supporting information metal-free reduction of aromatic ... · supporting information metal-free...

35
S1 Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic Amines with B 2 pin 2 in Isopropanol Hongtao Lu, Zhiyue Geng, Jingya Li, Dapeng Zou, *,† Yusheng Wu, *,‡and Yangjie Wu *,The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, People’s Republic of China Tetranov Biopharm, LLC. and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, 450052, People’s Republic of China § Tetranov International, Inc. 100 Jersey Avenue, Suite A340, New Brunswick, New Jersey 08901, United States Email: [email protected]; [email protected]; [email protected] Table of Contents 1. General information…………………………………………………... ..S2 2. Optimization of the reaction conditions (Table S1-S5)………………………S2 3. General procedure………..…………………………..………………………S4 4. Preliminary mechanistic s tudies……………. …………………………S4 4.1 Control experiments …………………………………………………….S5 4.2 Dosage of B 2 pin 2 effect on the reduction...……………………………S5 4.3 11 B NMR experiment …………………………………… . ……… S5 5. Analytical data and copies of NMR spectra…………………..……...……....S6 6. References……………………………………………….…………………..S35

Upload: ngocong

Post on 02-Dec-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S1

Supporting Information

Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic

Amines with B2pin2 in Isopropanol

Hongtao Lu,† Zhiyue Geng,

† Jingya Li,

‡ Dapeng Zou,

*,† Yusheng Wu,

*,‡,§ and Yangjie

Wu*,†

†The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052,

People’s Republic of China

‡ Tetranov Biopharm, LLC. and Collaborative Innovation Center of New Drug Research and Safety

Evaluation, Zhengzhou, 450052, People’s Republic of China

§Tetranov International, Inc. 100 Jersey Avenue, Suite A340, New Brunswick, New Jersey 08901,

United States

Email: [email protected];

[email protected];

[email protected]

Table of Contents

1. General information…………………………………………………...…..S2

2. Optimization of the reaction conditions (Table S1-S5)………………………S2

3. General procedure………..…………………………..………………………S4

4. Preliminary mechanistic studies…………….…………………………S4

4.1 Control experiments…………………………………………………….S5

4.2 Dosage of B2pin2 effect on the reduction…...……………………………S5

4.3 1 1B NMR exper iment…………………………………… .………S5

5. Analytical data and copies of NMR spectra…………………..……...……....S6

6. References……………………………………………….…………………..S35

Page 2: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S2

1. General information

All reactions were performed in dried glass reaction tube equipped with a magnetic stir bar under

air atmosphere. Flash column chromatography was performed using silica gel (60-Å pore size,

32-63 µm, standard grade). Analytical thin-layer chromatography was performed using glass

plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator

(254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. The

bottled solvents were used in the reactions untreated. The transformation progress was indicated

by GC-MS using Thermo Fisher Scientific DSQ II. NMR spectra were obtained on Bruker

AVANCE III systems using CDCl3 as solvent, TMS as internal standard substance, at 400 MHz for 1H NMR, 100 MHz for

13C NMR, and 128 MHz for

11B NMR.

11B NMR spectra were referenced

by an external BF3.Et2O sample.

2. Optimization of the reaction conditions (Table S1-S5)

Table S1 Base effect on the reduction of aromatic nitro compounds to amines with B2pin2a

NO2 NH2base (2.0 eq)

MeOH, 80 °C, 8 h BrBr

B2pin2

1a 2 3a

entry base yield (%)b

1 AcOK trace

2 K2CO3 trace

3 Na2CO3 trace

4 Cs2CO3 85

5 KOtBu 89

6 NaOtBu 75

7 LiOtBu 74

8 MeONa 80

9 TEA n.r.c

10 DIPEA n.r.c

aReaction conditions: 1a (1.0 mmol), 2 (3.0 mmol), base (2.0 mmol), MeOH (4.0 mL), 80 °C, 8 h.

bHPLC yield.

cn.r. = no reaction.

Table S2 Solvent effect on the reduction of aromatic nitro compounds to amines with B2pin2a

entry solvent yield (%)b

NO2 NH2KOtBu (2.0 eq)

solvent, 80 °C, 8 hBrBr

B2pin2

1a 2 3a

Page 3: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S3

1 EtOH 89

2 iPrOH 91

3 tBuOH 84

4 dioxane 12

5 THF 9

6 toluene 13

7 H2O trace

aReaction conditions: 1a (1.0 mmol), 2 (3.0 mmol), base (2.0 mmol), solvent (4.0 mL), 80 °C, 8 h.

bHPLC yield.

