support of remote bsc

19
Support of Remote BSC Abstract This document describes the definition of the remote BSC, the establishment of the new interface and the definition of signalling towards the BSC. A second part describes the necessary definitions in the BSC to set up the connection between the TRC and the BSC. Contents 1 Revision Information 2 Description 2.1 Different Node Types 2.2 Signalling 3 Data Transcript Impacts 3.1 Assumptions 3.2 Define and Connect one Remote BSC 3.3 Establish the Connection from the BSC to the TRC 4 Miscellaneous Informations 4.1 Abbreviations 1 Revision Information This document has been updated to revision C due to the introduction of Fixed Size Alteration. 2 Description 2.1 Different Node Types

Upload: minto-issac

Post on 08-Nov-2014

124 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Support of Remote BSC

Support of Remote BSCAbstract

This document describes the definition of the remote BSC, the establishment of the new interface and the definition of signalling towards the BSC.

A second part describes the necessary definitions in the BSC to set up the connection between the TRC and the BSC.

Contents

1 Revision Information

2 Description 2.1 Different Node Types 2.2 Signalling

3 Data Transcript Impacts 3.1 Assumptions 3.2 Define and Connect one Remote BSC 3.3 Establish the Connection from the BSC to the TRC

4 Miscellaneous Informations 4.1 Abbreviations

1   Revision InformationThis document has been updated to revision C due to the introduction of Fixed Size Alteration.

2   Description

2.1   Different Node Types

From BSS R7 it is possible to separate the TRAU HW from the BSC.

Between the Transceiver Controller (TRC) node and the BSC node, there is an Ater Interface.

Page 2: Support of Remote BSC

One TRC can support up to 16 BSCs. One BSC can reside on the same physical platform as the TRC. This is a BSC/TRC, which is comparable to the BSC in BSS R6.1 and all earlier BSS releases.

The TRC can contain up to three different TRA-Pools, one for each speech coding type.

The following Figure 1shows a BSC/TRC with a standalone BSC connected.

Figure 1   The different node types and their interfaces.

2.2   Signalling

The A interface signalling towards the MSC remains unchanged.

The communication between TRC or BSC/TRC and a remote BSC is done by a C7 based ERICSSON proprietary communication protocol.

In case of one combined BSC/TRC, the internal signalling between the TRC and the BSC part is used.

The TRC or BSC/TRC node handles the Ater transmission interface resources. The O&M signalling and handling of the Ater interface is similar to the current implementation in the A interface.

3   Data Transcript Impacts

Page 3: Support of Remote BSC

3.1   Assumptions

Up to now only the term TRC is used. It has no impact on the DT described below, whether the actual system is a TRC or a BSC/TRC. It is only a simplification in writing.

The DT which follows is divided in two parts.

The first part covers the integration of one remote BSC within one TRC. This means, that the TRC is already running and integrated in the network. The DT, which follows below is the delta to integrate one remote BSC. Therefore the whole DT beginning with SAEs is covered.

The second part covers the corresponding DT within this remote BSC. That means the DT which is necessary to establish the connection between BSC and TRC is explained. But this is not a complete DT to define the whole BSC.

3.2   Define and Connect one Remote BSC

How to set the SAE number of individuals is described in document "Setting of Size Alteration Events in BSC/TRC" no. 105/19046-FAD 10406, included in this DT-Infomodel.

