supporting information for “in silico search for novel methane

22
Supporting Information Supporting Information for “In silico Search for Novel Methane Steam Reforming Catalysts” Yue Xu 1,2 , Adam C. Lausche 1,3 , Shengguang Wang 4 , Tuhin Suvra Khan 1,5 , Frank Abild-Pedersen 1 , Felix Studt 1 , Jens K. Nørskov 1,3 , and Thomas Bligaard 1,3 * 1 SUNCAT Center for Interface Science and Catalysis, Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, U.S.A. 2 State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China 3 Department of Chemical Engineering, Stanford University, Stanford, CA, United States 4 Department of Chemical Biomolecular Engineering, University of Delaware, Newark, DE 19716, U.S.A. 5 Center for Atomic-scale Materials Design, Department of Physics, Building 307, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark 1 Reaction Energy Scaling Adsorbates may be adsorbed on one of four different sites: the “step” (* s ) site corresponds to the upper part of a (211) step site. The “four-fold” (* f ) site corresponds to the lower four-fold site of a (211) step. The “terrace” (* t ) corresponds to a (211) terrace site. In addition, hydrogen is adsorbed in a special “hydrogen reservoir” site (* h ) which has the same energetics as a three-fold hollow step site. The adsorption energies of CH x O y can be scaled linearly to the adsorption energy of C* or O* adsorption energy: E Ads = γ * ΔE C,O + where the parameters γ and are fitted for each intermediate as a function of the adsorption energies of C and/or O. Energies of adsorption, as well as the scaling relations developed from them are listed in Table S1. All energies are relative to the gas phase values for CH 4 ,H 2 O, and H 2 . The scaling relations are also depicted in Figure S1. The transition state energies for each elementary reaction can also be scaled according to the equation: E TS = γ * ΔE Diss + where the parameters γ and are fitted for each transition state as a function of the energies of the dissoci- ated reaction products. Energies of adsorbed transition states are listed in Tables S2. CO adsorption is assumed to have no barrier. Other transition state energies are taken from literature [1], while transition states energies calculated in this work are given in Table S2. The scaling relations are also depicted in Figure S2. The Shomate parameters for gas phase are shown in Table S3 and vibrational frequencies of adsorbed reac- tants/products are given in Tables S4, and assumed to be constant for all metal surfaces. Page S1

Upload: dangnguyet

Post on 11-Dec-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Supporting Information for“In silico Search for Novel Methane Steam Reforming Catalysts”

Yue Xu1,2, Adam C. Lausche1,3, Shengguang Wang4, Tuhin Suvra Khan1,5, FrankAbild-Pedersen1, Felix Studt1, Jens K. Nørskov1,3, and Thomas Bligaard1,3∗

1SUNCAT Center for Interface Science and Catalysis, Photon Science, SLAC National Accelerator Laboratory, MenloPark, CA, U.S.A.

2State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China

3Department of Chemical Engineering, Stanford University, Stanford, CA, United States

4Department of Chemical Biomolecular Engineering, University of Delaware, Newark, DE 19716, U.S.A.

5Center for Atomic-scale Materials Design, Department of Physics, Building 307, Technical University of Denmark,DK-2800 Kgs. Lyngby, Denmark

1 Reaction Energy ScalingAdsorbates may be adsorbed on one of four different sites: the “step” (∗s) site corresponds to the upper part of a(211) step site. The “four-fold” (∗f ) site corresponds to the lower four-fold site of a (211) step. The “terrace” (∗t)corresponds to a (211) terrace site. In addition, hydrogen is adsorbed in a special “hydrogen reservoir” site (∗h)which has the same energetics as a three-fold hollow step site. The adsorption energies of CHxOy can be scaledlinearly to the adsorption energy of C* or O* adsorption energy:

EAds = γ ∗∆EC,O + ε

where the parameters γ and ε are fitted for each intermediate as a function of the adsorption energies of C and/orO. Energies of adsorption, as well as the scaling relations developed from them are listed in Table S1. All energiesare relative to the gas phase values for CH4, H2O, and H2. The scaling relations are also depicted in Figure S1.

The transition state energies for each elementary reaction can also be scaled according to the equation:

ETS = γ ∗∆EDiss + ε

where the parameters γ and ε are fitted for each transition state as a function of the energies of the dissoci-ated reaction products. Energies of adsorbed transition states are listed in Tables S2. CO adsorption is assumedto have no barrier. Other transition state energies are taken from literature [1], while transition states energiescalculated in this work are given in Table S2. The scaling relations are also depicted in Figure S2.

The Shomate parameters for gas phase are shown in Table S3 and vibrational frequencies of adsorbed reac-tants/products are given in Tables S4, and assumed to be constant for all metal surfaces.

Page S1

Page 2: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Table S1: DFT-calculated energies for the adsorption of steam reforming intermediates on metal surfaces (relative to CH4,H2O and H2 in the gas phase) scaled versus the carbon binding energies of those metals (relative to methane).Energies for other intermediates are taken from Ref. [1].

Metal(211) HCO∗t COH∗s

Ag 3.2 4.58Cu 2.74 3.56Pd 1.83 1.89Pt 1.77 1.90Rh 1.81 1.93Au 2.87Slope 0.378 0.775Interception 1.204 0.645

Figure S1: Scaling relations for the adsorbed reaction intermediates of the steam reforming reaction. All energies arerelative to CH4, H2O and H2 in the gas phase (eV).

Table S2: DFT-calculated energies for the adsorption of methane steam reforming transition states on metal surfaces (rela-tive to CH4, H2O, and H2 in the gas phase, eV) scaled versus the dissociated products of those reactions. Othertransition states energies are taken from Ref. [1].

Metal(211) C-OH∗f CO-H∗s HC-O∗f H-CO∗s

Ag 5.55 5.35 6.98 3.68Cu 5.24 4.3 5.06 3.09Pd 3.5 2.59 4.67 1.95Pt 4.46 2.5 4.77 1.83Rh 3.09 2.93 3.34 1.8Ru 3.04Slope 0.571 1.067 0.757 0.747Interception 2.647 1.94 2.494 1.353

Page S2

Page 3: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Figure S2: Scaling relations for the adsorbed transition states of the steam reforming reaction. All energies are relative toCH4, H2O and H2 in the gas phase (eV).

Table S3: The DFT energies of the gas-phase species ( ∆E/eV), reported relative to CH4, H2O, and H2 in the gas phase.Along with the zero point energies ( EZPE/eV) and Shomate parameters used to determine the gas-phase thermo-dynamics. Values taken from Ref. [4].

Species ∆E EZPE Shomate Parameters (A, B, C, D, E, F, G, H)CH4 0.00 1.18 -0.7, 108.48, -42.52, 5.86

0.68, -76.84, 158.72, -74.87H2O 0.00 0.56 30.09, 6.83, 6.79, -2.53

0.08, -250.88, 223.4, -241.83CO 2.91 0.13 25.57, 6.1, 4.05, -2.67

0.13, -118.01, 227.37, -110.53H2 0.00 0.27 33.07, -11.36, 11.43, -2.77

-0.16, -9.98, 172.71, 0

Page S3

Page 4: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Table S4: DFT-calculated vibrational frequencies for steam reforming reaction intermediates on Rh(211). Values takenfrom Ref. [4].

Adsorbate Frequencies (cm−1)CH3∗t 12, 101, 111, 301

495, 588, 1099, 13651380, 2967, 3043, 3088

CH2∗t 148, 209, 396, 431451, 672, 1296, 29763030

CH∗f 354, 386, 410, 632668, 2987

C∗f 267, 563, 576CO∗s 44, 144, 208, 260

280, 2004OH∗s 73, 296, 379, 497

664, 3843O∗s 309.5, 398.1, 437.1H∗h 801, 838, 986COH∗t 3689, 1273, 1085, 336,

322, 287, 222, 198, 18CHO∗t 2866, 1464, 1216, 558,

375, 187, 127, 108, 96

Table S5: DFT-calculated vibrational frequencies for transition states on Rh(211). Other transition states frequencies canbe found in Ref. [2].

Transition states Frequencies (cm−1)C-OH∗f 87, 165, 359

547, 581, 633707,4273

CO-H∗s 35, 204, 394386, 435, 6671277,1583

HC-O∗f 92, 208, 359405, 490, 7871019,3054

Page S4

Page 5: Supporting Information for “In silico Search for Novel Methane

Supporting Information

2 Setup for microkinetic modelFree energies have been calculated by employing standard formula from statistical thermodynamics. For the gas-phase species (X) at temperature (T) and pressure (P), the Gibbs free energy (GP,T

X ) is given by:

GP,TX = EX + EZPE + ∆H0,T − TST + kBT ln(

PP0 )

where EZPE is the zero point energy, ∆H0,T is the enthalpy change due to increased the temperature from 0 Kto T, ST is the entropy at T, kB is Boltzmann’s constant, and P0 is standard pressure (taken to be 1 bar). Theequation for calculating the energy of the adsorbed species (X∗) on metal (M), EX∗ is given by: EMX∗ − EM .There is no pressure term and the enthalpy change is replaced by the change in internal energy. This leads to thefollowing expression for (GP,T

X∗ ):

GP,TX∗ = EX∗ + EZPE + ∆U0,T − TST

The vibrational frequencies used within this work to determine EZPE , ∆U0,T and ST are calculated with theharmonic approximation. Two more relationships are needed to determine the equilibrium constants and rateconstants. The first relates the standard free energy change of an elementary reaction step, to the equilibriumconstant of a reaction:

Ki = exp(−∆G0,T

i

kBT)

where Ki is the equilibrium constant of elementary step i. The second equation relates the standard free en-ergy of activation to the rate constant (ki), which in transition state theory is:

ki =kBT

hexp(−∆GAct

i

kBT)

3 Adsorbate-adsorbate InteractionsAs discussed elsewhere Ref. [1], adsorbate-adsorbate interaction effects were calculated by measuring the changein adsorption energy at various coverages. A brief summary of the interaction model is given here: The adsorptionenergies of adsorbates per site is described as a function of coverage, which were constant below a threshold of0.5 ML, while adsorption energies decreased linearly with coverage above this value. The differential adsorptionenergy for a single adsorbate as a stepwise coverage can be described as follows:

Ei(θi) = E0i where θi ≤ θ0

Ei(θi) = E0i + ε(θi − θ0) where θi > θ0

where Ei is the adsorption energy of adsorbate i at coverage θi, E0i is the adsorption energy below a threshold

coverage θ0, and ε is the self-interaction parameter, which is the slope of the adsorption energy above thresholdcoverage.

