on a

    SDS-PAGE gel prior to immunoblot analysis according to standard procedures using

    primary antibodies at 1:1000 overnight at 4°C, HRP-conjugated secondary antibodies

    (Promega) at 1:5000 for 1 hour at room temperature, and chemiluminescent detection

    (PerkinElmer).

    Supplementary Text

    FALS Sequencing Consortium

    Other FALS Sequencing Consortium Members are as follows:

    Orla Hardiman1, Russell L McLaughlin1, Letizia Mazzini2, Ian P Blair3, Kelly L Williams3, Garth A Nicholson4, Safa Al-Sarraj5, Andrew King5, Emma L Scotter5, Simon

  • 9

    Topp5, Claire Troakes5, Caroline Vance5, Sandra D'Alfonso6, Stefano Duga7, Lucia Corrado8, Anneloor LMA ten Asbroek9, Daniela Calini10, Claudia Colombrita11, Antonia Ratti11, Cinzia Tiloca12, Zheyang Wu13, Seneshaw Asress14, Meraida Polak14, Frank Diekstra15, Wouter van Rheenen15, Eric W Danielson16, Claudia Fallini16, Pamela Keagle16, Elizabeth A Lewis16, Jason Kost17, Gianni Sorarù18, Cinzia Bertolin18, Giorgia Querin18, Barbara Castellotti19, Cinzia Gellera19, Viviana Pensato19, Franco Taroni19, Cristina Cereda20, Stella Gagliardi20, Mauro Ceroni21, Giuseppe Lauria22, Jacqueline de Belleroche23, Giacomo P Comi24, Stefania Corti24, Roberto Del Bo24, Martin R Turner25, Kevin Talbot25, Hardev Pall26, Karen E Morrison27, Pamela J Shaw28, Jesús Esteban-Pérez29, Alberto García-Redondo29, José Luis Muñoz-Blanco30. 1Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland. 2ALS Center, Department of Neurology, 'A. Avogadro' University of Eastern Piedmont, Novara, Italy. 3Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia. 4Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia; Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia. 5Centre for Neurodegeneration Research, King’s College London, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, London, SE5 8AF, UK. 6Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), ‘‘A. Avogadro’’ University, 28100 Novara, Italy. 7Humanitas University, Via Manzoni 113, 20089 Rozzano (Mi) – Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano (Mi) – Italy. 8Department of Medical Sciences, 'A. Avogadro' University of Eastern Piedmont, Novara, Italy. 9Department of Neurogenetics and Neurology, Academic Medical Centre, Amsterdam, The Netherlands. 10Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy. 11Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy; Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122 Italy. 12Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy; Doctoral School in Molecular Medicine, Department of Sciences and Biomedical Technologies, Universita` degli Studi di Milano, Milan 20122, Italy. 13Worcester Polytechnic Institute, Worcester, MA 01609, USA.

  • 10

    14Department of Neurology, Emory University, Atlanta, GA 30322, USA. 15Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands. 16Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. 17Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.; Worcester Polytechnic Institute, Worcester, MA 01609, USA. 18Department of Neurosciences, University of Padova, Padova, Italy. 19Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico ‘Carlo Besta’, Milan 20133, Italy. 20Experimental Neurobiology Laboratory, IRCCS 'C. Mondino' National Neurological Institute, 27100 Pavia, Italy. 21Experimental Neurobiology Laboratory, IRCCS 'C. Mondino' National Neurological Institute, 27100 Pavia, Italy; Department of Neurological Sciences, University of Pavia, 27100 Pavia, Italy. 22Headache and Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico ‘Carlo Besta’, Milan 20133, Italy. 23Neurogenetics Group, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London W12 0NN. 24Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122 Italy. 25Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK. 26School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK. 27School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, UK.; Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust UK. 28Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK. 29Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain. 30Unidad de ELA, Instituto de Investigación Hospital Gregorio Marañón de Madrid, SERMAS, Spain.

    Acknowledgements

  • 11

    The majority of the funding for the ALS patient sequencing performed in this study was

    provided by Biogen Idec. P.C.S. was supported through the auspices of Dr. H. Robert

    Horvitz, an Investigator at the Howard Hughes Medical Institute in the Department of

    Biology at the Massachusetts Institute of Technology. J.W.H. was supported by a

    research grant from Biogen-Idec and R37 NS083524. The Shaw laboratory is supported

    by grants from the Wellcome Trust and Medical Research Council Grants

    089701/Z/09/Z, G0900688 and MR/L021803/1, MND Association and American ALS

    Association. Funding for the FALS Sequencing Consortium was provided by the

    National Institutes of Health (NIH)/National Institute of Neurological Disorders and

    Stroke (NINDS) (5RO1NS050557; 5R01 NS067206; 5R01NS065847; 1R01NS073873;

    5R01NS079836 R01NS065847; and R01NS073873 [J.E.L., R.H.B.]), the American ALS

    Association (N.T., V.S., C.E.S., J.E.L., R.H.B.), Project MinE, the MND Association

    (N.T., V.S., A.A.C, C.E.S., J.E.L.), the Angel Fund (R.H.B.), Project ALS/P2ALS

    (R.H.B.), the ALS Therapy Alliance (R.H.B., J.E.L.), the Pierre L. de Bourghknecht ALS

    Research Foundation (R.H.B.), a Francesco Caleffi donation (N.T., V.S.), the Medical

    Research Council, the Heaton-Ellis Trust and AriSLA - Italian Research Foundation for

    ALS, cofinanced with support of ‘‘5 x 1000’’—Healthcare research of the Italian

    Ministry of Health (grants EXOMEFALS 2009 and NOVALS 2012 [N.T., C.G., C.