Table S3 Ratio of base and B2pin2 effect on the reduction of aromatic nitro compounds to aminesa

NO2 NH2

BrBr

B2pin2

1a 2 3a

KOtBu

iPrOH, 100 °C, 8 h

entry tBuOK(x eq) B2pin2(y eq) yield (%)b

1 2.0 3.5 94

2 1.5 3.1 94

3 1.2 3.1 95

4 1.0 3.1 90

5 0.5 3.1 85

aReaction conditions: 1a (1.0 mmol), 2 (x mmol), base (y mmol), iPrOH (4.0 mL), 100 °C, 8 h.

bHPLC yield.

Table S4 Temperature effect on the reduction of aromatic nitro compounds to aromatic amines

with B2pin2a

NO2 NH2KOtBu, iPrOH

temp, timeBrBr

B2pin2

1a 2 3a

entry temp (oC) yield (%)

b

1c 30

trace

2c 50

65

3c 80

88

4d 100

95

5d 110

96(87)e

aReaction conditions: 1a (1.0 mmol), 2 (3.1 mmol), base (1.2 mmol), iPrOH (4.0 mL).

bHPLC yield.

c24 h.

d2 h.

eIsolated yield in parentheses.

Page 4: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S4

Table S5 Boron sources effect on the reduction of aromatic nitro compounds to aminesa

KOtBu, iPrOH

temp, 8 h

NO2 NH2

BrBr

Boron sources

1a 2 3a

OB

O

H

D E

HOB

OH

OH

A

OO

B

OB

O

O

B

O

C

NaBH4 BH3.THF

F

entry temp (oC) boron sources yield (%)

b

1 100 A n.r.

2 100 B n.r.

3 100 C n.r.

4c 60

D 42

5d 40

E 35

6d 100

F trace

aReaction conditions: 1a (1.0 mmol), 2 (3.1 mmol), base (1.2 mmol), iPrOH (4.0 mL), 8 h.

bHPLC yield.

cMeOH as solvent.

dTHF as solvent.

3. General procedure

A dried glass reaction tube equipped with a magnetic stir bar was charged with aromatic nitro

compounds (1.0 mmol, 1.0 equiv), B2pin2 (3.1 mmol, 3.1 equiv) and KOtBu (1.2 mmol, 1.2 equiv),

iPrOH (4.0 mL, without any purification) was added and the mixture was then stirred in

the preheated oil base at 110 °C for 2 h. The reaction progress was monitored by TLC. The yields

of standard reaction were obtained by HPLC. After cooling to room temperature, the crude

production was diluted with ethyl acetate and then washed with saturated NaCl solution. The

organic layers dried over anhydrous Na2SO4, concentrated in vacuo, and purified by flash column

chromatograph to give the pure products. The products were characterized by 1H NMR,

13C NMR,

GC-MS and LC-MS.

4. Preliminary mechanistic studies

4.1 Controll experiment

Page 5: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S5

NO2NH2

iPrOH110 °C, 8 h

BrBr

1a 3a

KOtBu (1.1 eq)

NO2NH2

BrBr

1a 3a

B2pin2 (3.1 eq)

iPrOH110 °C, 8 h

a)

b)

trace

no reaction

Both B2pin2 and KOtBu showed almost no reaction when used alone under optimized conditions.

4.2 Dosage of B2pin2 effect on the reduction of aromatic nitro compounds to amines a

iPrOH110 °C, 2 h

NO2 NH2

BrBrB2pin2

1a 2 3a

KOtBu (1.1 eq)

entry B2pin2 (eq) yield (%)b

1 3.1 96

2 2.5 90

3c 2.0

85

4c 1.0

60

5c 0.5

50

aReaction conditions: 1a (1.0 mmol), KOtBu (1.2 mmol), iPrOH (4.0 mL), 2 h.

bHPLC yield.

c8 h.

These experimental results show that more than 3.0 equivent of B2pin2 are necessary for the

complete transformation of starting material 1-bromo-4-nitrobenzene 1a.