ε =dEi

dθi

Page S5

Page 6: Supporting Information for “In silico Search for Novel Methane

Supporting Information

For the interaction between multiple adsorbates, the model is expressed by:

Ei(θ) = E0i where |θ| ≤ θ0

Ei(θ) = E0i +

∑j fεijθj where |θ| > θ0

Where |θ| is the sum of coverages of all adsorbates. f = (|θ| − θ0)/|θ|, and εij is the cross-interaction pa-rameter between i and j, which is calculated as:

εij = (εii ∗ εjj)12

Fitted interaction parameters are scaled with the sum of EC∗ and EO∗ on corresponding metals, which areshown in Table S6.

Table S6: Fitted interaction parameters scaling relations. The adsorption energy of C* and O* are relative to gas phasemethane, water and hydrogen. Other values of interaction parameters are taken from reference [1].

Metal C*+O* ref methane CH3* CH2* CH* C* CO* OH* O* CHO* COH*Pd 6.18 2.04 2.4 1.88 2.68 1.32 1.7 1.82 1.32 3.14Pt 6.9 2.52 2.04 1.5 1.62 1.04 1.64 1.82 0.64 2.86Rh 3.26 2.3 3.76 1.14 1.26 0.34 1.06 2.26 1.8 2.16Ru 2.56 1.78 3.06 0.84 1.3 0.42 1 2.04 2.54 1.02Slope 0.18 -0.62 0.36 0.4 0.4 0.34 -0.16 -0.7 0.78Interscept 1.72 4.26 0.46 0.76 -0.18 0.56 2.38 3.22 0.42

4 Stabilities of metal alloysThe oxidation of various metal alloys were considered. The DFT calculations for the alloy stability were calcu-lated by Felix Studt in connection with a study to search for methanol formation catalysts [5]. There are severalpossible paths toward alloy oxidation. We do not consider the formation of ternary oxides, but consider the fol-lowing simple processes:(1) The alloy completely oxidize to bulk metal oxides (2) The alloy decomposes to one pure elemental metal andthe other metal component forms an oxide. (3) The alloy decomposes to another stoichiometric alloy plus metal-lic A (if x>x’) or B (if y>y’). (4) Alloy decomposes to another stoichiometric alloy plus metal oxide (if x>x’)or (if y>y’). These 4 processes considered together amounts to forming the so-called convex hull in the phasediagram of the two constituents metals and their (pure) oxides. Overall, this oxidation process can be describedas follows:

AxBy + H2O � 〈AmOn|A〉+ 〈BiOj|B〉+ Ax′By′ + H2 (Eq. S1)

Where AmOn and BiOj are the ground-state oxides of component metals A and B at considered conditions,respectively. To understand the oxidation process, we give an example by discussing possibility (1). In this case,alloy AxBy is completely oxidized to two metal oxides.

AxBy + (nx

m+yj

i)H2O→

x

mAmOn +

y

iBiOj + (

nx

m+yj

i)H2 (2)

We can split this process into two steps:

Page S6

Page 7: Supporting Information for “In silico Search for Novel Methane

Supporting Information

AxBy → xA + yB (I)

xA +nx

mH2O→ x

mAmOn +

nx

mH2 (II-a)

And yB +jy

iH2O→ y

iBiOj +

jy

iH2 (II-b)

Process (I) is the reverse process of alloy formation; therefore the reaction energy of this step is the negativevalue of the alloy (Ef ). Process (II) is the oxidation of pure metals, and the oxide formation Gibbs energy ofmetal M (∆Galloy

M−oxide) can be used for evaluating the process.In addition to the cases that alloy decomposed completely and being oxidized, more complicated cases involveanother stoichiometric alloy Ax′By′ . As we only have corresponding data of compositions of A3B, AB and AB3,it is possible that we list all possibilities as follows:

A3B + H2O→ AB + (A|AmOn) + H2

A3B + H2O→ AB3 + (A|AmOn) + H2

AB + H2O→ A3B + (B|BiOj) + H2

AB + H2O→ AB3 + (A|AmOn) + H2

AB3 + H2O→ AB + (B|BiOj) + H2

AB3 + H2O→ A3B + (B|BiOj) + H2

5 Metal pricesThe prices of the pure metals are listed in Table S7. Cheap alloys are considered as which price is less than$5000/kg. The price is estimated using an interpolation method using its elementary-metal price. This is only anapproximate method to exclude the high priced alloys. Prices of pure metals are taken from chemicool website [3].

6 Filtering process

The data used in the filtering process are shown in Table S8. ∆Galloyoxide is the lowest value calculated of all the

oxidation possibilities. Subscript i and o indicates inlet and outlet conditions for the steam reforming reactions,respectively. Two terminals of the A3B type alloys are shown in Figure S3.

Table S8: Summary of calculated data for screening for novel catalystes

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

Pt3Hf -4.41 -2.21 -1.54 99898 3.3 -0.6 2.02E-18 1.12E-5Pt3Hf -4.41 -2.21 -1.54 99898 2.5 0.4 6.36E-12 2.57E-3Pt3Zr -4.23 -1.89 -1.19 112681 3.2 -0.7 3.38E-18 1.72E-5

Page S7

Page 8: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

Pt3Zr -4.23 -1.89 -1.19 112681 2.5 0.4 6.36E-12 2.57E-3Pt3Sc -4.21 -1.7 -1.16 121726 2.8 -0.3 3.33E-14 5.36E-3Pt3Sc -4.21 -1.7 -1.16 121726 1.9 0.7 2.27E-11 4.42E-2RhAl -4.14 -3.37 -3.37 119564 2.2 -0.3 6.66E-10 4.62E-1RhAl -4.14 -3.37 -3.37 119564 3.2 -1.1 2.44E-19 1.69E-6Pt3Y -4.1 -1.8 -1.26 113423 2.5 -0.2 7.92E-12 9.71E-2Pt3Y -4.1 -1.8 -1.26 113423 1.5 0.7 5.53E-11 1.16E0Pd3Y -3.6 -2.3 -1.76 46561 3.6 -0.5 1.05E-19 9.54E-7Pd3Y -3.6 -2.3 -1.76 46561 2.4 0.7 2.03E-12 6.33E-4Pt3La -3.52 -1.81 -1.29 106597 2 -0.2 3.06E-8 2.50E0Pt3La -3.52 -1.81 -1.29 106597 1.2 0.7 1.06E-10 3.23E-1Pd3Hf -3.51 -3.11 -2.44 37844 3.1 -1.1 1.32E-18 3.44E-6Pd3Hf -3.51 -3.11 -2.44 37844 3.4 -0.2 2.48E-17 2.66E-5Pd3Sc -3.47 -2.44 -1.9 52859 3.5 -0.5 3.78E-19 2.59E-6Pd3Sc -3.47 -2.44 -1.9 52859 2.4 0.6 3.84E-12 1.26E-3Pt3Ti -3.43 -1.14 -0.49 120671 2.7 -0.9 3.22E-15 2.21E-4Pt3Ti -3.43 -1.14 -0.49 120671 2.6 0 4.82E-12 2.97E-2Pd3La -3.3 -2.04 -1.51 43071 3.7 -0.8 1.52E-21 6.98E-8Pd3La -3.3 -2.04 -1.51 43071 2.6 0.5 9.74E-13 4.89E-4Pd3Zr -3.29 -2.83 -2.13 45716 2.9 -1.2 4.00E-17 5.81E-6Pd3Zr -3.29 -2.83 -2.13 45716 3.3 -0.3 3.34E-17 4.85E-5RuAl -3.06 -3.13 -2.57 12869 0.7 -0.6 6.53E-7 3.96E0RuAl -3.06 -3.13 -2.57 12869 2.1 -0.7 4.67E-10 4.24E-2RhGa -3.04 -2.21 -2.21 106455 2.4 0.9 6.29E-13 2.10E-4RhGa -3.04 -2.21 -2.21 106455 3.8 0.4 5.55E-18 1.20E-7Rh3Hf -2.84 -3.79 -3.11 82815 1.9 -0.9 3.65E-9 2.46E-2Rh3Hf -2.84 -3.79 -3.11 82815 0.8 -0.4 1.72E-7 5.51E0Pt3Al -2.7 -1.96 -1.39 124278 3 0.6 8.06E-15 1.22E-5Pt3Al -2.7 -1.96 -1.39 124278 2.2 1 1.34E-12 5.26E-4PdGa -2.7 -2.08 -2.08 48269 4.2 0.9 4.21E-21 7.89E-10PdGa -2.7 -2.08 -2.08 48269 3.6 0.2 6.24E-17 1.24E-6Rh3Zr -2.69 -3.44 -2.73 100707 1.9 -1 9.26E-10 1.03E-2Rh3Zr -2.69 -3.44 -2.73 100707 0.8 -0.4 1.72E-7 5.51E0Pd3Ti -2.58 -1.99 -1.34 51587 2.6 -1.2 1.18E-14 3.13E-5Pd3Ti -2.58 -1.99 -1.34 51587 3.2 -0.5 1.95E-17 5.01E-5Pd3Al -2.43 -2.23 -1.66 53797 3.6 0.3 6.90E-17 7.56E-7Pd3Al -2.43 -2.23 -1.66 53797 2.6 0.9 9.10E-14 5.32E-5Rh3Ti -2.41 -2.16 -1.51 113437 1.9 -0.8 1.02E-8 5.73E-2Rh3Ti -2.41 -2.16 -1.51 113437 1.1 -0.4 1.37E-5 3.30E1Rh3Ta -2.34 -1.78 -0.98 83624 2 -1.2 3.32E-11 9.82E-4Rh3Ta -2.34 -1.78 -0.98 83624 1.2 -0.5 1.75E-4 1.48E1PdZn -2.33 -2.02 -2.02 48424 3.9 1.2 1.85E-20 1.39E-9PdZn -2.33 -2.02 -2.02 48424 4.4 0.7 6.96E-22 5.17E-10Au3Y -2.28 -3.62 -3.09 48717 3.4 -1.5 3.34E-21 6.64E-8Au3Y -2.28 -3.62 -3.09 48717 4.2 0.3 4.25E-20 1.10E-8