Two methods are described but we recommend the Fxed SAE method.The following SAEs are affected by this function:

3.2.1   APZ Size Alteration Events

SAE 807, BLOCK RPDI SAE 304 SAE 1822

3.2.2   APT Size Alteration Events

SAE 087 SAE 097 SAE 516, BLOCK SECOM, SAE 515, BLOCK DIPRALT SAE 529, BLOCK ETRALT SAE 500, BLOCK RALTSAE 500, BLOCK HIDRALT SAE 515, BLOCK DIPRTTSAE 529, BLOCK ETRTTSAE 500, BLOCK RTLTTSAE 500, BLOCK HIDRTTSAE 500, BLOCK RTATHTSAE 500, BLOCK RTBTAP

Page 4: Support of Remote BSC

SAE 500, BLOCK RTTPR

Table 1    The Y factor, only examples

Y Factor Explanation

4 only Full Rate TRAUs are used

6 the TRAUs are devided in: 50% Full Rate and 50% Half Rate

8 only Half Rate TRAUs are used

  values between these are possible, depending on the ratio of TRAUs

3.2.3   RP Database Table

The RPs are already defined. The definition of the RPs in the database table RPSRPBSPOS is included here to make the DT complete.

DBTRI; DBTSI:TAB=RPSRPBSPOS, RPADDR=70, BRNO=2, MAGNO=4, SLOTNO=0, BUSCONN=YES; !(Ext 1)! DBTSI:TAB=RPSRPBSPOS, RPADDR=71, BRNO=2, MAGNO=4, SLOTNO=19, BUSCONN=YES; !(Ext 1)! DBTRE:COM;

DBTRI; DBTSI:TAB=RPSRPBSPOS, RPADDR=54, BRNO=2, MAGNO=08, SLOTNO=0, BUSCONN=YES; !(Ext 1)! DBTSI:TAB=RPSRPBSPOS, RPADDR=55, BRNO=2, MAGNO=08, SLOTNO=19, BUSCONN=YES; !(Ext 1)! DBTRE:COM;

Table 2    Parameter explanation

Parameter Description Value range

BRNO Specifies the branch on a Regional Processor Bus of Serial Type

0 - 31

BUSCONN Specifies if the board is used as a bus connector and a power connector in the magazine

YES/NO

MAGNO Specifies the magazine number on a RPB-S branch 0 - 15

RPADDR Specifies the RP Address 0 - 1023

SLOTNO Specifies the slot number in a magazine on a RPB-S branch

0 - 255

TAB Specifies the Table -

3.2.4   Allocation of RP

With the hardware BYB 501 all the RP types have changed.

Page 5: Support of Remote BSC

Within one magazine these RPs perform an additional maintenance function. They supervise the power supply within this magazine. This means, that there is one more software to load in the RP, RPMMR.

EXRPI:RP=70,RPT=71, TYPE=RP4S1A;EXRPI:RP=54,RPT=55, TYPE=RP4S1A;

EXRUI:RP=70,RPT=71, SUNAME=RPMMR; !1/CAA 135 2517/RPMM R1A01 !EXRUI:RP=70,RPT=71, SUNAME=ETRALTR; !1/CAA 135 3024/ETRALT R1A02 !EXRUI:RP=70,RPT=71, SUNAME=ETRTTR; !1/CAA 135 3024/ETRTT R1A02 !EXRUI:RP=70,RPT=71, SUID="1/CAA 135 2509 R3A "; ! REXR !EXRUI:RP=70,RPT=71, SUID="1/CAA 135 004/RPFD R3A01"; ! RPFDR !EXRUI:RP=70,RPT=71, SUID="1/CAA 135 005 R1A02"; ! TERTR !

EXRUI:RP=54,RPT=55, SUNAME=RPMMR; !1/CAA 135 2517/RPMM R1A01 !EXRUI:RP=54,RPT=55, SUNAME=ETRTTR; !1/CAA 135 3024/ETRTT R1A02 !EXRUI:RP=54,RPT=55, SUID="1/CAA 135 2509 R3A "; ! REXR !EXRUI:RP=54,RPT=55, SUID="1/CAA 135 004/RPFD R3A01"; ! RPFDR !EXRUI:RP=54,RPT=55, SUID="1/CAA 135 005 R1A02"; ! TERTR !