4.3 11

B NMR experiment

11B NMR spectrum of the reaction mixture was obtained prior to an aqueous workup of the reaction

(Figure S1, c), and 2-isopropoxy -4,4,5,5-tetramethyl-1,3,2-dioxaborolane have the same chemical

shift at 11

B NMR spectrum (21 ppm). Besides, bis(pinacolato)diboron (B2pin2) was consumed

completely in this condition.1

Page 6: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S6

Figure S1, a

Figure S1, b

Figure S1, c

It is important to point out that further mechanisms could be hypothesized, but we present here the

simplest ones as basic hypothesis. The reduction of nitro group is believed to involve several

intermediates including nitroso, hydroxylamine, azoxy, and diazo. However, all attempts to detect

these intermediates under our conditions by GC-MS or LC-MS were unsuccessful. Only the final

product could be observed. Most likely the intermediates are converted into the final amines very

rapidly without building sufficient concentration.2

5. Analytical data and copies of NMR spectra

Br

H2N 3a

4-Bromoaniline (3a).3

Brown solid (149 mg, yield 87%), flash chromatography eluting with petroleum ether/ethyl

acetate (8:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.23 (d, J = 8.7 Hz, 2 H), 6.56 (d, J = 8.7 Hz,

2 H), 3.65 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 145.4, 132.0, 116.7, 110.2. GC-MS

(EI, m/z): [M]+

170.7 (100%), [M+2]+

172.7 (97%).

Page 7: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S7

NH2

Br3b

2-Bromoaniline (3b).4

Brown solid (142 mg, yield 83%), flash chromatography eluting with petroleum ether/ethyl

acetate (8:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.40 (dd, J = 8.0, 1.2 Hz, 1 H), 7.10 (dt, J =

7.4, 1.4 Hz, 1 H), 6.76 (dd, J = 8.0, 1.4 Hz, 1 H), 6.61 (dt, J = 7.5, 1.4 Hz, 1 H), 4.07 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 144.1, 132.6, 128.3, 119.4, 115.7, 109.3. GC-MS (EI, m/z):

[M]+

170.7 (100%), [M+2]+

172.7 (97%).

F

H2N 3c

4-Fluoroaniline (3c).5

Yellow liquid (66 mg, yield 60%), flash chromatography eluting with petroleum ether/ethyl acetate

(8:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 6.87-6.83 (m, 2 H), 6.63-6.60 (m, 2 H), 3.53 (br s, 2

H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 156.4 (d, J = 234.2 Hz), 142.4 (d, J = 2.1 Hz), 116.1

(d, J = 29.5 Hz), 115.7 (d, J = 117.1 Hz). GC-MS (EI, m/z): [M]+

110.8.

H2N

Cl

3d

4-Chloroaniline (3d).3

Brown solid (109 mg, yield 86%), flash chromatography eluting with petroleum ether/ethyl acetate

(8:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.09 (d, J = 8.7 Hz, 2 H), 6.60 (d, J = 8.7 Hz, 2 H),

3.64 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 145.0, 129.1, 123.2, 116.2. LC-MS (ESI,

m/z): [M+H]+ 128.2

(100%), [M+2+H]

+ 130.2

(32%).

NH2

I

3e

3-Iodoaniline (3e).4

Yellow liquid (194 mg, yield 89%), flash chromatography eluting with petroleum ether/ethyl

acetate (8:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.08-7.04 (m, 2 H), 6.85 (t, J = 7.9 Hz, 1 H),

6.63-6.60 (m, 1 H), 3.64 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 147.7, 130.8, 127.5,

123.7, 114.3, 94.9. LC-MS (ESI, m/z): [M+H]+ 220.1.

Br

NH2

Cl

3f

2-Bromo-5-chloroaniline (3f).6

Yellow liquid (184 mg, yield 90%), flash chromatography eluting with petroleum ether/ethyl

acetate (8:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.03 (d, J = 8.4 Hz, 1 H), 6.75 (d, J = 2.4 Hz,

1 H), 6.59 (dd, J = 8.4, 2.4 Hz, 1 H), 4.14 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ =

145.0, 133.9, 133.3, 119.3, 115.2, 107.0. LC-MS (ESI, m/z): [M+H]+ 206.1 (66%), [M+2+H]

+

Page 8: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S8

208.0 (100%), [M+4+H]+ 210.0 (32%).

Br

NH2

Cl

3g

3-Bromo-4-chloroaniline (3g).