    Tiloca, V.S., J.E.L.]), the National Institute for Health Research (NIHR) Dementia

    Biomedical Research Unit at South London (C.E.S., A.A.C.), Maudsley NHS Foundation

    Trust (C.E.S., A.A.C.), King’s College London (C.E.S., A.C.), the Motor Neurone

    Disease Research Institute of Australia (Leadership Grant to IPB and a Bill Gole

    fellowship to K.L.W.), United Kingdom Medical Research Council under the aegis of

    JPND – http://www.jpnd.eu (A.A.C.), the National Health and Medical Research Council

    of Australia (1004670), Canadian Institutes of Health Research (208973, G.A.R.), Muscle

    Dystrophy Association (153959, G.A.R.), Target ALS (C.L.T., A.D.G.), Instituto de

    Salud Carlos III - ISCIII (grants EC08/00049; PI10/00092; PI12/ 03110 – Erare european

    call – J.E.P., A.G.R.), FUNDELA (Spanish foundation for the development of ALS

    research, J.E.P, A.G.R.) and the Mireia Barneda project ‘‘No llores, no te rindas’’ (J.E.P.,

    A.G.R.), the Netherlands ALS Foundation, Telethon Genetic BioBank (GTB12001D) and

  • 12

    the Eurobiobank network. Research leading to these results has received funding from the

    European Community's Health Seventh Framework Programme (FP7/2007-2013).

    We acknowledge Jarod Shelton at Washington University St. Louis, Peggy Allred at

    Cedars Sinai, Luis Lay and Sharon Halton at Houston Medical, Karla Figueroa at

    University of Utah, Michael Baughn, Melissa McAlonis and Jonhatan W. Artates at

    University of California, San Diego, and Marlyne Silver, Karen Grace, and Ken Cronin at

    Duke University for recruiting subjects, preparing DNA, and maintaining clinical

    databases. We acknowledge M.T. van Meegen and A.P. Prijs at University of Amsterdam

    and Mei Liu and Paul Carmillo at Biogen Idec for technical assistance.

    DNA panels from the NINDS Human Genetics Resource Center DNA and Cell Line

    Repository (http://ccr.coriell.org/ninds) were used in this study, as well as clinical data.

    The submitters that contributed samples are acknowledged in detailed descriptions of

    each ALS1 sample.

    We would like to acknowledge the following individuals for the contributions of control

    samples: Dr. Joseph McEvoy, Dr. Anna Need, Mr. Jordan Silver and Ms. Marlyne Silver;

    Dr. Deborah Koltai Attix, and Ms. Jill McEvoy, Dr. Kenneth Schmader, Dr. Shelley

    McDonald, Dr. Heidi K. White, Dr. Mamata Yanamadala, and the Carol Woods and

    Crosdaile Retirement Communities; Dr. Gianpiero Cavalleri, Dr. Norman Delanty, and

    Dr. Chantal Depondt; Dr. William B. Gallentine, Dr. Erin L. Heinzen , Dr. Aatif M.

    Husain, Ms. Kristen N. Linney, Dr. Mohamad A. Mikati, Dr. Rodney A. Radtke, Dr.

    Saurabh R. Sinha, and Ms. Nicole M. Walley; Dr. Ruth Ottman; Dr. Julie Hoover-Fong,

    Dr. Nara L. Sobreira and Dr. David Valle; Dr. Yong-Hui Jiang; Dr. Demetre Daskalakis;

    Dr. William L. Lowe; Dr. James Burke, Dr. Christine Hulette, and Dr. Kathleen Welsh-

    Bohmer; Dr. Vandana Shashi and Ms. Kelly Schoch; Mr. David H. Murdock and The

    MURDOCK Study Community Registry and Biorepository; Dr. Scott M. Palmer; Dr. Zvi

    Farfel, Dr. Doron Lancet, and Dr. Elon Pras; Mr. Arthur Holden and Dr. Elijah Behr; Dr.

    Annapurna Poduri; Dr. M Chiara Manzini; Dr. Nicole Calakos; Dr. Patricia Lugar; Dr.

    Doug Marchuk; Dr. Qian Zhao; Dr. Sarah Kerns and Dr. Harriet Oster; Dr. Rasheed

    Gbadegesin and Dr. Michelle Winn; Dr. Francis J. McMahon and Nirmala Akula; Dr. Eli

  • 13

    J. Holtzman; Dr. Joshua Milner; Dr. Deborah Levy; Dr. Ann Pulver; and Dr. Michael

    Hauser.

    The collection of control samples was funded in part by Bryan ADRC NIA P30

    AG028377, NIMH Award RC2MH089915, NINDS Award RC2NS070344, NIAID

    Award R56AI098588, the Ellison Medical Foundation New Scholar award AG-NS-0441-

    08, an award from SAIC-Frederick, Inc. (M11-074), NIMH Award K01MH098126,

    MH057314 and MH068406 to Ann E. Pulver, Sc.D. (Johns Hopkins University School of

    Medicine), and the Epi4K Gene Discovery in Epilepsy study (NINDS U01-NS077303)

    and the Epilepsy Genome/Phenome Project (EPGP - NINDS U01-NS053998). The

    collection of control samples was supported in part by funding from the Division of

    Intramural Research, NIAID, NIH, and with federal funds by the Center for HIV/AIDS

    Vaccine Immunology ("CHAVI") under a grant from the National Institute of Allergy

    and Infectious Diseases, National Institutes of Health, Grant Number UO1AIO67854.

    The authors would like to thank the Exome Aggregation Consortium and the groups that

    provided exome variant data for comparison. A full list of contributing groups can be

    found at http://exac.broadinstitute.org/about.

  • 14

    Fig. S1. QQ plot of discovery results for dominant not benign model

    Shown are the results for the analysis of 2,869 case and 6,405 control exomes. There

    were 16,339 covered genes passing QC with more than one case or control carrier for this

    test, and the genes with the top 10 associations are labeled. The lambda quantifying

    inflation is 1.058 The association with SOD1 passes correction for multiple tests.

  • 15

    Fig. S2 QQ plot for the discovery results from the dominant LoF model

    Shown are the results for the analysis of 2,869 case and 6,405 control exomes. There

    were 9,817 covered genes passing QC with more than one case or control carrier for this

    test, and the genes with the top 10 associations are labeled. The lambda quantifying

    inflation is 0.956.