3.2.5   Allocation of EM

EXEMI:EQM=ETRALT-736&&-767, RP=70 ,RPT=71 ,EM= 0;EXEMI:EQM=ETRALT-768&&-799, RP=71 ,RPT=70 ,EM= 1;

EXEMI:EQM=ETRTT-0&&-31, RP=55, RPT=54 ,EM= 0;EXEMI:EQM=ETRTT-32&&-63, RP=54 ,RPT=55 ,EM= 1;

3.2.6   Insertion of CLM/SPM/TSM and Allocation of SNT

NTCOI:SNT=ETRALT-23, SNTV=1, SNTP=TSM-14-0;NTCOI:SNT=ETRALT-24, SNTV=1, SNTP=TSM-14-1;

NTCOI:SNT=ETRTT-0, SNTV=1, SNTP=TSM-10-3;NTCOI:SNT=ETRTT-1, SNTV=1, SNTP=TSM-10-4;

EXDUI:DEV=RALT-737&&-767;EXDUI:DEV=RALT-769&&-799;

Page 6: Support of Remote BSC

EXDUI:DEV=RTLTT-1&&-31;EXDUI:DEV=RTLTT-33&&-63;

3.2.7   Digital Path

The definition of the DIPs and the definition of quality and fault supervision is explained in detail in the document Digital Paths.

DTDII:DIP=23RALT, SNT=ETRALT-23;DTDII:DIP=24RALT, SNT=ETRALT-24;

DTDII:DIP=0RTT, SNT=ETRTT-0;DTDII:DIP=1RTT, SNT=ETRTT-1;

DTIDC:DIP=23RALT,MODE=0,INACT=0,MULTFS=00,CRC=0;DTIDC:DIP=24RALT,MODE=0,INACT=0,MULTFS=00,CRC=0;

DTIDC:DIP=0RTT ,MODE=0,INACT=0,MULTFS=00,CRC=0;DTIDC:DIP=1RTT ,MODE=0,INACT=0,MULTFS=00,CRC=0;

DTFSC:DIP=23RALT, FAULT=1&&4,ACL=A3;DTFSC:DIP=24RALT, FAULT=1&&4,ACL=A3;

DTFSI:DIP=23RALT, FAULT=1&&4;DTFSI:DIP=24RALT, FAULT=1&&4;

DTFSC:DIP=0RTT, FAULT=1&&4,ACL=A3;DTFSC:DIP=1RTT, FAULT=1&&4,ACL=A3;

DTFSI:DIP=0RTT, FAULT=1&&4;DTFSI:DIP=1RTT, FAULT=1&&4;

DTQSC:DIP=23RALT,SF,SFL=5,ACL=O1,TI=24;DTQSC:DIP=23RALT, ES,ESL=120,RESL=0,ACL1=A2,ESL2=26,ACL2=O1,SDEGR=0000;DTQSC:DIP=23RALT, SES,SESL=15,RSESL=0,ACL1=A2,SESL2=1,ACL2=O1,SDEGR=0000;DTQSI:DIP=23RALT,SES,SF,ES;

DTQSC:DIP=24RALT,SF,SFL=5,ACL=O1,TI=24;DTQSC:DIP=24RALT, ES,ESL=120,RESL=0,ACL1=A2,ESL2=26,ACL2=O1,SDEGR=0000;DTQSC:DIP=24RALT, SES,SESL=15,RSESL=0,ACL1=A2,SESL2=1,ACL2=O1,SDEGR=0000;DTQSI:DIP=24RALT,SES,SF,ES;

DTQSC:DIP=0RTT,SF,SFL=5,ACL=O1,TI=24;DTQSC:DIP=0RTT, ES,ESL=120,RESL=0,ACL1=A2,ESL2=26,ACL2=O1,SDEGR=0000;

Page 7: Support of Remote BSC

DTQSC:DIP=0RTT, SES,SESL=15,RSESL=0,ACL1=A2,SESL2=1,ACL2=O1,SDEGR=0000;DTQSI:DIP=0RTT,SES,SF,ES;

DTQSC:DIP=1RTT,SF,SFL=5,ACL=O1,TI=24;DTQSC:DIP=1RTT, ES,ESL=120,RESL=0,ACL1=A2,ESL2=26,ACL2=O1,SDEGR=0000;DTQSC:DIP=1RTT, SES,SESL=15,RSESL=0,ACL1=A2,SESL2=1,ACL2=O1,SDEGR=0000;DTQSI:DIP=1RTT,SES,SF,ES;

3.2.8   CCITT7 Signalling

Within this subfile the new C7 signalling point - the standalone BSC - is defined.