Page S8

Page 9: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

RuGa -2.27 -1.7 -1.7 11794 2 0.1 1.61E-8 2.63E0RuGa -2.27 -1.7 -1.7 11794 4 0.6 2.16E-19 1.30E-8Rh3Sc -2.26 -3.65 -3.11 115257 1.9 -0.9 3.65E-9 2.46E-2Rh3Sc -2.26 -3.65 -3.11 115257 0.6 -0.4 1.59E-8 4.70E0PtGa -2.25 -1.75 -1.75 116395 3.7 1.1 2.88E-19 9.57E-9PtGa -2.25 -1.75 -1.75 116395 3.4 -0.2 2.48E-17 2.66E-5As3La -2.24 -3.09 -2.57 5033 2.8 -0.9 5.38E-16 1.16E-4As3La -2.24 -3.09 -2.57 5033 3.1 0.3 1.38E-14 3.27E-5PtZn -2.19 -1.95 -1.95 116942 3.1 1.4 2.85E-17 3.10E-7PtZn -2.19 -1.95 -1.95 116942 4.6 0.9 1.36E-23 4.78E-11Pd3Sn -2.16 1.37 1.37 42585 4.4 1.8 1.54E-24 1.91E-12Pd3Sn -2.16 1.37 1.37 42585 2.8 1.7 1.17E-16 8.01E-7Bi3La -2.14 -3.19 -2.66 1770 3.8 -1.4 2.23E-24 3.66E-9Bi3La -2.14 -3.19 -2.66 1770 3.7 -0.5 2.90E-20 3.49E-7Pt3Ta -2.13 -2 -1.2 100361 2.4 -1.7 1.00E-13 3.76E-6Sb3La -2.13 -3.2 -2.67 2237 3.7 -1.4 1.36E-23 9.19E-9Pt3Ta -2.13 -2 -1.2 100361 3.1 -1.1 1.32E-18 3.44E-6Sb3La -2.13 -3.2 -2.67 2237 3.5 -0.5 3.78E-19 2.59E-6PdIn -2.1 -1.52 -1.52 45461 4.3 1.4 6.50E-23 2.65E-11PdIn -2.1 -1.52 -1.52 45461 4.4 0.9 3.50E-22 1.97E-10Ga3Y -2.03 -8.82 -6.64 2826 2.9 -1.2 4.00E-17 5.81E-6Ga3Y -2.03 -8.82 -6.64 2826 2.7 -0.7 8.84E-15 1.08E-3Pt3Nb -2.01 -1.02 -0.36 112215 2.4 -1.5 1.79E-13 1.01E-5Pt3Nb -2.01 -1.02 -0.36 112215 3 -1 1.09E-17 1.39E-5Rh3Nb -2 -1.02 -0.36 99970 1.9 -1.2 8.14E-11 1.75E-3Rh3Nb -2 -1.02 -0.36 99970 1.2 -0.4 1.14E-4 2.71E1RuGe -1.93 -0.88 -0.88 11990 2.2 0.5 3.89E-11 1.65E-2RuGe -1.93 -0.88 -0.88 11990 3.5 1 4.33E-18 6.32E-8Au3Sc -1.9 -4.01 -3.47 52473 3.1 -1.7 1.33E-18 1.64E-7Au3Sc -1.9 -4.01 -3.47 52473 4.4 0 9.29E-23 4.54E-9Pd3Ga -1.89 0.25 0.54 48269 3.6 1.4 1.42E-19 7.02E-9Pd3Ga -1.89 0.25 0.54 48269 2.4 1.6 1.16E-14 1.52E-5Ir3V -1.86 -0.58 -0.11 38769 1.5 -1.2 9.15E-10 1.60E-2Pd3In -1.86 0.81 0.81 45461 3.5 1.8 3.81E-20 4.04E-9Ir3V -1.86 -0.58 -0.11 38769 1.5 -0.1 3.55E-6 4.17E1Pd3In -1.86 0.81 0.81 45461 2.2 2 4.20E-15 1.32E-5Ni3Ti -1.84 -2.74 -2.08 1473 2.1 -1.4 4.43E-12 1.05E-4Ni3Ti -1.84 -2.74 -2.08 1473 1 -0.7 2.97E-6 4.04E0Pt3Ga -1.81 0.16 0.68 116395 2.9 2.3 1.18E-18 4.32E-8Pt3Ga -1.81 0.16 0.68 116395 2.2 1.4 1.34E-13 1.07E-4PdCd -1.78 -1.5 -1.5 43260 3.6 1.8 1.29E-20 1.91E-9PdCd -1.78 -1.5 -1.5 43260 5 1.4 2.73E-27 1.80E-13Rh3Y -1.74 -4.16 -3.63 101895 1.6 -1 1.48E-8 5.47E-2Rh3Y -1.74 -4.16 -3.63 101895 0.3 -0.6 3.09E-9 9.39E0Ni3Si -1.71 -2.53 -1.89 74 2.7 0.1 1.61E-12 5.39E-3

Page S9

Page 10: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

Pd3Sb -1.71 1 1 42238 4.2 1.7 2.89E-23 1.60E-11Ni3Si -1.71 -2.53 -1.89 74 1.5 0.2 2.86E-8 4.26E1Pd3Sb -1.71 1 1 42238 3.3 1.8 3.26E-19 1.74E-8Ni3Al -1.69 -2.96 -2.4 88 1.6 -0.2 5.45E-6 1.77E1Ni3Al -1.69 -2.96 -2.4 88 1 -0.2 2.37E-7 6.48E1Pt3Sn -1.64 1.01 1.12 108118 4.2 1.7 2.89E-23 1.60E-11Pt3Sn -1.64 1.01 1.12 108118 2.5 1.4 1.42E-14 1.62E-5Pd3Si -1.58 -2.67 -2.03 53618 3.7 0.1 1.15E-17 9.65E-7Pd3Si -1.58 -2.67 -2.03 53618 2.8 0.1 4.10E-13 2.13E-3Pd3Ge -1.57 1.02 1.02 48187 4 1.4 1.81E-21 2.57E-10Pd3Ge -1.57 1.02 1.02 48187 3 1.3 1.45E-16 8.74E-7PdSn -1.57 -1.1 -1.1 42585 4.4 1.4 2.10E-23 1.29E-11PdSn -1.57 -1.1 -1.1 42585 4.6 1.3 3.36E-24 5.52E-12Pt3In -1.55 0.74 0.74 110266 2.8 1.7 1.17E-16 8.01E-7Pt3In -1.55 0.74 0.74 110266 2 1.3 5.01E-13 5.49E-4IrGa -1.55 -1.01 -1.01 37707 1.9 0.6 4.78E-11 1.06E-1IrGa -1.55 -1.01 -1.01 37707 3.4 0.5 2.18E-16 1.20E-6Zn3Pt -1.47 -1.57 -1.57 64850 3.8 0.7 1.05E-18 3.20E-8Zn3Pt -1.47 -1.57 -1.57 64850 3.6 0.1 3.51E-17 2.10E-6Pt3V -1.45 -0.99 -0.52 119766 2.2 -1.3 2.56E-12 1.30E-4Pt3V -1.45 -0.99 -0.52 119766 2.7 -0.8 5.06E-15 4.98E-4Rh3V -1.43 -1.02 -0.55 111899 1.6 -1.2 8.85E-10 9.33E-3Rh3V -1.43 -1.02 -0.55 111899 1.5 -0.4 4.03E-5 8.33E0PdSb -1.42 -0.79 -0.79 42238 4.1 0.9 1.29E-20 1.57E-9PdSb -1.42 -0.79 -0.79 42238 3.8 1.3 2.96E-20 1.89E-9Zn3Pd -1.41 -1.7 -1.7 20551 4.3 0.5 5.91E-21 2.49E-9Zn3Pd -1.41 -1.7 -1.7 20551 3.6 0.1 3.51E-17 2.10E-6RhZn -1.39 -1.32 -1.32 107290 0.9 0.3 3.67E-10 6.54E-1RhZn -1.39 -1.32 -1.32 107290 2 0.7 1.72E-11 1.82E-2RhIn -1.36 -0.76 -0.76 97382 2.2 0.9 2.39E-12 8.83E-4RhIn -1.36 -0.76 -0.76 97382 3.5 1 4.33E-18 6.32E-8Pt3Zn -1.35 0.26 0.26 116942 3.2 1.3 1.78E-17 2.13E-7Pt3Zn -1.35 0.26 0.26 116942 2.2 1.4 1.34E-13 1.07E-4Ru3Ti -1.34 -3.23 -2.57 12992 1.4 -1 1.59E-8 1.55E-1Pd3Pb -1.34 0.93 0.93 35383 4.4 2 4.09E-25 1.14E-12Ru3Ti -1.34 -3.23 -2.57 12992 1 -0.8 7.55E-7 2.09E0Pd3Pb -1.34 0.93 0.93 35383 2.7 1.9 1.04E-16 7.53E-7Pd3Zn -1.32 0.16 0.16 48424 3.4 1.5 6.66E-19 2.51E-8Pd3Zn -1.32 0.16 0.16 48424 2 1.6 8.96E-14 1.83E-4Ru3Hf -1.29 -5.34 -4.66 9257 1.6 -1.2 8.85E-10 9.33E-3Ru3Hf -1.29 -5.34 -4.66 9257 0.5 -0.9 4.55E-6 2.88E0PdBi -1.29 -0.82 -0.82 35408 4 1.8 1.52E-22 7.50E-11PdBi -1.29 -0.82 -0.82 35408 4.5 1.9 2.50E-25 5.62E-13Ru3Ta -1.28 -2.84 -2.05 10449 1.5 -1.1 3.89E-9 3.89E-2NiGa -1.27 -1.01 -0.85 679 2.3 0.4 5.53E-11 1.59E-2