  • 16

    Fig. S3 Variants in NEK1 and ALS2

    Dominant LoF variants are shown for NEK1 (combined dataset), and recessive coding

    variants are shown for ALS2 (discovery dataset). LoF variants are filled in red, non-

    synonymous variants are filled in blue, and splice variants are filled in purple. Case

    variants are shown with red lines, control variants are shown with blue lines, and variants

    found in both cases and controls are shown with dashed lines.

  • 17

    Fig. S4 NEK1 interacts with ALS2 and VAPB

    NEK1 interacts with ALS2 and VAPB. (A,B) HEK293T cells stably expressing HA-

    NEK1 or HA-NEK1K33R (K/R) were subjected to AP-MS analysis using the CompPASS

    platform and proteins with a normalized weighted D (NWD)-score > 1.0 identified.

    Among the 51 proteins identified with NEK1 and the 38 proteins identified with

    NEK1K33R, 17 were in common (panel A). The major classes of interacting proteins found

    with both bait proteins are shown in panel B. Proteins indicated with asterisks were

    identified but with a sub-threshold NWD-score. (C) HEK293T cells stably expressing

    either HA-ALS2 or ALS2-HA were subjected to AP-MS and NEK1 as well as the NEK1

    associated protein C21orf2 were identified. APSM, average peptide spectral matches.

    (D,E) NCS-34 neuronal cells expressing either HA-ALS2, HA-VAPB, or FLAG-NEK1

    were subjected to immunoprecipitation using either anti-NEK1, anti-VAPB or anti-

    ALS2, as indicated, to immunoprecipitate the endogenous protein and complexes then

    immunoblotted with the indicated antibodies. Similarly, anti-FLAG or anti-HA

    immunoprecipitations were performed to demonstrate reciprocal interactions.

  • 18

    Table S1. Patient Demographics for Discovery Samples

    Total ALS Patients Analyzed 2,869

    Family History of ALS 6.7% (104/1560)

    Male Sex 58.8% (1687/2869)

    Bulbar symptom onset 26.8% (661/2465)

    If limb onset, proportion upper limb onset 52.0% (903/1735)

    Cognitive impairment noted at any time 14.6% (178/1221)

    Mean age at symptom onset in years (Stdev, n) 57.1 (13.0,2519)

    Range of ages at symptom onset 13-90

    Median disease duration in months (IQR, n) 36 (32, 678)

    Because data collection varied across centers, the numerators and denominators are

    shown. Disease duration was only calculated for subjects with complete follow-up and

    known durations to death or full-time positive pressure ventilation. All patients analyzed

    were of white ethnicity.

  • 19

    Table S2. Sequencing methods and groups

    Kit 37MB 50MB 65MB Nimblegen Genome

    Analysis group Cases/Ctrls Cases/Ctrls Cases/Ctrls Cases/Ctrls Cases/Ctrls

    Duke University 0/0 0/0 0/676 1137/2915 36/423

    McGill/Stanford

    University

    0/335 248/227 0/165 1/1 2/61

    HudsonAlpha 0/0 0/0 0/0 1445/1602 0/0

  • 20

    Table S3. Number of CCDS bases covered in each analysis

    Analysis group Cases Ctrls Cutoff

    Duke University 32,233,687

    (91%)

    32,165,079

    (91%)

    5%

    McGill/Stanford

    University

    28,272,224

    (80%)

    27,737,938

    (78%)

    27%

    HudsonAlpha 30,969,984

    (88%)

    31,367,279

    (90%)

    20%

    Replication- Duke

    University custom

    capture

    111,821 112,423 5%

    Replication-

    University of

    Massachusetts

    exomes

    102,359 N/A N/A*

    Shown is the average number of bases covered at least 10x. Numbers are n(%). The

    cutoff refers to the difference allowed between cases and controls in their average exonic

    coverage; exons with differences above this value were not included in the analysis.

    *Exomes used in the replication dataset were restricted to the same exons used in the

    custom capture samples.

  • 21

    Table S4. The 51 genes chosen for targeted follow-up based on initial exome

    sequencing results.

    TET3

    ALYREF

    TAF6

    NEK1

    ATP6V1F

    ZNF296

    UBE2D2

    DOCK3

    TBK1

    TRAF4

    OPTN

    GRID2IP

    C16orf11

    PFKFB1

    BTBD11

    ENAH

    TBC1D30

    TNNT3

    TMEM55B

    CYGB

    CYP17A1

    CEL

    PCDHGA9

    LGALSL

    PDLIM2

    LENG9

    C19orf25

    PAMR1

    SPSB3

    DNMT3A

    SH3KBP1

    SPG11

    ZNF432

    AP1G2

    MADD

    GPR162

    ADCYAP1R1

    YBX3

    KCNT1

    CAMK2A

    LRRC73

    S100A2

    HAS2

    ZNF837

    IL5

    MPL

    SLC15A2

    PPCS

    HIVEP3

    TGM3

    SCEL

  • 22

    Table S5. NEK1-Interacting proteins

    INTERACTOR NEK1 (APSM) NEK1K33R (APSM)

    NEK1 (NWD) NEK1K33R (NWD)