The new command RRBSI defines this node with its DPC and NEI as a new standalone BSC within the TRC.

The signalling link towards the standalone BSC is established.

C7SPI:SP=2-101;

C7PNC:SP=2-101,SPID=SABSC2;

RRBSI:BSC=SABSC2,DPC=101,NEI=2;

C7LDI:LS=2-101;

C7SLI:LS=2-101,SLC=0,ST=C7ST2C-0,SDL="SABSC2/C7ST2C-0";C7SLI:LS=2-101,SLC=1,ST=C7ST2C-4,SDL="SABSC2/C7ST2C-4";

C7NPI:SP=2-101;C7NSI:SP=2-101,SSN=250;

C7RSI:DEST=2-101,PRIO=1,LS=2-101;

3.2.9   Deblocking of RP

BLRPE:RP=70;BLRPE:RP=71;

BLRPE:RP=54;BLRPE:RP=55;

Page 8: Support of Remote BSC

3.2.10   Deblocking of EM and RPG

BLEME:RP=70,RPT=73,EM=0;BLEME:RP=71,RPT=72,EM=1;

BLEME:RP=54,RPT=77,EM=0;BLEME:RP=55,RPT=76,EM=1;

3.2.11   Deblocking of GS

NTBLE:SNT=ETRALT-23;NTBLE:SNT=ETRALT-24;

NTBLE:SNT=ETRTT-0;NTBLE:SNT=ETRTT-1;

3.2.12   Deblocking of C7

The DIPs for both interfaces are deblocked. Then the circuit identity codes are connected and it is declared to which BSC these devices belong. This means the devices are associated with one BSC.

In case of RALT devices it is possible that the devices are associated with an optional "OWN" BSC within a TRC or associated with a standalone BSC.

In case of RTLTT devices it is declared with which BSC the devices are associated.

DTBLE:DIP=23RALT;DTBLE:DIP=24RALT;

DTBLE:DIP=0RTT;DTBLE:DIP=1RTT;

RACII:DEV=RALT-737&&-767, CIC=737, BSC=SABSC;RACII:DEV=RALT-769&&-799, CIC=769, BSC=SABSC;

EXDAI:DEV=RALT-737&&-767;EXDAI:DEV=RALT-769&&-799;

RACII:DEV=RTLTT-1&&-31, ATERCIC=1, BSC=SABSC,RACII:DEV=RTLTT-33&&-63, ATERCIC=33, BSC=SABSC,

EXDAI:DEV=RTLTT-1&&-31;

Page 9: Support of Remote BSC

EXDAI:DEV=RTLTT-33&&-63;

Special semipermanent connections are defined.

Two are used to perform the BTAP Signalling between the TRC and the standalone BSC.

The other two are necessary to perform BSSAP Signalling between the MSC and the standalone BSC transparently via the TRC.