Brown solid (180 mg, yield 88%), flash chromatography eluting with petroleum ether/ethyl

acetate (8:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.17 (d, J = 8.8 Hz, 1 H), 6.94 (d, J = 2.8 Hz,

1 H), 6.65 (dd, J = 8.4, 2.4 Hz , 1 H), 3.70 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ =

146.0, 130.5, 123.1, 122.6, 119.5, 115.2. LC-MS (ESI, m/z): [M+H]+

206.1 (66%), [M+2+H]+

208.0 (100%), [M+4+H]+ 210.0 (32%).

Br

NH2 3h

2-Bromo-3-methylaniline (3h).7

Yellow liquid (168 mg, yield 91%), flash chromatography eluting with petroleum ether/ethyl

acetate (8:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 6.99 (t, J = 7.8 Hz, 1 H), 6.64-6.60 (m, 2 H),

4.10 (br s, 2 H), 2.37 (s, 3 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 144.3, 138.8, 127.4, 120.3,

113.1, 112.2, 23.6. LC-MS (ESI, m/z): [M+H]+ 186.1 (100%), [M+2+H]

+ 188.1 (97%).

NH2

OBr

3i

3-Bromo-5-methoxyaniline (3i).8

Yellow liquid (181 mg, yield 90%), flash chromatography eluting with petroleum ether/ethyl

acetate (8:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 6.47-6.44 (m, 2 H), 6.13 (t, J =2.1 Hz, 1 H),

3.74 (s, 3 H), 3.70 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 161.3, 148.6, 123.3, 110.9,

107.4, 99.9, 55.4. LC-MS (ESI, m/z): [M+H]+

(100%), 204.1 [M+2+H]+

(97%).

OBn

NH23k

4-(Benzyloxy) aniline (3k).9

Brown solid (173 mg, yield 87%), flash chromatography eluting with petroleum ether/ethyl

acetate (8:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.42-7.28 (m, 5 H), 6.81 (d, J =8.7 Hz, 2 H),

6.63 (d, J =8.7 Hz, 2 H), 4.99 (s, 2 H), 3.42 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ =

152.0, 140.2, 137.5, 128.5, 127.8, 127.5, 116.4, 116.1, 70.8. GC-MS (EI, m/z): [M]+198.8.

Page 9: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S9

OBz

NH23l

4-Aminophenyl benzoate (3l).10

Brown solid (106 mg, yield 50%), flash chromatography eluting with petroleum ether/ethyl

acetate (8:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 8.19-8.17 (m, 2 H), 7.62 (t, J = 7.4 Hz, 1 H),

7.49 (t, J = 7.8 Hz, 2 H), 7.00 (d, J = 8.8 Hz, 2 H), 6.71 (d, J = 8.8 Hz, 2 H), 3.66 (br s, 2 H). 13

C

NMR (100 MHz, CDCl3, ppm): δ = 165.7, 144.3, 143.1, 133.4, 130.1, 129.9, 128.5, 122.3, 115.7.

GC-MS (EI, m/z): [M]+ 212.8.

HN

O OH

O

3m

4-Acetamidobenzoic acid (3m).11

3m was isolated as 4-acetamidobenzoic acid. White solid (159 mg, yield 89%). 1H NMR (400

MHz, DMSO-d6, ppm): δ = 12.67 (br s, 1H), 10.24 (s, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.69 (d, J =

8.4 Hz, 2H), 2.09 (s, 3H). 13

C NMR (100 MHz, DMSO-d6, ppm): δ = 168.8, 166.9, 143.3, 130.3,

124.9, 118.1, 24.1. LC-MS (ESI, m/z): [M+H]+ 180.6.

NH2

O O

3n

Methyl-4-aminobenzoate (3n).9

3n was isolated as a mixture of isopropyl 4-aminobenzoate (1:0.7). Brown solid (128 mg,

yield 85%), flash chromatography eluting with petroleum ether/ethyl acetate (6:1). 1H NMR (400

MHz, CDCl3, ppm): δ = 7.84 (d, J = 8.6 Hz, 2 H), 6.64 (d, J = 8.6 Hz, 2 H), 4.03 (br s, 2 H), 3.85

(s, 3 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 167.2, 150.9, 131.5, 119.7, 113.7, 51.6. GC-MS

(EI, m/z): [M]+ 151.1.