Page S10

Page 11: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

NiGa -1.27 -1.01 -0.85 679 3.4 0.3 5.72E-16 3.22E-6PtCd -1.22 -1.08 -1.08 109128 2.6 1.5 2.94E-15 6.03E-6PtCd -1.22 -1.08 -1.08 109128 5 1.5 2.28E-27 1.00E-13Pd3Ta -1.2 -2.93 -2.13 38857 1.5 -2.3 1.14E-12 1.10E-4Pd3Ta -1.2 -2.93 -2.13 38857 3.1 -1.7 1.33E-18 1.64E-7Ir3W -1.19 0.3 0.97 31874 1.6 -1.6 6.44E-11 3.35E-4Pd3Bi -1.19 0.55 0.55 35408 4 1.9 8.26E-23 5.49E-11Ir3W -1.19 0.3 0.97 31874 1.6 -0.2 5.45E-6 1.77E1Pd3Bi -1.19 0.55 0.55 35408 3 2 2.43E-18 6.76E-8Zn3Rh -1.17 -1.75 -1.48 44771 3.2 0.7 5.66E-16 1.89E-6Zn3Rh -1.17 -1.75 -1.48 44771 3.4 0.3 5.72E-16 3.22E-6Pd3Cd -1.16 0.27 0.27 43260 3 1.9 4.39E-18 9.87E-8Pd3Cd -1.16 0.27 0.27 43260 1.7 1.8 6.06E-14 5.30E-4Zn3Ru -1.15 -1.78 -0.91 4796 2.5 0.5 2.84E-12 1.15E-3Zn3Ru -1.15 -1.78 -0.91 4796 3.5 0.6 4.36E-17 3.83E-7Ru3Zr -1.12 -5 -4.3 11125 1.7 -1.3 1.97E-10 2.23E-3Ru3Zr -1.12 -5 -4.3 11125 0.5 -0.9 4.55E-6 2.88E0Ni3Ga -1.11 -0.53 0.02 679 2.5 0.6 1.44E-12 5.50E-4Ni3Ga -1.11 -0.53 0.02 679 1 0.1 7.88E-9 3.49E1PdGe -1.1 -0.63 -0.63 48187 3.8 1.1 9.90E-20 4.66E-9PdGe -1.1 -0.63 -0.63 48187 3.8 0.9 3.25E-19 1.24E-8Pd3Nb -1.08 -1.95 -1.29 45222 1.7 -2.1 5.57E-12 2.31E-5Pd3Nb -1.08 -1.95 -1.29 45222 3 -1.6 8.17E-18 3.57E-7Rh3La -1.07 -4.26 -3.73 92141 0.9 -1 1.20E-8 4.79E-1Ni3Ge -1.07 0.9 1.01 1106 3 0.9 1.45E-15 3.36E-6Rh3La -1.07 -4.26 -3.73 92141 0.3 -0.6 3.09E-9 9.39E0Ni3Ge -1.07 0.9 1.01 1106 1.3 0.2 4.09E-8 7.07E1PtSn -1.04 -0.67 -0.67 108118 3.5 1.3 7.45E-19 2.13E-8PtSn -1.04 -0.67 -0.67 108118 4.2 1.2 6.97E-22 1.62E-10Pt3Ge -1.03 0.71 0.71 116045 3.4 1.1 6.94E-18 8.90E-8Pt3Ge -1.03 0.71 0.71 116045 2.7 1.4 1.87E-15 4.50E-6Ru3Nb -1.02 -2.01 -1.35 10759 1.5 -1 3.20E-8 9.34E-2Rh3Sb -1.02 0.72 0.72 93243 2.3 1 7.74E-13 2.64E-4Ru3Nb -1.02 -2.01 -1.35 10759 0.7 -0.8 4.42E-6 2.14E0Rh3Sb -1.02 0.72 0.72 93243 1.1 0.4 1.08E-9 2.26E0RhGe -1.01 -0.41 -0.41 105927 3.2 1.1 5.67E-17 4.02E-7RhSn -1.01 -0.44 -0.44 93963 2.8 0.9 1.16E-14 1.36E-5RhGe -1.01 -0.41 -0.41 105927 3.5 0.9 7.75E-18 9.85E-8RhSn -1.01 -0.44 -0.44 93963 3.6 1 1.51E-18 3.10E-8Zn3Sc -0.99 -7.85 -6.22 2653 2 -2.1 7.11E-13 6.42E-6Zn3Sc -0.99 -7.85 -6.22 2653 2.5 -1.4 6.57E-14 1.15E-5Zn3Zr -0.98 -8.07 -6.28 535 1.4 -2.2 1.23E-13 3.08E-4Zn3Zr -0.98 -8.07 -6.28 535 2.1 -1.5 3.05E-12 5.14E-5Rh3Ga -0.95 -0.7 -0.57 106455 1.8 0.8 1.50E-11 4.60E-2Rh3Ga -0.95 -0.7 -0.57 106455 0.9 0.4 2.02E-10 2.59E-1

Page S11

Page 12: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

PdAs -0.95 -0.35 -0.35 47851 3.8 0.6 1.86E-18 5.03E-8PdAs -0.95 -0.35 -0.35 47851 3.4 1.5 6.66E-19 2.51E-8Cd3Pd -0.94 -0.01 -0.01 14341 4.5 1.2 2.12E-23 1.97E-11Cd3Pd -0.94 -0.01 -0.01 14341 4.7 1 1.77E-24 1.40E-11Rh3W -0.92 0.04 0.7 81522 1.6 -1.8 2.63E-11 1.04E-4Rh3W -0.92 0.04 0.7 81522 1.6 -1 1.48E-8 5.47E-2Zn3Y -0.9 -7.92 -6.3 1378 2.3 -2.1 7.14E-14 1.81E-6Zn3Y -0.9 -7.92 -6.3 1378 2.5 -1.3 6.95E-14 2.41E-5Fe3Si -0.87 -4.7 -2.87 69 1.6 -0.4 9.21E-6 5.28E0Pt3Cd -0.86 0.25 0.25 109128 3.5 1.7 6.96E-20 5.88E-9Pt3Cd -0.86 0.25 0.25 109128 1.8 1.3 8.44E-13 2.00E-3Ru3V -0.85 -1.59 -1.12 12303 1.3 -1 7.26E-9 2.51E-1Ga3Pd -0.85 -4.09 -3.79 21128 3.5 0.3 1.99E-16 1.55E-6Ru3V -0.85 -1.59 -1.12 12303 1.2 -0.8 3.86E-7 1.78E0Ga3Pd -0.85 -4.09 -3.79 21128 3.9 0.4 1.86E-18 6.07E-8Pd3Tl -0.84 0.59 0.59 35751 3.4 2.1 1.80E-20 2.58E-9RuSn -0.83 -0.21 0.03 10129 2.1 0.4 1.94E-10 1.01E-1RuSn -0.83 -0.21 0.03 10129 3.2 1.2 3.18E-17 2.93E-7RuAs -0.82 -0.02 -0.02 11860 2.7 0.8 5.80E-14 4.06E-5RuAs -0.82 -0.02 -0.02 11860 4 1.8 1.52E-22 7.50E-11Pd3As -0.81 0.33 0.33 47851 3.4 1.2 3.87E-18 6.38E-8Pd3As -0.81 0.33 0.33 47851 3.2 1.4 9.95E-18 1.53E-7Ir3Mo -0.8 -0.08 0.58 36071 1.7 -0.7 4.87E-7 3.75E-1Ir3Mo -0.8 -0.08 0.58 36071 1.6 -0.1 1.99E-6 2.73E1Cd3Pt -0.78 0.11 0.11 47934 3.9 1.3 1.00E-20 8.68E-10Cd3Pt -0.78 0.11 0.11 47934 4.5 0.8 9.98E-23 1.59E-10Rh3Sn -0.77 0.14 0.26 93963 2.2 0.9 2.39E-12 8.83E-4Rh3Sn -0.77 0.14 0.26 93963 0.7 0.4 2.02E-11 5.38E-2NiZn -0.76 -0.69 -0.69 71 1.5 0.1 1.44E-7 5.11E1NiZn -0.76 -0.69 -0.69 71 3 0.4 2.49E-14 3.77E-5Pt3Sb -0.75 0.39 0.39 107619 3.2 1.3 1.78E-17 2.13E-7Ga3Pt -0.75 -4.19 -3.67 63873 3.7 0.2 2.10E-17 5.92E-7Pt3Sb -0.75 0.39 0.39 107619 2.3 1.5 4.39E-14 4.03E-5Ga3Pt -0.75 -4.19 -3.67 63873 3.5 0.2 1.84E-16 2.63E-6Rh3Ge -0.72 0.21 0.21 105927 1.8 0.9 8.28E-12 2.07E-2Rh3Ge -0.72 0.21 0.21 105927 1.1 0.4 1.08E-9 2.26E0Zn3Ti -0.71 -6.79 -5.05 1339 1.2 -2.2 1.72E-13 2.08E-3Zn3Ti -0.71 -6.79 -5.05 1339 2.1 -1.5 3.05E-12 5.14E-5PtSb -0.7 -0.2 -0.2 107619 3.9 1.5 2.92E-21 4.13E-10PtSb -0.7 -0.2 -0.2 107619 3.6 1.4 1.42E-19 7.02E-9Zn3Hf -0.69 -8.86 -7.11 599 1.2 -2.5 2.60E-13 3.64E-4Zn3Hf -0.69 -8.86 -7.11 599 2 -1.7 3.19E-12 2.68E-5Ni3Sb -0.67 0.67 0.67 64 3.1 1 2.87E-16 1.16E-6Ni3Sb -0.67 0.67 0.67 64 1.3 0.2 4.09E-8 7.07E1Pd3V -0.65 -1.8 -1.33 50606 1.9 -1.7 6.77E-12 4.28E-5