EXSPI:NAME=SABSC1_0;EXSSI:DEV1=C7ST2C-1;EXSSI:DEV2=RTLTT-2;EXSPE;EXSCI:NAME=SABSC1_0,DEV=RTLTT-2;

EXSPI:NAME=SABSC1_1;EXSSI:DEV1=C7ST2C-5;EXSSI:DEV2=RTLTT-34;EXSPE;EXSCI:NAME=SABSC1_1,DEV=RTLTT-34;

EXSPI:NAME=MSC_SABSC1_0;EXSSI:DEV1=RALT-97;EXSSI:DEV2=RTLTT-1;EXSPE;EXSCI:NAME=MSC_SABSC1_0,DEV=RTLTT-1;

EXSPI:NAME=MSC_SABSC1_1;EXSSI:DEV1=RALT-129;EXSSI:DEV2=RTLTT-33;EXSPE;EXSCI:NAME=MSC_SABSC1_1,DEV=RTLTT-33;

Deblocking of C7 Routing and the signalling links.

C7RAI:DEST=2-101;

C7LAI:LS=2-101,SLC=0;C7LAI:LS=2-101,SLC=1;

BLODE:DEV=RALT-737&&-767; ! RALT-737,SEMIPERM CONNECT !BLODE:DEV=RALT-769&&-799; ! RALT-769,SEMIPERM CONNECT !

BLODE:DEV=RTLTT-3&&-31; ! RTLTT-1&-2 ,SEMIPERM CONNECT !BLODE:DEV=RTLTT-35&&-63; ! RTLTT-33&-34,SEMIPERM CONNECT !

Blocking supervision and seizure supervision are activated. The values are operator dependent. The parameter LVB needs absolute number of devices. It is necessary to

Page 10: Support of Remote BSC

change this parameter in case of increasing or decreasing the number of RALT or RTLTT devices.

The values which are used here are based on the highest RALT- device=800 and RTLTT-device=64. The recommendation is to set the alarm limit for the number of blocked devices LVB to 25%, 50% and 75% of the highest defined device number.

RABLC:DETY=RALT, LVB=32&64&96, ACL=A3;RABLI:DETY=RALT;

RABLC:DETY=RTLTT, LVB=16&32&48, ACL=A3;RABLI:DETY=RTLTT;

RASSC:DETY=RALT, PL=24, ACL=A3;RASSI:DETY=RALT;

RASSC:DETY=RTLTT, PL=24, ACL=A3;RASSI:DETY=RTLTT;

Table 3    Parameter Explanation

Parameter Description Value range

ACL Alarm class A1 - A3, O1,O2

DETY Device type  

LVB Limit value blocking; at maximum three values are possible (=> ACL=A3)

absolut number of devices are required

PL Supervision period length 1 - 24, 48, 72

3.3   Establish the Connection from the BSC to the TRC

The following DT can be regarded as an example DT to establish the interface and the signalling between the TRC and the remote BSC. It corresponds directly to the example which was explained above.

To define the whole BSC more DT is necessary, as SAE setting, TRH definition or RBLT equipment definition. But this is not mentioned here.

Most of the following DT is similar to the DT described above, but pay attention to the subfiles CCITT7 Signalling and Deblocking of C7!

3.3.1   RP Database Table

DBTRI;

Page 11: Support of Remote BSC

DBTSI:TAB=RPSRPBSPOS, RPADDR=38, BRNO=1, MAGNO=03, SLOTNO=0, BUSCONN=YES;DBTSI:TAB=RPSRPBSPOS, RPADDR=39, BRNO=1, MAGNO=03, SLOTNO=19, BUSCONN=YES;DBTRE:COM;

3.3.2   Allocation of RP

EXRPI:RP=38,RPT=39, TYPE=RP4S1A !RTLTB !

EXRUI:RP=38,RPT=39, SUNAME=RPMMR;EXRUI:RP=38,RPT=39, SUNAME=ETRTB;EXRUI:RP=38,RPT=39, SUID="1/CAA 135 2509 R3A "; ! REXR !EXRUI:RP=38,RPT=39, SUID="1/CAA 135 004/RPFD R3A01"; ! RPFDR !EXRUI:RP=38,RPT=39, SUID="1/CAA 135 005 R1A02"; ! TERTR !