NH2

O N

O

3o

4-(4-Aminobenzoyl)morpholine (3o).9

Brown solid (164 mg, yield 80%), flash chromatography eluting with petroleum ether/ethyl

Page 10: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S10

acetate (6:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.26 (d, J = 8.5 Hz, 2 H), 6.64 (d, J = 8.5 Hz,

2 H), 3.94 (br s, 2 H), 3.68 (br s, 4 H), 3.64 (br s, 4 H). 13

C NMR (100 MHz, CDCl3, ppm): δ =

170.9, 148.4, 129.4, 124.5, 114.2, 67.0. LC-MS (ESI, m/z): [M+H]+ 207.6.

NH2

CN

3p

3-Aminobenzonitrile (3p).9

Brown solid (100 mg, yield 85%), flash chromatography eluting with petroleum ether/ethyl

acetate (6:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.22 (t, J = 7.8 Hz, 1 H), 7.02-7.01 (m, 1 H),

6.90-6.85 (m, 2 H), 3.88 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 147.0, 130.1, 122.0,

119.2, 119.1 117.4, 113.0. GC-MS (EI, m/z): [M]+

118.1.

NH2 3q

4-Ethynylaniline (3q).12

Brown solid (70 mg, yield 60%), flash chromatography eluting with petroleum ether/ethyl acetate

(6:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.3 (d, J = 8.6 Hz, 2 H), 6.59 (d, J = 8.6 Hz, 2 H),

3.81 (br s, 2 H), 2.95 (s, 1 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 147.0, 133.5, 114.6, 111.4,

84.4, 74.9. LC-MS (ESI, m/z): [M+H]+ 118.1.

NH23s

Aniline (3s).3

Brown liquid (74 mg, yield 80%), flash chromatography eluting with petroleum ether/ethyl acetate

(6:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.15 (t, J = 7.4 Hz, 2 H), 6.75 (t, J = 7.4 Hz, 1 H),

6.67 (d, J = 7.5 Hz, 2 H), 3.53 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 146.4, 129.3,

118.6, 115.1. GC-MS (EI, m/z): [M]+ 93.1.

N NH2

Br

3t

5-Bromopyridin-2-amine (3t).13

Brown solid (155 mg, yield 90%), flash chromatography eluting with petroleum ether/ethyl

acetate (1:2). 1H NMR (400 MHz, CDCl3, ppm): δ = 8.10 (d, J = 2.4 Hz, 1 H), 7.39 (dd, J = 8.4,

2.4 Hz, 1 H), 6.42 (d, J = 8.8 Hz, 1 H), 4.47 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ =

157.0, 148.8, 140.1, 110.0, 108.4. GC-MS (EI, m/z): [M]+

172.7 (100%), [M+2]+

174.7 (97%).

N Cl

H2N

3u

6-Chloro-5-methylpyridin-3-amine (3u).14

Page 11: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S11

Brown solid (126 mg, yield 89%), flash chromatography eluting with petroleum ether/ethyl

acetate (1:2). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.70 (d, J = 2.8 Hz, 1 H), 6.88 (d, J = 2.8 Hz,

1 H), 3.63 (br s, 2 H), 2.29 (s, 3 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 141.8, 140.7, 133.9,

132.3, 125.6, 19.6. LC-MS (ESI, m/z): [M+H]+ 143.2 (100%), [M+2+H]

+ 145.2 (32%).

N Cl

H2N

Cl 3v

2,6-Dichloropyridin-3-amine (3v).14

Brown solid (119 mg, yield 73%), flash chromatography eluting with petroleum ether/ethyl

acetate (1:2). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.08-7.01 (m, 2 H), 4.11 (brs, 2 H).

13C NMR

(100 MHz, CDCl3, ppm): δ = 138.7, 137.6, 134.9, 125.0, 123.6. LC-MS (ESI, m/z): [M+H]+ 163.1

(100%), [M+2+H]+ 165.1

(64%).

N O

H2N

Cl 3w

2-Chloro-6-methoxypyridin-3-amine (3w).14

Brown solid (119 mg, yield 75%), flash chromatography eluting with petroleum ether/ethyl

acetate (1:2). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.07 (d, J = 8.4 Hz, 1 H), 6.56 (d, J = 8.4 Hz,

1 H), 3.86 (s, 3 H), 3.68 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 156.4, 133.2, 132.3,

128.0, 110.1, 53.9. LC-MS (ESI, m/z): [M+H]+

159.2 (100%), [M+2+H]+

161.2 (32%).