    ZXDC 10 4 2.75 1.56

    VPS29 1 3 0.08 1.35

    VPS26B 2 7 1.06 2.19

    VAPA 9 4 1.5 1.04

    SGPL1 21 4 1.74 0.39

    RPS6KA3 4 1 3 0.12

    PIPSL 2 0 2.12 0

    PDF 1 3 0.12 2.71

    NOSIP 2 1 1.06 0.78

    NEK1 592 269 17.15 11.95

    MYO5A 2 0 1.06 0

    MAP4 2 1 1.06 0.78

    LRP2 1 2 0.08 1.1

    KIFC1 4 1 3 0.12

    KIF2C 13 11 3.27 3.06

    KIF2A 25 15 2.35 1.72

    KIAA0562 15 8 2.77 1.78

    KATNB1 2 3 1.06 1.35

    KATNA1 4 1 3 0.12

    JUN 4 4 1.5 1.56

    CREB5 5 0 1.68 0

    CEP97 2 1 2.12 1.56

    CEP78 5 1 1.12 0.52

    CEP290 24 8 3.75 1.78

  • 23

    CAMK2G 4 6 1.5 1.93

    CAMK2D 7 10 1.19 1.7

    CAMK2B 4 4 1 1.04

    C21orf2 10 8 4.74 4.42

    ATF7 5 1 3.35 0.12

    ATF2 6 1 1.86 0.08

    ANKRD27 0 3 0 2.71

    ALS2 19 23 2.52 3.01

    ALG11 1 0 1.5 0

    VPS35 7 13 0.23 0.4

    YWHAG 12 13 0.2 0.21

    YWHAZ 27 23 0.2 0.19

    YWHAQ 22 10 0.15 0.1

    YWHAE 104 91 0.48 0.46

    YWHAB 28 24 0.46 0.43

    YWHAH 10 16 0.36 0.48

  • References

    1. L. Poppe, L. Rué, W. Robberecht, L. Van Den Bosch, Translating biological findings into new

    treatment strategies for amyotrophic lateral sclerosis (ALS). Exp. Neurol. 262, 138–151

    (2014). Medline

    2. S. Chen, P. Sayana, X. Zhang, W. Le, Genetics of amyotrophic lateral sclerosis: An update.

    Mol. Neurodegener. 8, 28 (2013). Medline doi:10.1186/1750-1326-8-28

    3. A. E. Renton, A. Chiò, B. J. Traynor, State of play in amyotrophic lateral sclerosis genetics.

    Nat. Neurosci. 17, 17–23 (2014). Medline doi:10.1038/nn.3584

    4. A. Al-Chalabi, A. Jones, C. Troakes, A. King, S. Al-Sarraj, L. H. van den Berg, The genetics

    and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol. 124, 339–352

    (2012). Medline doi:10.1007/s00401-012-1022-4

    5. M. Neumann, Frontotemporal lobar degeneration and amyotrophic lateral sclerosis: Molecular

    similarities and differences. Rev. Neurol. 169, 793–798 (2013). Medline

    doi:10.1016/j.neurol.2013.07.019

    6. R. A. Smith, T. M. Miller, K. Yamanaka, B. P. Monia, T. P. Condon, G. Hung, C. S. Lobsiger,

    C. M. Ward, M. McAlonis-Downes, H. Wei, E. V. Wancewicz, C. F. Bennett, D. W.

    Cleveland, Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin.

    Invest. 116, 2290–2296 (2006). Medline doi:10.1172/JCI25424

    7. See supplementary materials on Science Online.

    8. J. Sasabe, T. Chiba, M. Yamada, K. Okamoto, I. Nishimoto, M. Matsuoka, S. Aiso, D-serine

    is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J. 26,

    4149–4159 (2007). Medline doi:10.1038/sj.emboj.7601840

    9. M. Thompson, J. C. Marecki, S. Marinesco, V. Labrie, J. C. Roder, S. W. Barger, J. P. Crow,

    Paradoxical roles of serine racemase and D-serine in the G93A mSOD1 mouse model of

    amyotrophic lateral sclerosis. J. Neurochem. 120, 598–610 (2012). Medline

    doi:10.1111/j.1471-4159.2011.07601.x

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25017368&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23941283&dopt=Abstracthttp://dx.doi.org/10.1186/1750-1326-8-28http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24369373&dopt=Abstracthttp://dx.doi.org/10.1038/nn.3584http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22903397&dopt=Abstracthttp://dx.doi.org/10.1007/s00401-012-1022-4http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24011641&dopt=Abstracthttp://dx.doi.org/10.1016/j.neurol.2013.07.019http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16878173&dopt=Abstracthttp://dx.doi.org/10.1172/JCI25424http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17762863&dopt=Abstracthttp://dx.doi.org/10.1038/sj.emboj.7601840http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22117694&dopt=Abstracthttp://dx.doi.org/10.1111/j.1471-4159.2011.07601.x

  • 10. P. Paul, J. de Belleroche, The role of D-amino acids in amyotrophic lateral sclerosis

    pathogenesis: A review. Amino Acids 43, 1823–1831 (2012). Medline

    doi:10.1007/s00726-012-1385-9

    11. J. Cady, P. Allred, T. Bali, A. Pestronk, A. Goate, T. M. Miller, R. D. Mitra, J. Ravits, M. B.

    Harms, R. H. Baloh, Amyotrophic lateral sclerosis onset is influenced by the burden of

    rare variants in known amyotrophic lateral sclerosis genes. Ann. Neurol. 77, 100–113

    (2015). Medline doi:10.1002/ana.24306

    12. P. D. Stenson et al.., Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat.

    21, 577–581 (2003).

    13. I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova, P. Bork, A. S.

    Kondrashov, S. R. Sunyaev, A method and server for predicting damaging missense

    mutations. Nat. Methods 7, 248–249 (2010). Medline doi:10.1038/nmeth0410-248

    14. A. Iida, N. Hosono, M. Sano, T. Kamei, S. Oshima, T. Tokuda, M. Nakajima, M. Kubo, Y.

    Nakamura, S. Ikegawa, Novel deletion mutations of OPTN in amyotrophic lateral

    sclerosis in Japanese. Neurobiol. Aging 33, 1843.e19–1843.e24 (2012). Medline

    doi:10.1016/j.neurobiolaging.2011.12.037

    15. M. van Blitterswijk, P. W. van Vught, M. A. van Es, H. J. Schelhaas, A. J. van der Kooi, M.

    de Visser, J. H. Veldink, L. H. van den Berg, Novel optineurin mutations in sporadic

    amyotrophic lateral sclerosis patients. Neurobiol. Aging 33, 1016.e1–1016.e7 (2012).