Page S12

Page 13: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

Cu3Pt -0.65 0.44 0.44 65796 2.8 1.3 1.17E-15 3.33E-6Pd3V -0.65 -1.8 -1.33 50606 2.6 -1.1 1.25E-14 7.27E-5Cu3Pt -0.65 0.44 0.44 65796 3.4 1.2 3.87E-18 6.38E-8Cu3Al -0.64 -4.02 -3.45 104 3 -0.4 7.62E-16 5.52E-4Cu3Al -0.64 -4.02 -3.45 104 3.4 -0.1 6.34E-17 3.01E-5Ni3Sn -0.63 0 0.63 143 2.7 0.8 5.80E-14 4.06E-5Au3Al -0.63 -4.03 -3.46 52988 3.5 -0.8 2.29E-20 5.39E-7Zn3Ir -0.63 -2.29 -1.48 20815 2.5 0.5 2.84E-12 1.15E-3Ni3Sn -0.63 0 0.63 143 0.8 0.2 2.01E-10 6.16E-1Au3Al -0.63 -4.03 -3.46 52988 4.2 0.8 7.36E-21 1.30E-9Zn3Ir -0.63 -2.29 -1.48 20815 3.3 0.3 1.65E-15 6.82E-6PtGe -0.63 -0.26 -0.26 116045 4 1.5 9.67E-22 1.75E-10PtGe -0.63 -0.26 -0.26 116045 3.8 0.8 5.86E-19 2.00E-8RhSb -0.62 -0.05 -0.05 93243 2.8 1.6 2.08E-16 1.15E-6RhSb -0.62 -0.05 -0.05 93243 3.1 1 2.87E-16 1.16E-6Ru3Sc -0.6 -5.31 -4.77 14000 1.7 -1.2 4.67E-10 5.40E-3Ru3Sc -0.6 -5.31 -4.77 14000 0.7 -0.7 2.01E-6 3.11E0Zn3La -0.59 -7.66 -6.05 3348 2.5 -2.3 6.35E-15 4.21E-7Zn3La -0.59 -7.66 -6.05 3348 2.7 -1.2 1.78E-15 1.80E-5Rh3As -0.56 0.35 0.35 105238 2.2 1.1 7.52E-13 3.36E-4Ga3Ru -0.56 -4.38 -3.87 6044 3.6 0 1.54E-17 3.54E-6Ga3Rh -0.56 -4.39 -4.26 44343 3.5 0 4.84E-17 8.27E-6Rh3As -0.56 0.35 0.35 105238 1.4 0.4 1.84E-9 1.78E1Ga3Ru -0.56 -4.38 -3.87 6044 3.5 0.3 1.99E-16 1.55E-6Ga3Rh -0.56 -4.39 -4.26 44343 3.7 0.5 9.42E-18 1.54E-7Co3Pt -0.55 0.42 0.42 68295 2.4 0.7 2.03E-12 6.33E-4Co3Pt -0.55 0.42 0.42 68295 1.7 0 2.92E-7 2.07E1PtBi -0.55 -0.22 -0.22 95896 3.4 0.2 5.43E-16 5.68E-6PtBi -0.55 -0.22 -0.22 95896 4 1.8 1.52E-22 7.50E-11Ni3As -0.54 0.54 0.54 1009 3 1 8.17E-16 2.38E-6Au3Cd -0.54 0.17 0.17 46619 4.9 1.8 3.79E-27 3.30E-14Zn3Ni -0.54 -2.39 -1.79 59 2.8 0.3 3.84E-13 4.09E-4Ni3As -0.54 0.54 0.54 1009 1.6 0.2 1.97E-8 2.48E1Au3Cd -0.54 0.17 0.17 46619 4.6 2.2 1.01E-26 1.01E-13Zn3Ni -0.54 -2.39 -1.79 59 3.4 0.4 3.76E-16 1.93E-6Fe3Pt -0.53 -0.81 -0.6 69971 2.3 -0.3 1.22E-10 2.52E-1Pt3Pb -0.53 0.45 0.45 96015 3.1 1.9 1.52E-18 4.91E-8Cu3Pd -0.53 0.24 0.24 20959 3.4 1.3 2.16E-18 4.70E-8Pt3Pb -0.53 0.45 0.45 96015 2.2 1.3 2.38E-13 1.53E-4Cu3Pd -0.53 0.24 0.24 20959 3.5 1.2 1.34E-18 2.91E-8Pd3Hg -0.52 0.3 0.3 36008 3 1.9 4.39E-18 9.87E-8Pd3Hg -0.52 0.3 0.3 36008 1.7 1.9 3.42E-14 3.70E-4Fe3Ga -0.51 -2.47 -0.72 697 2.4 -0.1 7.04E-11 2.48E-1Fe3Ga -0.51 -2.47 -0.72 697 1.4 -0.4 1.52E-4 1.29E1Rh3Mo -0.5 -0.37 0.29 99279 1.6 -0.7 1.83E-6 6.25E-1

Page S13

Page 14: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

Au3Zn -0.5 -0.48 -0.12 49886 4.4 1.3 3.93E-23 2.26E-11Rh3Mo -0.5 -0.37 0.29 99279 1.5 0 7.31E-7 5.16E1Au3Zn -0.5 -0.48 -0.12 49886 4.9 1.8 3.79E-27 3.30E-14Pt3Cu -0.49 0.27 0.27 117277 2.6 1.5 2.94E-15 6.03E-6Pt3Cu -0.49 0.27 0.27 117277 2.2 1.4 1.34E-13 1.07E-4Ni3Fe -0.47 0.02 0.42 76 1.8 -0.2 5.80E-7 6.95E0Zn3Au -0.47 -2.46 -1.91 27785 3.9 0.5 1.12E-18 3.96E-8Ni3Fe -0.47 0.02 0.42 76 1.4 0 1.02E-6 7.67E1Zn3Au -0.47 -2.46 -1.91 27785 3.1 0 5.26E-15 2.91E-4Ag3Y -0.45 -5.45 -4.91 1868 2.7 -2.4 6.99E-16 1.27E-7Ag3Y -0.45 -5.45 -4.91 1868 3.1 -0.9 3.57E-18 1.28E-5Zn3Nb -0.44 -5.51 -3.76 94 1.2 -1.7 1.57E-13 1.10E-3Zn3Nb -0.44 -5.51 -3.76 94 2.5 -1.3 6.95E-14 2.41E-5RhAs -0.43 0.03 0.03 105238 2 1.2 8.88E-13 8.28E-4RhAs -0.43 0.03 0.03 105238 3.1 1.3 5.09E-17 4.37E-7PdHg -0.42 0.04 0.04 36008 3.7 2.1 6.69E-22 2.70E-10PdHg -0.42 0.04 0.04 36008 4.7 2.2 3.07E-27 3.84E-14Au3Pd -0.41 0.25 0.25 55847 3.7 2.5 5.03E-23 4.81E-11Au3Pd -0.41 0.25 0.25 55847 4.3 2.6 2.55E-26 2.49E-13Co3Ga -0.4 -1.24 -0.69 773 2.5 0.3 1.56E-11 6.08E-3Ir3Re -0.4 0.27 0.27 35654 1.3 -1.4 1.80E-12 7.17E-3Ni3Zn -0.4 -0.57 -0.21 71 2.2 0.3 3.94E-10 9.80E-2Pt3Co -0.4 0.22 0.22 118126 2.2 0.8 4.32E-12 1.61E-3Au3In -0.4 -0.35 0.16 47962 4.8 1.3 1.50E-25 1.34E-12Co3Ga -0.4 -1.24 -0.69 773 1.2 -0.2 8.87E-6 7.53E1Ir3Re -0.4 0.27 0.27 35654 1.8 -0.1 4.15E-7 1.07E1Ni3Zn -0.4 -0.57 -0.21 71 0.9 -0.1 1.40E-8 3.62E1Pt3Co -0.4 0.22 0.22 118126 2.4 1.4 3.65E-14 3.05E-5Au3In -0.4 -0.35 0.16 47962 4.5 1.9 2.50E-25 5.62E-13Cu3Ga -0.39 -1.26 -0.71 660 3.5 0.6 4.36E-17 3.83E-7Cu3Ga -0.39 -1.26 -0.71 660 3.6 0.5 2.69E-17 3.04E-7Re3Ir -0.38 0.24 0.24 22656 1.1 -0.8 5.41E-7 2.17E0Re3Ir -0.38 0.24 0.24 22656 0.7 -1.7 4.36E-12 7.50E-2Rh3Zn -0.37 -0.61 -0.33 107290 1.7 0.6 7.50E-11 6.43E-1In3Pd -0.37 -2.19 -2.19 21163 4.6 0.7 1.75E-23 1.19E-10Rh3Zn -0.37 -0.61 -0.33 107290 0.8 0.3 1.11E-10 2.37E-1In3Pd -0.37 -2.19 -2.19 21163 4.4 0.7 6.96E-22 5.17E-10Cd3Au -0.35 -0.07 -0.07 20717 4.6 1.2 5.43E-24 9.75E-12Cd3Au -0.35 -0.07 -0.07 20717 4.4 0.9 3.50E-22 1.97E-10Ni3Pt -0.34 0.26 0.26 68364 2.2 0.5 3.89E-11 1.65E-2Ag3Pd -0.34 0.21 0.21 15338 3.9 2.1 7.22E-23 5.76E-11Ni3Pt -0.34 0.26 0.26 68364 1.5 0.3 5.94E-9 2.87E1Ag3Pd -0.34 0.21 0.21 15338 4.8 2.1 1.87E-27 1.70E-14IrZn -0.33 -0.81 -0.45 37728 0.6 -0.1 1.80E-10 3.09E0IrZn -0.33 -0.81 -0.45 37728 1.6 0.6 9.49E-11 1.51E0