3.3.3   Allocation of EM

EXEMI:EQM=ETRTB-0&&-31 ,RP=38,RPT=39,EM=0;EXEMI:EQM=ETRTB-32&&-63 ,RP=39,RPT=38,EM=1;

3.3.4   Insertion of CLM/SPM/TSM & Allocation of SNT

NTCOI:SNT=ETRTB-0, SNTV=1, SNTP=TSM-1-0;NTCOI:SNT=ETRTB-1, SNTV=1, SNTP=TSM-1-1;

EXDUI:DEV=RTLTB-1&&-31;EXDUI:DEV=RTLTB-33&&-63;

3.3.5   Digital Path, RTB & RBLT

DTDII:DIP=RTB0, SNT=ETRTB-0;DTDII:DIP=RTB1, SNT=ETRTB-1;

DTIDC:DIP=RTB0 ,MODE=0,INACT=0,MULTFS=00,CRC=0;DTIDC:DIP=RTB1 ,MODE=0,INACT=0,MULTFS=00,CRC=0;

DTFSC:DIP=RTB0,FAULT=1&&4,ACL=A3;DTFSI:DIP=RTB0,FAULT=1&&4;

DTFSC:DIP=RTB1,FAULT=1&&4,ACL=A3;DTFSI:DIP=RTB1,FAULT=1&&4;

Page 12: Support of Remote BSC

DTQSC:DIP=RTB0,SF,SFL=5,ACL=O1,TI=24;DTQSC:DIP=RTB0, ES,ESL=120,RESL=0,ACL1=A2,ESL2=26,ACL2=O1,SDEGR=0000;DTQSC:DIP=RTB0, SES,SESL=15,RESL=0,ACL1=A2,SESL2=1,ACL2=O1,SDEGR=0000;DTQSI:DIP=RTB0,SES,SF,ES;

DTQSC:DIP=RTB1,SF,SFL=5,ACL=O1,TI=24;DTQSC:DIP=RTB1, ES,ESL=120,RESL=0,ACL1=A2,ESL2=26,ACL2=O1,SDEGR=0000;DTQSC:DIP=RTB1, SES,SESL=15,RESL=0,ACL1=A2,SESL2=1,ACL2=O1,SDEGR=0000;DTQSI:DIP=RTB1,SES,SF,ES;

3.3.6   CCITT7 Signalling

C7BPC:BPS=50,BPS1=50,BPS2=50,BPS3=50; !RELATED TO SAE348-351!

C7OPI:OWNSP=2-101,SPTYPE=SEP;C7PNC:OWNSP=2-101,SPID=SABSC;

The command RADPI is necessary to load the MSCs destination point code in the signalling network based on the CCITT standard. This is necessary to make the interwork between the BSC and the MSC possible.

RADPI:DPC=300,NEI=2;

Within the BSC two signalling points are defined. One for the TRC and one for the serving MSC.

C7SPI:SP=2-300;C7PNC:SP=2-300,SPID=MSC;

C7SPI:SP=2-134;C7PNC:SP=2-134,SPID=TRC;

Two signalling links are established. One for the BSSAP signalling towards the MSC and one for the BTAP signalling towards the TRC.

C7LDI:LS=2-300; ! MSC !C7LDI:LS=2-134; ! TRC !

Page 13: Support of Remote BSC

C7SLI:LS=2-300,SLC=0,ST=C7ST2C-0,SDL="MSC/C7ST2C-0";C7SLI:LS=2-300,SLC=1,ST=C7ST2C-4,SDL="MSC/C7ST2C-4";

C7SLI:LS=2-134,SLC=0,ST=C7ST2C-1,SDL="TRC/C7ST2C-1";C7SLI:LS=2-134,SLC=1,ST=C7ST2C-5,SDL="TRC/C7ST2C-5";

The signalling points are defined in the SCCP network with their corresponding subsystem numbers.