    Medline doi:10.1016/j.neurobiolaging.2011.05.019

    16. H. Daoud, S. Zhou, A. Noreau, M. Sabbagh, V. Belzil, A. Dionne-Laporte, C. Tranchant, P.

    Dion, G. A. Rouleau, Exome sequencing reveals SPG11 mutations causing juvenile ALS.

    Neurobiol. Aging 33, 839.e5–839.e9 (2012). Medline

    doi:10.1016/j.neurobiolaging.2011.11.012

    17. B. N. Smith, N. Ticozzi, C. Fallini, A. S. Gkazi, S. Topp, K. P. Kenna, E. L. Scotter, J. Kost,

    P. Keagle, J. W. Miller, D. Calini, C. Vance, E. W. Danielson, C. Troakes, C. Tiloca, S.

    Al-Sarraj, E. A. Lewis, A. King, C. Colombrita, V. Pensato, B. Castellotti, J. de

    Belleroche, F. Baas, A. L. ten Asbroek, P. C. Sapp, D. McKenna-Yasek, R. L.

    McLaughlin, M. Polak, S. Asress, J. Esteban-Pérez, J. L. Muñoz-Blanco, M. Simpson,

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22890612&dopt=Abstracthttp://dx.doi.org/10.1007/s00726-012-1385-9http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25382069&dopt=Abstracthttp://dx.doi.org/10.1002/ana.24306http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20354512&dopt=Abstracthttp://dx.doi.org/10.1038/nmeth0410-248http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22402017&dopt=Abstracthttp://dx.doi.org/10.1016/j.neurobiolaging.2011.12.037http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21802176&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21802176&dopt=Abstracthttp://dx.doi.org/10.1016/j.neurobiolaging.2011.05.019http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22154821&dopt=Abstracthttp://dx.doi.org/10.1016/j.neurobiolaging.2011.11.012

  • W. van Rheenen, F. P. Diekstra, G. Lauria, S. Duga, S. Corti, C. Cereda, L. Corrado, G.

    Sorarù, K. E. Morrison, K. L. Williams, G. A. Nicholson, I. P. Blair, P. A. Dion, C. S.

    Leblond, G. A. Rouleau, O. Hardiman, J. H. Veldink, L. H. van den Berg, A. Al-Chalabi,

    H. Pall, P. J. Shaw, M. R. Turner, K. Talbot, F. Taroni, A. García-Redondo, Z. Wu, J. D.

    Glass, C. Gellera, A. Ratti, R. H. Brown Jr., V. Silani, C. E. Shaw, J. E. Landers, Exome-

    wide rare variant analysis identifies TUBA4A mutations associated with familial ALS.

    Neuron 84, 324–331 (2014). Medline doi:10.1016/j.neuron.2014.09.027

    18. J. O. Johnson, E. P. Pioro, A. Boehringer, R. Chia, H. Feit, A. E. Renton, H. A. Pliner, Y.

    Abramzon, G. Marangi, B. J. Winborn, J. R. Gibbs, M. A. Nalls, S. Morgan, M. Shoai, J.

    Hardy, A. Pittman, R. W. Orrell, A. Malaspina, K. C. Sidle, P. Fratta, M. B. Harms, R. H.

    Baloh, A. Pestronk, C. C. Weihl, E. Rogaeva, L. Zinman, V. E. Drory, G. Borghero, G.

    Mora, A. Calvo, J. D. Rothstein, C. Drepper, M. Sendtner, A. B. Singleton, J. P. Taylor,

    M. R. Cookson, G. Restagno, M. Sabatelli, R. Bowser, A. Chiò, B. J. Traynor, Mutations

    in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat. Neurosci. 17, 664–

    666 (2014). Medline

    19. H. M. Kaneb, A. W. Folkmann, V. V. Belzil, L. E. Jao, C. S. Leblond, S. L. Girard, H.

    Daoud, A. Noreau, D. Rochefort, P. Hince, A. Szuto, A. Levert, S. Vidal, C. André-

    Guimont, W. Camu, J. P. Bouchard, N. Dupré, G. A. Rouleau, S. R. Wente, P. A. Dion,

    Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic

    lateral sclerosis. Hum. Mol. Genet. 24, 1363–1373 (2015). Medline

    doi:10.1093/hmg/ddu545

    20. A. Chaussenot, I. Le Ber, S. Ait-El-Mkadem, A. Camuzat, A. de Septenville, S. Bannwarth,

    E. C. Genin, V. Serre, G. Augé, A. Brice, J. Pouget, V. Paquis-Flucklinger, Screening of

    CHCHD10 in a French cohort confirms the involvement of this gene in frontotemporal

    dementia with amyotrophic lateral sclerosis patients. Neurobiol. Aging 35, 2884.e1–

    2884.e4 (2014). Medline doi:10.1016/j.neurobiolaging.2014.07.022

    21. S. Bannwarth, S. Ait-El-Mkadem, A. Chaussenot, E. C. Genin, S. Lacas-Gervais, K. Fragaki,

    L. Berg-Alonso, Y. Kageyama, V. Serre, D. G. Moore, A. Verschueren, C. Rouzier, I. Le

    Ber, G. Augé, C. Cochaud, F. Lespinasse, K. N’Guyen, A. de Septenville, A. Brice, P.

    Yu-Wai-Man, H. Sesaki, J. Pouget, V. Paquis-Flucklinger, A mitochondrial origin for

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25374358&dopt=Abstracthttp://dx.doi.org/10.1016/j.neuron.2014.09.027http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24686783&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25343993&dopt=Abstracthttp://dx.doi.org/10.1093/hmg/ddu545http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25155093&dopt=Abstracthttp://dx.doi.org/10.1016/j.neurobiolaging.2014.07.022

  • frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10

    involvement. Brain 137, 2329–2345 (2014). Medline doi:10.1093/brain/awu138

    22. J. Couthouis, A. R. Raphael, R. Daneshjou, A. D. Gitler, Targeted exon capture and

    sequencing in sporadic amyotrophic lateral sclerosis. PLOS Genet. 10, e1004704 (2014).