Page S14

Page 15: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

Ag3Sc -0.32 -5.59 -5.05 2761 2.2 -2.4 5.19E-14 1.18E-6Ag3Sc -0.32 -5.59 -5.05 2761 3 -1.1 7.56E-18 6.68E-6Rh3In -0.3 -0.45 -0.38 97382 1.7 0.7 3.50E-11 2.63E-1Rh3In -0.3 -0.45 -0.38 97382 0.5 0.3 2.08E-12 6.71E-2Fe3Ge -0.29 -1.21 -0.44 1139 2.9 0.1 1.12E-13 8.50E-4Co3Ge -0.29 0.12 0.22 1197 2.7 0.5 3.35E-13 2.14E-4Pd3Ag -0.29 0.16 0.16 43902 2.7 1.8 1.86E-16 1.08E-6Fe3Ge -0.29 -1.21 -0.44 1139 1.6 -0.4 9.21E-6 5.28E0Co3Ge -0.29 0.12 0.22 1197 1.2 -0.2 8.87E-6 7.53E1Pd3Ag -0.29 0.16 0.16 43902 1.5 1.7 1.58E-13 1.50E-3Co3Ni -0.28 0.24 0.24 177 1.7 0 2.92E-7 2.07E1Co3Ni -0.28 0.24 0.24 177 1.8 -0.1 4.15E-7 1.07E1FeRh -0.28 -0.31 -0.11 49512 2 -0.4 1.19E-8 7.23E-1Cu3Sc -0.27 -5.64 -5.1 2750 2.2 -2.2 1.09E-13 2.11E-6Cu3Sc -0.27 -5.64 -5.1 2750 2.3 -1.2 1.40E-12 1.68E-4Cu3Zn -0.26 -0.72 -0.36 86 3.7 0.7 3.02E-18 6.30E-8Cu3Zn -0.26 -0.72 -0.36 86 3.5 0.8 1.38E-17 1.55E-7Pd3Cu -0.25 -0.03 -0.03 48663 2.5 1.6 4.53E-15 8.04E-6Pt3Ni -0.25 0.13 0.13 118158 1.9 1 3.68E-12 4.69E-3Pt3Bi -0.25 -0.02 -0.02 95896 3.1 1.7 4.94E-18 1.05E-7Pd3Cu -0.25 -0.03 -0.03 48663 1.9 1.7 6.70E-14 2.38E-4Pt3Ni -0.25 0.13 0.13 118158 2.3 1.5 4.39E-14 4.03E-5Pt3Bi -0.25 -0.02 -0.02 95896 1.9 1.3 6.62E-13 1.05E-3Cd3Rh -0.23 0.14 0.14 30748 2.8 1 6.57E-15 9.49E-6Cd3Rh -0.23 0.14 0.14 30748 4 1 2.11E-20 1.89E-9Co3Fe -0.22 -0.22 0 177 1.6 -0.3 8.61E-6 1.00E1Au3Ga -0.22 -1.42 -0.87 49785 4.1 0.6 6.86E-20 6.55E-9Co3Fe -0.22 -0.22 0 177 1.4 -0.3 8.06E-5 2.37E1Au3Ga -0.22 -1.42 -0.87 49785 3.9 1.6 1.59E-21 3.12E-10RuZn -0.22 -0.87 -0.53 11526 1 -0.3 7.62E-7 4.91E1PtAs -0.22 0.11 0.11 115609 3.1 1.9 1.52E-18 4.91E-8RuZn -0.22 -0.87 -0.53 11526 1.7 0.3 2.83E-9 7.65E0PtAs -0.22 0.11 0.11 115609 3.1 1.6 8.87E-18 1.51E-7Rh3Cr -0.21 -1.8 -1.31 111809 1.3 -1.2 9.50E-11 4.37E-2Rh3Cr -0.21 -1.8 -1.31 111809 1.7 -0.3 2.28E-6 6.31E0Rh3Fe -0.2 -0.25 0.06 110098 1.6 0.2 1.97E-8 2.48E1Rh3Fe -0.2 -0.25 0.06 110098 1.2 0.3 6.37E-9 1.74E1In3Pt -0.19 -2.11 -2.11 53184 4 0.5 3.67E-19 2.01E-8Ag3La -0.19 -5.15 -4.62 3242 3 -1.6 8.17E-18 3.57E-7In3Pt -0.19 -2.11 -2.11 53184 4 0.2 6.39E-19 6.82E-8Zn3Mo -0.18 -3.62 -1.87 180 1.5 -1 3.20E-8 9.34E-2Zn3Mo -0.18 -3.62 -1.87 180 2.6 -0.1 2.90E-12 4.62E-2Ag3Cd -0.16 0.08 0.08 1009 4.9 1.6 1.01E-26 1.12E-13Ag3Cd -0.16 0.08 0.08 1009 5.1 1.7 2.15E-28 1.17E-14Pt3Tl -0.15 0.15 0.15 96476 2.7 2 5.81E-17 5.23E-7

Page S15

Page 16: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

Sn3Pd -0.15 -1.9 -1.9 13605 3.9 0 4.45E-19 3.08E-7Pt3Tl -0.15 0.15 0.15 96476 1.9 1.3 6.62E-13 1.05E-3Sn3Pd -0.15 -1.9 -1.9 13605 4.1 0.6 6.86E-20 6.55E-9Re3Rh -0.14 0.12 0.12 33734 1.1 -0.9 7.66E-8 1.03E0Ru3Ga -0.14 -1.51 -1 11794 2.1 0.3 7.20E-10 2.46E-1Pd3Au -0.14 -0.01 -0.01 57212 2.5 1.8 1.44E-15 3.98E-6Re3Rh -0.14 0.12 0.12 33734 0.7 -1.8 5.83E-12 4.18E-2Ru3Ga -0.14 -1.51 -1 11794 1.3 0 9.57E-7 1.06E2Pd3Au -0.14 -0.01 -0.01 57212 1.6 1.8 7.43E-14 8.40E-4RuIn -0.14 -0.68 -0.1 12813 1.2 0.2 2.60E-8 5.18E1RuIn -0.14 -0.68 -0.1 12813 2.2 0.9 2.39E-12 8.83E-4Zn3Cu -0.13 -2.8 -1.98 64 3.4 0.5 2.18E-16 1.20E-6Zn3Cu -0.13 -2.8 -1.98 64 3.4 0.3 5.72E-16 3.22E-6Ir3Fe -0.12 -0.32 0.08 38298 1.7 -0.2 1.92E-6 1.12E1Ni3Co -0.12 0.03 0.03 110 1.7 0.1 6.44E-8 1.86E1Ir3Fe -0.12 -0.32 0.08 38298 1.4 0 1.02E-6 7.67E1Ni3Co -0.12 0.03 0.03 110 1.7 0.1 6.44E-8 1.86E1NiGe -0.12 -0.41 -0.3 1106 3.1 0.8 9.07E-16 2.45E-6NiGe -0.12 -0.41 -0.3 1106 3.5 1.1 2.41E-18 4.18E-8Ir3Ga -0.11 -1.53 -0.98 37707 2.2 0.6 1.64E-11 7.08E-3Ir3Ga -0.11 -1.53 -0.98 37707 1 0 2.36E-8 6.04E1Ni3In -0.1 -0.66 -0.08 3867 2.3 0.4 5.53E-11 1.59E-2Ag3In -0.1 -0.65 -0.07 3421 4.7 1.2 1.13E-24 4.81E-12Au3Sn -0.1 -0.53 -0.01 46172 4.6 1.3 3.36E-24 5.52E-12Ni3In -0.1 -0.66 -0.08 3867 0.6 0 5.74E-11 1.52E0Ag3In -0.1 -0.65 -0.07 3421 4.8 1.2 1.88E-25 2.36E-12Au3Sn -0.1 -0.53 -0.01 46172 4.3 1.9 2.52E-24 3.77E-12RuSb -0.1 0.05 0.05 10002 2.7 0.5 3.35E-13 2.14E-4RuSb -0.1 0.05 0.05 10002 4.1 1 7.11E-21 9.43E-10Re3Pt -0.09 0.09 0.09 45506 1.7 -0.8 1.44E-7 1.70E-1Co3Pd -0.09 0.09 0.09 22049 2.8 0.2 4.98E-13 9.26E-4Ag3Pt -0.09 0.08 0.08 49642 2.9 1.8 2.27E-17 2.84E-7Re3Pt -0.09 0.09 0.09 45506 0.7 -1.9 7.54E-12 2.31E-2Co3Pd -0.09 0.09 0.09 22049 1.7 -0.3 2.28E-6 6.31E0Ag3Pt -0.09 0.08 0.08 49642 4 1.9 8.26E-23 5.49E-11Ag3Zn -0.08 -0.89 -0.53 1007 4.3 1.1 4.17E-22 1.38E-10Ag3Zn -0.08 -0.89 -0.53 1007 4.8 1.3 1.50E-25 1.34E-12Co3Rh -0.07 0.07 0.07 47962 1.5 0.2 2.86E-8 4.26E1Ir3Ru -0.07 0.05 0.05 37824 1.7 -0.1 9.86E-7 1.73E1Co3Rh -0.07 0.07 0.07 47962 1.5 -0.1 3.55E-6 4.17E1Ir3Ru -0.07 0.05 0.05 37824 1.5 -0.1 3.55E-6 4.17E1Ag3Au -0.06 -0.01 -0.01 21707 4.9 2.3 1.38E-28 1.26E-15Au3Ag -0.06 -0.01 -0.01 47033 5.1 2.5 2.16E-30 1.53E-17Pb3Pd -0.06 -0.39 -0.39 8547 4.2 1 2.35E-21 4.72E-10Ag3Au -0.06 -0.01 -0.01 21707 4.9 2 1.10E-27 6.84E-15