C7NPI:SP=2-300; ! MSC !C7NSI:SP=2-300,SSN=254;

C7NPI:SP=2-134; ! TRC !C7NSI:SP=2-134,SSN=250;

C7RSI:DEST=2-300,PRIO=1,LS=2-300;C7RSI:DEST=2-134,PRIO=1,LS=2-134;

3.3.7   Deblocking of RP

BLRPE:RP=38;BLRPE:RP=39;

3.3.8   Deblocking of EM & RPG

BLEME:RP=38,RPT=39,EM=0; !RTS - RTB!BLEME:RP=39,RPT=38,EM=1;

3.3.9   Deblocking of GS

NTBLE:SNT=ETRTB-0;NTBLE:SNT=ETRTB-1;

3.3.10   Deblocking of C7

At the definition of the Ater-CIC values the value BSC=OWN is set by default.

DTBLE:DIP=RTB0;DTBLE:DIP=RTB1;

Page 14: Support of Remote BSC

RACII:DEV=RTLTB-1&&-31, ATERCIC=1; !0 SYNCHRONIZATION!RACII:DEV=RTLTB-33&&-63, ATERCIC=33;

EXDAI:DEV=RTLTB-1&&- 31;EXDAI:DEV=RTLTB-33&&- 63;

In the BSC are also defined four semipermanent connections. They represent in pairs the two different signalling interfaces towards the MSC and towards the TRC. Important is that the two devices DEV=RTLTB-1&-33 are these two which are semipermanently connected to RALT devices in the TRC. Otherwise the BSC cannot perform signalling towards the MSC.

EXSPI:NAME=MSC_0;EXSSI:DEV1=C7ST2C-0;EXSSI:DEV2=RTLTB-1;EXSPE;EXSCI:NAME=MSC_0,DEV=RTLTB-1;

EXSPI:NAME=MSC_1;EXSSI:DEV1=C7ST2C-4;EXSSI:DEV2=RTLTB-33;EXSPE;EXSCI:NAME=MSC_1,DEV=RTLTB-33;

EXSPI:NAME=BSCTRC1_0;EXSSI:DEV1=C7ST2C-1;EXSSI:DEV2=RTLTB-2;EXSPE;EXSCI:NAME=BSCTRC1_0,DEV=RTLTB-2;

EXSPI:NAME=BSCTRC1_1;EXSSI:DEV1=C7ST2C-5;EXSSI:DEV2=RTLTB-34;EXSPE;EXSCI:NAME=BSCTRC1_1,DEV=RTLTB-34;

The routing to both destinations is activated and the signalling links are deblocked.

C7RAI:DEST=2-300;C7RAI:DEST=2-134; ! TRC !

C7LAI:LS=2-300,SLC=0;C7LAI:LS=2-300,SLC=1;

C7LAI:LS=2-134,SLC=0;C7LAI:LS=2-134,SLC=1;

BLODE:DEV=RTLTB-3&&-31; ! RTLTB-1&-2, SEMIPERM CONNECTION !

Page 15: Support of Remote BSC

BLODE:DEV=RTLTB-35&&-63; ! RTLTB-33&-34, SEMIPERM CONNECTION !

The blocking supervision and the seizure supervision is once more operator dependent and can be given only as an example.

RABLC:DETY=RTLTB, LVB=16&32&48 , ACL=A3;RABLI:DETY=RTLTB;

RASSC:DETY=RTLTB, PL=24, ACL=A3;RASSI:DETY=RTLTB;

3.3.11   Network Synchronization

NSCOI:DIP=RTB0, CLREFINL=1;

NSDAC:DIP=RTB0, PRI=1, REFGRP=1, FDL=10000, WDL=10, ACL=A2;

NSMAI;

NSBLE:DIP=RTB0;

4   Miscellaneous Informations

4.1   Abbreviations

ATERCIC Ater Circuit Identity CodeBSC Base Station ControllerCIC Circuit Identity CodeTRAU Transceiver Rate Adaption UnitTRA Pool Pool of TRAU devicesTRC Transceiver Controller