    Medline doi:10.1371/journal.pgen.1004704

    23. H. Maruyama, H. Morino, H. Ito, Y. Izumi, H. Kato, Y. Watanabe, Y. Kinoshita, M.

    Kamada, H. Nodera, H. Suzuki, O. Komure, S. Matsuura, K. Kobatake, N. Morimoto, K.

    Abe, N. Suzuki, M. Aoki, A. Kawata, T. Hirai, T. Kato, K. Ogasawara, A. Hirano, T.

    Takumi, H. Kusaka, K. Hagiwara, R. Kaji, H. Kawakami, Mutations of optineurin in

    amyotrophic lateral sclerosis. Nature 465, 223–226 (2010). Medline

    doi:10.1038/nature08971

    24. S. L. Rea, V. Majcher, M. S. Searle, R. Layfield, SQSTM1 mutations—bridging Paget

    disease of bone and ALS/FTLD. Exp. Cell Res. 325, 27–37 (2014). Medline

    doi:10.1016/j.yexcr.2014.01.020

    25. H. Maruyama, H. Kawakami, Optineurin and amyotrophic lateral sclerosis. Geriatr.

    Gerontol. Int. 13, 528–532 (2013). Medline doi:10.1111/ggi.12022

    26. M. Thomas, J. Alegre-Abarrategui, R. Wade-Martins, RNA dysfunction and aggrephagy at

    the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease

    continuum. Brain 136, 1345–1360 (2013). Medline doi:10.1093/brain/awt030

    27. D. Kachaner, P. Génin, E. Laplantine, R. Weil, Toward an integrative view of Optineurin

    functions. Cell Cycle 11, 2808–2818 (2012). Medline doi:10.4161/cc.20946

    28. B. A. Keller, K. Volkening, C. A. Droppelmann, L. C. Ang, R. Rademakers, M. J. Strong,

    Co-aggregation of RNA binding proteins in ALS spinal motor neurons: Evidence of a

    common pathogenic mechanism. Acta Neuropathol. 124, 733–747 (2012). Medline

    doi:10.1007/s00401-012-1035-z

    29. E. L. Scotter, C. Vance, A. L. Nishimura, Y. B. Lee, H. J. Chen, H. Urwin, V. Sardone, J. C.

    Mitchell, B. Rogelj, D. C. Rubinsztein, C. E. Shaw, Differential roles of the ubiquitin

    proteasome system and autophagy in the clearance of soluble and aggregated TDP-43

    species. J. Cell Sci. 127, 1263–1278 (2014). Medline doi:10.1242/jcs.140087

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24934289&dopt=Abstracthttp://dx.doi.org/10.1093/brain/awu138http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25299611&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25299611&dopt=Abstracthttp://dx.doi.org/10.1371/journal.pgen.1004704http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20428114&dopt=Abstracthttp://dx.doi.org/10.1038/nature08971http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24486447&dopt=Abstracthttp://dx.doi.org/10.1016/j.yexcr.2014.01.020http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23279185&dopt=Abstracthttp://dx.doi.org/10.1111/ggi.12022http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23474849&dopt=Abstracthttp://dx.doi.org/10.1093/brain/awt030http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22801549&dopt=Abstracthttp://dx.doi.org/10.4161/cc.20946http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22941224&dopt=Abstracthttp://dx.doi.org/10.1007/s00401-012-1035-zhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24424030&dopt=Abstracthttp://dx.doi.org/10.1242/jcs.140087

  • 30. S. Morton, L. Hesson, M. Peggie, P. Cohen, Enhanced binding of TBK1 by an optineurin

    mutant that causes a familial form of primary open angle glaucoma. FEBS Lett. 582,

    997–1002 (2008). Medline doi:10.1016/j.febslet.2008.02.047

    31. M. Pilli, J. Arko-Mensah, M. Ponpuak, E. Roberts, S. Master, M. A. Mandell, N. Dupont, W.

    Ornatowski, S. Jiang, S. B. Bradfute, J. A. Bruun, T. E. Hansen, T. Johansen, V. Deretic,

    TBK-1 promotes autophagy-mediated antimicrobial defense by controlling

    autophagosome maturation. Immunity 37, 223–234 (2012). Medline

    doi:10.1016/j.immuni.2012.04.015

    32. C. E. Gleason, A. Ordureau, R. Gourlay, J. S. Arthur, P. Cohen, Polyubiquitin binding to

    optineurin is required for optimal activation of TANK-binding kinase 1 and production of

    interferon β. J. Biol. Chem. 286, 35663–35674 (2011). Medline

    doi:10.1074/jbc.M111.267567

    33. P. Wild, H. Farhan, D. G. McEwan, S. Wagner, V. V. Rogov, N. R. Brady, B. Richter, J.

    Korac, O. Waidmann, C. Choudhary, V. Dötsch, D. Bumann, I. Dikic, Phosphorylation

    of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233

    (2011). Medline doi:10.1126/science.1205405

    34. J. Korac, V. Schaeffer, I. Kovacevic, A. M. Clement, B. Jungblut, C. Behl, J. Terzic, I. Dikic,

    Ubiquitin-independent function of optineurin in autophagic clearance of protein

    aggregates. J. Cell Sci. 126, 580–592 (2013). Medline doi:10.1242/jcs.114926

    35. Y. C. Wong, E. L. Holzbaur, Optineurin is an autophagy receptor for damaged mitochondria

    in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl.