Page S16

Page 17: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

Au3Ag -0.06 -0.01 -0.01 47033 4.5 2.6 2.39E-27 4.82E-14Pb3Pd -0.06 -0.39 -0.39 8547 4.5 1.2 2.12E-23 1.97E-11RhCd -0.06 -0.12 -0.12 95423 0.6 0 5.74E-11 1.52E0RhCd -0.06 -0.12 -0.12 95423 1.6 0.8 2.19E-11 2.52E-1Fe3As -0.05 -1.28 -0.54 1039 2.9 -0.1 3.45E-14 3.06E-3Rh3Re -0.05 0 0 87110 1.2 -1.7 1.57E-13 1.10E-3Fe3As -0.05 -1.28 -0.54 1039 1.5 -0.6 2.13E-5 2.13E0Rh3Re -0.05 0 0 87110 1.9 -0.8 1.02E-8 5.73E-2In3Au -0.04 -2.21 -1.7 26313 4.3 0.7 3.26E-21 1.05E-9Ru3Ir -0.03 0.01 0.01 24864 1.4 -0.1 5.22E-6 6.17E1Pt3Ag -0.03 0 0 109955 2.4 1.9 2.07E-15 5.30E-6Ag3Ga -0.03 -1.61 -1.07 1377 4 0.6 2.16E-19 1.30E-8Ru3Ir -0.03 0.01 0.01 24864 1.4 0 1.02E-6 7.67E1Pt3Ag -0.03 0 0 109955 1.8 1.3 8.44E-13 2.00E-3Ag3Ga -0.03 -1.61 -1.07 1377 4.4 0.8 5.16E-22 3.24E-10Zn3Fe -0.03 -3.34 -1.86 57 3 0.2 4.53E-14 1.56E-4Co3Ir -0.02 0.02 0.02 21978 1.2 0 4.86E-7 1.17E2Cu3Au -0.02 -0.09 -0.09 28200 4.3 1.3 1.22E-22 4.60E-11Co3Ir -0.02 0.02 0.02 21978 1.5 -0.1 3.55E-6 4.17E1Cu3Au -0.02 -0.09 -0.09 28200 3.6 1.1 8.35E-19 1.99E-8Cd3Ag -0.01 -0.12 -0.12 639 4.4 1.2 7.20E-23 3.97E-11Cd3Ag -0.01 -0.12 -0.12 639 4.4 0.9 3.50E-22 1.97E-10Re3Re 0 0 0 16000 0.5 -1.4 6.26E-10 6.50E-1Fe3Fe 0 -1.77 -0.89 72 1.3 -0.8 1.74E-6 1.26E0Fe3Ni 0 -1.33 -0.78 73 1.5 -0.5 3.87E-5 4.28E0Ru3Ru 0 0 0 14000 1.3 0 9.57E-7 1.06E2Co3Co 0 0 0 210 1.7 -0.1 9.86E-7 1.73E1Rh3Rh 0 0 0 130000 1.4 0.2 3.93E-8 6.43E1Ir3Ir 0 0 0 42000 1.6 0 4.70E-7 3.32E1Ni3Ni 0 0 0 77 1.5 0.2 2.86E-8 4.26E1Pd3Pd 0 0 0 58330 1.5 1.6 2.78E-13 2.28E-3Pt3Pt 0 0 0 130000 2.1 1.3 3.60E-13 2.90E-4Cu3Cu 0 0 0 97 3.6 1.1 8.35E-19 1.99E-8Cu3Si 0 -4.24 -3.6 91 2.8 -0.3 3.33E-14 5.36E-3Ag3Ag 0 0 0 1200 5.1 2 7.16E-29 4.46E-16Au3Au 0 0 0 55400 4.8 2.7 2.97E-29 4.77E-16Zn3Zn 0 -3.9 -2.45 53 3.5 0.3 1.99E-16 1.55E-6Cd3Cd 0 -0.1 -0.05 460 4.6 1 1.09E-23 2.88E-11Ga3Ga 0 -6.59 -4.39 2200 3.6 0.2 6.24E-17 1.24E-6In3In 0 -3.01 -1.5 9680 4.5 0.6 1.34E-22 3.82E-10Tl3Tl 0 0 0 480 4.8 0.9 2.72E-25 1.06E-11Ge3Ge 0 -0.67 -0.34 3600 3.5 0.7 2.46E-17 2.44E-7Sn3Sn 0 -2.51 -1.26 240 3.9 0.6 6.42E-19 2.56E-8Pb3Pb 0 0 0 25 4.7 1 1.77E-24 1.40E-11As3As 0 0 0 3200 1.5 -0.7 5.51E-6 1.03E0

Page S17

Page 18: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

Sb3Sb 0 0 0 45 2.4 -0.3 2.23E-11 1.31E-1Bi3Bi 0 0 0 390 3.5 1 4.33E-18 6.32E-8Al3Al 0 -18.63 -16.35 157 2.5 -1.7 3.86E-14 2.34E-6Fe3Ni 0 -1.33 -0.78 73 1.4 -0.4 1.52E-4 1.29E1Cu3Si 0 -4.24 -3.6 91 3.1 0.1 9.87E-15 1.40E-4Pd3Pt 0.01 -0.01 -0.01 85513 1.6 1.4 7.20E-13 4.21E-3Pt3Pd 0.01 -0.01 -0.01 118973 2 1.6 8.96E-14 1.83E-4Zn3Ag 0.01 -2.94 -2.02 460 3.8 0.6 1.86E-18 5.03E-8Pd3Pt 0.01 -0.01 -0.01 85513 1.6 1.5 4.09E-13 2.72E-3Pt3Pd 0.01 -0.01 -0.01 118973 1.9 1.3 6.62E-13 1.05E-3Zn3Ag 0.01 -2.94 -2.02 460 3.1 0.1 9.87E-15 1.40E-4Re3Co 0.02 -0.02 -0.02 14493 0.6 -1 5.22E-6 1.13E0Fe3Pd 0.02 -1.35 -0.92 22703 2.3 -0.5 3.50E-11 6.52E-2Rh3Ir 0.02 -0.02 -0.02 96233 1.4 -0.1 5.22E-6 6.17E1Au3Pt 0.02 -0.02 -0.02 73915 2.8 1.9 3.64E-17 3.86E-7Au3Cu 0.02 -0.14 -0.14 50030 4.4 2 4.09E-25 1.14E-12Re3Co 0.02 -0.02 -0.02 14493 0.7 -1.7 4.36E-12 7.50E-2Fe3Pd 0.02 -1.35 -0.92 22703 1.4 -0.8 2.07E-6 7.91E-1Rh3Ir 0.02 -0.02 -0.02 96233 1.6 0.2 1.97E-8 2.48E1Au3Pt 0.02 -0.02 -0.02 73915 3.6 2.5 1.55E-22 1.05E-10Au3Cu 0.02 -0.14 -0.14 50030 4.8 2.3 4.61E-28 7.19E-15Rh3Pt 0.03 -0.03 -0.03 130000 1.7 0.4 6.77E-10 3.65E0Cu3As 0.03 -0.03 -0.03 972 3.6 1.2 4.62E-19 1.33E-8Ag3Sb 0.03 -0.03 -0.03 884 4.7 1.4 5.10E-25 1.53E-12Rh3Pt 0.03 -0.03 -0.03 130000 1.1 0.2 1.03E-8 2.68E1Cu3As 0.03 -0.03 -0.03 972 3.1 1 2.87E-16 1.16E-6Ag3Sb 0.03 -0.03 -0.03 884 4.3 1.5 3.43E-23 1.56E-11AuBi 0.03 -0.02 -0.02 41028 4 1.4 1.81E-21 2.57E-10AuBi 0.03 -0.02 -0.02 41028 4.5 1.5 3.51E-24 3.54E-12Rh3Ru 0.04 -0.04 -0.04 101391 1.4 0.1 1.98E-7 7.77E1Rh3Bi 0.04 -0.04 -0.04 77681 2.1 1 2.01E-12 1.07E-3Pt3Rh 0.04 -0.04 -0.04 130000 1.7 0.7 3.50E-11 2.63E-1Au3Bi 0.04 -0.04 -0.04 41028 4.6 1.8 1.54E-25 3.32E-13Rh3Ru 0.04 -0.04 -0.04 101391 1.6 0.2 1.97E-8 2.48E1Rh3Bi 0.04 -0.04 -0.04 77681 0.8 0.3 1.11E-10 2.37E-1Pt3Rh 0.04 -0.04 -0.04 130000 1.9 1.4 3.74E-13 7.04E-4Au3Bi 0.04 -0.04 -0.04 41028 4.1 2 1.40E-23 1.68E-11Ir3Os 0.05 -0.05 -0.05 50682 1.3 -0.8 1.74E-6 1.26E0Ni3Rh 0.05 -0.05 -0.05 48001 1.3 0.3 8.87E-9 3.22E1Pt3As 0.05 -0.15 -0.15 115609 3 1.2 2.59E-16 1.23E-6Cu3Sb 0.05 -0.05 -0.05 77 4.2 1.2 6.97E-22 1.62E-10Ir3Os 0.05 -0.05 -0.05 50682 1.6 0 4.70E-7 3.32E1Ni3Rh 0.05 -0.05 -0.05 48001 1.4 0.2 3.93E-8 6.43E1Pt3As 0.05 -0.15 -0.15 115609 1.8 1.2 1.49E-12 3.18E-3Cu3Sb 0.05 -0.05 -0.05 77 3.4 1 1.24E-17 1.30E-7