    Acad. Sci. U.S.A. 111, E4439–E4448 (2014). Medline doi:10.1073/pnas.1405752111

    36. J. R. Buchan, R. M. Kolaitis, J. P. Taylor, R. Parker, Eukaryotic stress granules are cleared

    by autophagy and Cdc48/VCP function. Cell 153, 1461–1474 (2013). Medline

    doi:10.1016/j.cell.2013.05.037

    37. M. Ramaswami, J. P. Taylor, R. Parker, Altered ribostasis: RNA-protein granules in

    degenerative disorders. Cell 154, 727–736 (2013). Medline

    doi:10.1016/j.cell.2013.07.038

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18307994&dopt=Abstracthttp://dx.doi.org/10.1016/j.febslet.2008.02.047http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22921120&dopt=Abstracthttp://dx.doi.org/10.1016/j.immuni.2012.04.015http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21862579&dopt=Abstracthttp://dx.doi.org/10.1074/jbc.M111.267567http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21617041&dopt=Abstracthttp://dx.doi.org/10.1126/science.1205405http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23178947&dopt=Abstracthttp://dx.doi.org/10.1242/jcs.114926http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25294927&dopt=Abstracthttp://dx.doi.org/10.1073/pnas.1405752111http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23791177&dopt=Abstracthttp://dx.doi.org/10.1016/j.cell.2013.05.037http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23953108&dopt=Abstracthttp://dx.doi.org/10.1016/j.cell.2013.07.038

  • 38. M. Komatsu, S. Kageyama, Y. Ichimura, p62/SQSTM1/A170: Physiology and pathology.

    Pharmacol. Res. 66, 457–462 (2012). Medline doi:10.1016/j.phrs.2012.07.004

    39. K. Clark, M. Peggie, L. Plater, R. J. Sorcek, E. R. Young, J. B. Madwed, J. Hough, E. G.

    McIver, P. Cohen, Novel cross-talk within the IKK family controls innate immunity.

    Biochem. J. 434, 93–104 (2011). Medline doi:10.1042/BJ20101701

    40. S. Sharma, B. R. tenOever, N. Grandvaux, G. P. Zhou, R. Lin, J. Hiscott, Triggering the

    interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151

    (2003). Medline doi:10.1126/science.1081315

    41. K. A. Fitzgerald, S. M. McWhirter, K. L. Faia, D. C. Rowe, E. Latz, D. T. Golenbock, A. J.

    Coyle, S. M. Liao, T. Maniatis, IKKε and TBK1 are essential components of the IRF3

    signaling pathway. Nat. Immunol. 4, 491–496 (2003). Medline doi:10.1038/ni921

    42. H. Hemmi, O. Takeuchi, S. Sato, M. Yamamoto, T. Kaisho, H. Sanjo, T. Kawai, K. Hoshino,

    K. Takeda, S. Akira, The roles of two IκB kinase-related kinases in lipopolysaccharide

    and double stranded RNA signaling and viral infection. J. Exp. Med. 199, 1641–1650

    (2004). Medline doi:10.1084/jem.20040520

    43. S. Liu, X. Cai, J. Wu, Q. Cong, X. Chen, T. Li, F. Du, J. Ren, Y. Wu, N. Grishin, Z. J. Chen,

    Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces

    IRF3 activation. Science 10.1126/science.aaa2630 (2015). Medline

    44. M. G. Wathelet, C. H. Lin, B. S. Parekh, L. V. Ronco, P. M. Howley, T. Maniatis, Virus

    infection induces the assembly of coordinately activated transcription factors on the IFN-

    β enhancer in vivo. Mol. Cell 1, 507–518 (1998). Medline doi:10.1016/S1097-

    2765(00)80051-9

    45. C. K. Glass, K. Saijo, B. Winner, M. C. Marchetto, F. H. Gage, Mechanisms underlying

    inflammation in neurodegeneration. Cell 140, 918–934 (2010). Medline

    doi:10.1016/j.cell.2010.02.016

    46. Y. Yang, A. Hentati, H. X. Deng, O. Dabbagh, T. Sasaki, M. Hirano, W. Y. Hung, K.

    Ouahchi, J. Yan, A. C. Azim, N. Cole, G. Gascon, A. Yagmour, M. Ben-Hamida, M.

    Pericak-Vance, F. Hentati, T. Siddique, The gene encoding alsin, a protein with three

    guanine-nucleotide exchange factor domains, is mutated in a form of recessive

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22841931&dopt=Abstracthttp://dx.doi.org/10.1016/j.phrs.2012.07.004http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21138416&dopt=Abstracthttp://dx.doi.org/10.1042/BJ20101701http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12702806&dopt=Abstracthttp://dx.doi.org/10.1126/science.1081315http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12692549&dopt=Abstracthttp://dx.doi.org/10.1038/ni921http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15210742&dopt=Abstracthttp://dx.doi.org/10.1084/jem.20040520http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25636800&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9660935&dopt=Abstracthttp://dx.doi.org/10.1016/S1097-2765(00)80051-9http://dx.doi.org/10.1016/S1097-2765(00)80051-9http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20303880&dopt=Abstracthttp://dx.doi.org/10.1016/j.cell.2010.02.016

  • amyotrophic lateral sclerosis. Nat. Genet. 29, 160–165 (2001). Medline

    doi:10.1038/ng1001-160

    47. J. Li, J. Huang, J. H. Jeong, S. J. Park, R. Wei, J. Peng, Z. Luo, Y. T. Chen, Y. Feng, J. L.

    Luo, Selective TBK1/IKKi dual inhibitors with anticancer potency. Int. J. Cancer 134,

    1972–1980 (2014). Medline doi:10.1002/ijc.28507

    48. M. Kato, T. W. Han, S. Xie, K. Shi, X. Du, L. C. Wu, H. Mirzaei, E. J. Goldsmith, J.

    Longgood, J. Pei, N. V. Grishin, D. E. Frantz, J. W. Schneider, S. Chen, L. Li, M. R.

    Sawaya, D. Eisenberg, R. Tycko, S. L. McKnight, Cell-free formation of RNA granules:

    Low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–

    767 (2012). Medline doi:10.1016/j.cell.2012.04.017

    49. E. B. Lee, V. M. Lee, J. Q. Trojanowski, Gains or losses: Molecular mechanisms of TDP43-

    mediated neurodegeneration. Nat. Rev. Neurosci. 13, 38–50 (2012). Medline

    50. Exome Aggregation Consortium (ExAC); http://exac.broadinstitute.org.

    51. P. Van Damme, W. Robberecht, Clinical implications of recent breakthroughs in

    amyotrophic lateral sclerosis. Curr. Opin. Neurol. 26, 466–472 (2013). Medline

    doi:10.1097/WCO.0b013e328364c063

    52. C. Münch, A. Rolfs, T. Meyer, Heterozygous S44L missense change of the spastin gene in

    amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 9, 251–253 (2008). Medline

    doi:10.1080/17482960801900172

    53. T. Meyer, A. Schwan, J. S. Dullinger, J. Brocke, K. T. Hoffmann, C. H. Nolte, A. Hopt, U.

    Kopp, P. Andersen, J. T. Epplen, P. Linke, Early-onset ALS with long-term survival

    associated with spastin gene mutation. Neurology 65, 141–143 (2005). Medline

    doi:10.1212/01.wnl.0000167130.31618.0a

    54. A. Chesi, B. T. Staahl, A. Jovičić, J. Couthouis, M. Fasolino, A. R. Raphael, T. Yamazaki, L.

    Elias, M. Polak, C. Kelly, K. L. Williams, J. A. Fifita, N. J. Maragakis, G. A. Nicholson,

    O. D. King, R. Reed, G. R. Crabtree, I. P. Blair, J. D. Glass, A. D. Gitler, Exome

    sequencing to identify de novo mutations in sporadic ALS trios. Nat. Neurosci. 16, 851–

    855 (2013). Medline

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11586297&dopt=Abstracthttp://dx.doi.org/10.1038/ng1001-160http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24150799&dopt=Abstracthttp://dx.doi.org/10.1002/ijc.28507http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22579281&dopt=Abstracthttp://dx.doi.org/10.1016/j.cell.2012.04.017http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22127299&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23945281&dopt=Abstracthttp://dx.doi.org/10.1097/WCO.0b013e328364c063http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18608088&dopt=Abstracthttp://dx.doi.org/10.1080/17482960801900172http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16009903&dopt=Abstracthttp://dx.doi.org/10.1212/01.wnl.0000167130.31618.0ahttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23708140&dopt=Abstract

  • 55. A. Manichaikul, J. C. Mychaleckyj, S. S. Rich, K. Daly, M. Sale, W. M. Chen, Robust

    relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873

    (2010). Medline doi:10.1093/bioinformatics/btq559

    56. G. Jun, M. Flickinger, K. N. Hetrick, J. M. Romm, K. F. Doheny, G. R. Abecasis, M.

    Boehnke, H. M. Kang, Detecting and estimating contamination of human DNA samples

    in sequencing and array-based genotype data. Am. J. Hum. Genet. 91, 839–848 (2012).

    Medline doi:10.1016/j.ajhg.2012.09.004

    57. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform.

    Bioinformatics 25, 1754–1760 (2009). Medline doi:10.1093/bioinformatics/btp324

    58. A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K.

    Garimella, D. Altshuler, S. Gabriel, M. Daly, M. A. DePristo, The Genome Analysis

    Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data.

    Genome Res. 20, 1297–1303 (2010). Medline doi:10.1101/gr.107524.110

    59. Exome Variant Server (NHLBI GO Exome Sequencing Project, Seattle, WA);

    http://evs.gs.washington.edu/EVS.

    60. G. R. Abecasis, A. Auton, L. D. Brooks, M. A. DePristo, R. M. Durbin, R. E. Handsaker, H.

    M. Kang, G. T. Marth, G. A. McVean, An integrated map of genetic variation from 1,092

    human genomes. Nature 491, 56–65 (2012). Medline

    61. S. Petrovski, Q. Wang, E. L. Heinzen, A. S. Allen, D. B. Goldstein, Genic intolerance to

    functional variation and the interpretation of personal genomes. PLOS Genet. 9,

    e1003709 (2013). Medline doi:10.1371/journal.pgen.1003709

    62. R Core Team, “A language and environment for statistical computing” (R Foundation for

    Statistical Computing, Vienna, 2013); www.R-project.org.

    63. C. Behrends, M. E. Sowa, S. P. Gygi, J. W. Harper, Network organization of the human

    autophagy system. Nature 466, 68–76 (2010). Medline doi:10.1038/nature09204

    64. M. E. Sowa, E. J. Bennett, S. P. Gygi, J. W. Harper, Defining the human deubiquitinating

    enzyme interaction landscape. Cell 138, 389–403 (2009). Medline

    doi:10.1016/j.cell.2009.04.042

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20926424&dopt=Abstracthttp://dx.doi.org/10.1093/bioinformatics/btq559http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23103226&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23103226&dopt=Abstracthttp://dx.doi.org/10.1016/j.ajhg.2012.09.004http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19451168&dopt=Abstracthttp://dx.doi.org/10.1093/bioinformatics/btp324http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20644199&dopt=Abstracthttp://dx.doi.org/10.1101/gr.107524.110http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23128226&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23990802&dopt=Abstracthttp://dx.doi.org/10.1371/journal.pgen.1003709http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20562859&dopt=Abstracthttp://dx.doi.org/10.1038/nature09204http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19615732&dopt=Abstracthttp://dx.doi.org/10.1016/j.cell.2009.04.042

  • 65. E. L. Huttlin, M. P. Jedrychowski, J. E. Elias, T. Goswami, R. Rad, S. A. Beausoleil, J.

    Villén, W. Haas, M. E. Sowa, S. P. Gygi, A tissue-specific atlas of mouse protein

    phosphorylation and expression. Cell 143, 1174–1189 (2010). Medline

    doi:10.1016/j.cell.2010.12.001

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21183079&dopt=Abstracthttp://dx.doi.org/10.1016/j.cell.2010.12.001

    Cirulli-SM.page.1-REVISED.pdfExome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways

    aaa3650CirulliRefs-REVISED.pdfReferences