Page S18

Page 19: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

Ir3Rh 0.07 -0.07 -0.07 55326 1.7 0.1 6.44E-8 1.86E1Pd3Co 0.07 -0.1 -0.1 49273 2.1 0.8 6.53E-12 3.60E-3Ir3Rh 0.07 -0.07 -0.07 55326 1.3 -0.2 2.21E-5 5.82E1Pd3Co 0.07 -0.1 -0.1 49273 2.4 1.2 1.14E-13 6.21E-5Fe3Zn 0.08 -2.39 -0.83 67 2.2 -0.4 3.72E-10 2.40E-1Ni3Pd 0.08 -0.08 -0.08 22021 2.1 0.3 7.20E-10 2.46E-1Ag3Sn 0.08 -0.71 -0.08 942 4.5 1.2 2.12E-23 1.97E-11Au3Sb 0.08 -0.08 -0.08 45943 4.3 1.5 3.43E-23 1.56E-11Sn3Pt 0.08 -1.97 -1.86 46164 3.5 -0.4 1.01E-18 4.34E-6Fe3Zn 0.08 -2.39 -0.83 67 1.3 -0.7 2.01E-5 2.64E0Ni3Pd 0.08 -0.08 -0.08 22021 1.2 0.1 1.12E-7 9.60E1Ag3Sn 0.08 -0.71 -0.08 942 4.3 1.3 1.22E-22 4.60E-11Au3Sb 0.08 -0.08 -0.08 45943 4.3 1.9 2.52E-24 3.77E-12Sn3Pt 0.08 -1.97 -1.86 46164 3.8 0.3 8.06E-18 1.85E-7Rh3Co 0.09 -0.12 -0.12 109196 1 -0.2 2.37E-7 6.48E1Cu3In 0.09 -0.85 -0.26 3699 4 1 2.11E-20 1.89E-9Cu3Ge 0.09 -0.25 -0.09 1063 3.5 0.7 2.46E-17 2.44E-7Rh3Co 0.09 -0.12 -0.12 109196 1.2 -0.2 8.87E-6 7.53E1Cu3In 0.09 -0.85 -0.26 3699 3.5 0.6 4.36E-17 3.83E-7Cu3Ge 0.09 -0.25 -0.09 1063 3.3 0.8 1.12E-16 6.12E-7Au3Pb 0.1 -0.24 -0.24 41024 4.6 1.5 1.07E-24 1.72E-12Au3Pb 0.1 -0.24 -0.24 41024 3.8 1.7 2.66E-21 5.55E-10Re3Ru 0.11 -0.11 -0.11 15694 0.9 -0.9 1.57E-7 9.54E-1Cu3Ni 0.11 -0.11 -0.11 92 1.9 0.5 1.22E-10 2.59E-1Re3Ru 0.11 -0.11 -0.11 15694 0.6 -1.6 8.23E-12 1.64E-1Co3Zn 0.11 -1.09 -0.72 168 1.3 -0.3 9.44E-5 3.48E1Cu3Ni 0.11 -0.11 -0.11 92 3.1 0.6 2.84E-15 6.01E-6Ru3Re 0.12 -0.12 -0.12 14761 1.2 -1.4 9.21E-13 1.03E-2Pd3Ni 0.12 -0.12 -0.12 49284 1.7 1.1 3.24E-12 1.13E-2Ru3Re 0.12 -0.12 -0.12 14761 1.2 -0.5 1.75E-4 1.48E1Pd3Ni 0.12 -0.12 -0.12 49284 2 1.5 1.59E-13 2.61E-4Ni3Ir 0.14 -0.14 -0.14 21957 1.1 0 1.35E-7 9.57E1Ni3Ir 0.14 -0.14 -0.14 21957 1.4 0.2 3.93E-8 6.43E1Ag3Bi 0.15 -0.15 -0.15 882 5 1.6 1.80E-27 5.48E-14Ag3Bi 0.15 -0.15 -0.15 882 4.6 1.7 2.99E-25 5.49E-13Fe3Rh 0.16 -1.49 -1.18 49512 1.4 -0.4 1.52E-4 1.29E1Ru3Rh 0.16 -0.16 -0.16 43394 1.5 0.2 2.86E-8 4.26E1Ni3Ru 0.16 -0.16 -0.16 5154 1.5 0.2 2.86E-8 4.26E1Cu3Sn 0.16 -0.79 -0.16 152 3.9 0.9 1.12E-19 6.23E-9Fe3Rh 0.16 -1.49 -1.18 49512 1.3 -0.5 4.23E-4 1.03E1Ru3Rh 0.16 -0.16 -0.16 43394 1.4 -0.2 2.44E-5 4.07E1Cu3Sn 0.16 -0.79 -0.16 152 3.4 0.9 2.21E-17 1.98E-7Ru3Pt 0.17 -0.17 -0.17 59414 2.1 0.2 2.66E-9 5.75E-1Ru3Pt 0.17 -0.17 -0.17 59414 1.3 -0.2 2.21E-5 5.82E1Ru3Ge 0.18 -1.15 -1.15 11990 2.2 0.4 1.15E-10 4.00E-2

Page S19

Page 20: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Alloy Ef [eV] ∆Galloyoxide−i [eV] ∆Galloy

oxide−o [eV] $ per kg C [eV] O [eV] TOFsi [s−1] TOFso [s−1]

Co3Ru 0.18 -0.18 -0.18 5226 1.4 -0.1 5.22E-6 6.17E1Cu3Rh 0.18 -0.18 -0.18 45637 1.2 0.6 2.29E-10 7.90E-1Ru3Ge 0.18 -1.15 -1.15 11990 1.3 0 9.57E-7 1.06E2Co3Ru 0.18 -0.18 -0.18 5226 1.4 -0.2 2.44E-5 4.07E1Cu3Rh 0.18 -0.18 -0.18 45637 2.6 0.6 5.19E-13 2.46E-4Ni3Cu 0.19 -0.19 -0.19 82 1.6 0.2 1.97E-8 2.48E1Ni3Cu 0.19 -0.19 -0.19 82 1.1 0 1.35E-7 9.57E1Pt3Au 0.2 -0.2 -0.2 111215 2.2 1.8 1.34E-14 2.66E-5Cu3Cd 0.2 -0.22 -0.2 232 3.8 1.1 9.90E-20 4.66E-9Pt3Au 0.2 -0.2 -0.2 111215 1.8 1.3 8.44E-13 2.00E-3Cu3Cd 0.2 -0.22 -0.2 232 3.3 0.8 1.12E-16 6.12E-7

For the completeness of our work, potential energy diagrams of the predominate pathway of methane steamreforming on less reactive metals are reported here in Fig.S4.

References[1] A.C. Lausche, A.J. Medford, T.S. Khan, Y. Xu, T. Bligaard, F. Abild-Pedersen, J.K. Nørskov and F. Studt,

Journal of Catalysis, 307 (2013) 275.

[2] L.C. Grabow, M. Mavrikakis, Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation,Acs. Catal. 1 (2011) 365-384.

[3] http://www.chemicool.com/elements/

[4] G. Jones, J.G. Jakobsen, S.S. Shim, J. Kleis, M.P. Andersson, J. Rossmeisl, F. Abild-Pedersen, T. Bligaard,S. Helveg, B. Hinnemann, J.R. Rostrup-Nielsen, I. Chorkendorff, J. Sehested and J.K. Nørskov, Journal ofCatalysis, 259 (2008) 147.

[5] F. Studt, F. Abild-Pedersen, Q. Wu, A.D. Jensen, B. Temel, J.-D. Grnwaldt, and J.K. Nørskov, Journal ofCatalysis, 293 (2012) 51.

Page S20

Page 21: Supporting Information for “In silico Search for Novel Methane

Supporting Information

Table S7: Prices for the pure metals, values taken from Chemicool website [3].

Metal Price ($/kg) Metal Price ($/kg) Metal Price ($/kg)Sc 14000 W 110 Pt 130000Y 4300 Mn 65 Cu 97La 8000 Re 16000 Ag 1200Ti 6610 Fe 72 Au 55400Zr 1570 Ru 14000 Zn 53Hf 1200 Os 77000 Cd 460V 2200 Co 210 Hg 480Nb 180 Rh 130000 Ga 2200Ta 4500 Ir 42000 In 9680Cr 3800 Ni 77 Tl 480Mo 440 Pd 58330 Al 157Sn 240 As 3200 Bi 39Pb 24.5 Sb 45 Ge 3600Si 54

Figure S3: Sketch for the surface structure of two terminals for A3B alloy. Grey balls and golden balls denote elementaryA and B, respectively. Red balls represent adsorbate O atoms. (a) Terminal AB; (b) Terminal AA.

Page S21

Page 22: Supporting Information for “In silico Search for Novel Methane

Supporting Information

CH

4(g)

+H

2O(g

)

CH

3*+

H2O

(g)+

1/2H

2(g)

CH

2*+

H2O

(g)+

H2(

g)

CH

*+H

2O(g

)+3/

2H2(

g)

C*+

H2O

(g)+

2H2(

g)C

*+O

H*

+5/

2H2(

g)

C*+

O*

+3H

2(g)

CO

*+3H

2(g)

CO

(g)+

3H2(

g)

CH

4(g)

+H

2O(g

)

CH

3*+

H2O

(g)+

1/2H

2(g)

CH

2*+

H2O

(g)+

H2(

g)C

H*+

H2O

(g)+

3/2H

2(g)

C*+

H2O

(g)+

2H2(

g)

C*+

OH

* +

5/2H

2(g)

C*+

O*

+3H

2(g)

CO

*+3H

2(g)

CO

(g)+

3H2(

g)

CH

4(g)

+H

2O(g

)

CH

3*+

H2O

(g)+

1/2H

2(g)

CH

2*+

H2O

(g)+

H2(

g)

CH

*+H

2O(g

)+3/

2H2(

g)C

*+H

2O(g

)+2H

2(g)

C*+

OH

* +

5/2H

2(g)

C*+

O*

+3H

2(g)

CO

*+3H

2(g)

CO

(g)+

3H2(

g)

CH

4(g)

+H

2O(g

)

CH

3*+

H2O

(g)+

1/2H

2(g)

CH

2*+

H2O

(g)+

H2(

g)

CH

*+H

2O(g

)+3/

2H2(

g)

C*+

H2O

(g)+

2H2(

g)C

*+O

H*

+5/

2H2(

g)

C*+

O*

+3H

2(g)

CO

*+3H

2(g)

CO

(g)+

3H2(

g)

5

4

3

2

1

0

Ener

gy /e

V

5

4

3

2

1

0

Ener

gy /e

V

8

6

4

2

0

Ener

gy /e

V

5

4

3

2

1

0

Ener

gy /e

V

6

Pd(211)Pt(211)

Ag(211) Cu(211)

Figure S4: Potential energy diagrams on less active metals.

Page S22