N

H2N

3x

Quinolin-6-amine (3x).4

Brown solid (130 mg, yield 90%), flash chromatography eluting with petroleum ether/ethyl

acetate (1:1). 1H NMR (400 MHz, CDCl3, ppm): δ = 8.63 (dd, J = 4.2, 1.6 Hz, 1H), 7.93 (d, J =

9.0 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.26 (dd, J = 8.1, 4.2 Hz, 1H), 7.16 (dd, J = 8.8, 2.4 Hz, 1H),

6.89 (d, J = 2.6 Hz, 1 H), 3.90 (br s, 2 H). 13

C NMR (100 MHz, CDCl3, ppm): δ = 146.6, 144.7,

143.2, 133.9, 130.3, 129.8, 121.7, 121.4, 107.4. LC-MS (ESI, m/z): [M+H]+ 145.2.

H2N

NH

N

3y

1H-indazol-5-amine (3y).15

Brown solid (117 mg, yield 88%), flash chromatography eluting with petroleum ether/ethyl

acetate (1:1). 1H NMR (400 MHz, DMSO-d6, ppm): δ = 12.56 (br s, 1 H) 7.72 (s, 1 H), 7.24 (d, J

= 8.6 Hz, 1 H), 6.78 (dd, J = 8.6, 1.8 Hz, 1 H), 6.75 (s, 1 H), 4.75 (br s, 2 H). 13

C NMR (100 MHz,

DMSO, ppm): δ = 142.1, 131.3, 123.8, 117.9, 110.1, 100.3. LC-MS (ESI, m/z): [M+H]+ 134.2.

Page 12: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S12

Figure 1 1H NMR of compound 3a

Figure 2 13

C NMR of compound 3a

Page 13: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S13

Figure 3 1H NMR of compound 3b

Figure 4 13

C NMR of compound 3b

Page 14: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S14

Figure 5 1H NMR of compound 3c

Figure 6 13

C NMR of compound 3c

Page 15: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S15

Figure 7 1H NMR of compound 3d

Figure 8 13

C NMR of compound 3d

Page 16: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S16

Figure 9 1H NMR of compound 3e

Figure 10 13

C NMR of compound 3e

Page 17: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S17

Figure 11 1H NMR of compound 3f

Figure 12 13

C NMR of compound 3f

Page 18: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S18

Figure 13 1H NMR of compound 3g

Figure 14 13

C NMR of compound 3g

Page 19: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S19

Figure 15 1H NMR of compound 3h

Figure 16 13

C NMR of compound 3h

Page 20: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S20

Figure 17 1H NMR of compound 3i

Figure 18 13

C NMR of compound 3i

Page 21: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S21

Figure 19 1H NMR of compound 3k

Figure 20 13

C NMR of compound 3k

Page 22: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S22

Figure 21 1H NMR of compound 3l

Figure 22 13

C NMR of compound 3l

Page 23: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S23

Figure 23 1H NMR of compound 3m

Figure 24 13

C NMR of compound 3m

Page 24: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S24

Figure 25 1H NMR of compound 3n

Figure 26 13

C NMR of compound 3n

Page 25: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S25

Figure 27 1H NMR of compound 3o

Figure 28 13

C NMR of compound 3o

Page 26: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S26

Figure 29 1H NMR of compound 3p

Figure 30 13

C NMR of compound 3p

Page 27: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S27

Figure 31 1H NMR of compound 3q

Figure 32 13

C NMR of compound 3q

Page 28: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S28

Figure 33 1H NMR of compound 3s

Figure 34 13

C NMR of compound 3s

Page 29: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S29

Figure 35 1H NMR of compound 3t

Figure 36 13

C NMR of compound 3t

Page 30: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S30

Figure 37 1H NMR of compound 3u

Figure 38 13

C NMR of compound 3u

Page 31: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S31

Figure 39 1H NMR of compound 3v

Figure 40 13

C NMR of compound 3v

Page 32: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S32

Figure 41 1H NMR of compound 3w

Figure 42 13

C NMR of compound 3w

Page 33: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S33

Figure 43 1H NMR of compound 3x

Figure 44 13

C NMR of compound 3x

Page 34: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S34

Figure 45 1H NMR of compound 3y

Figure 46 13

C NMR of compound 3y

Page 35: Supporting Information Metal-Free Reduction of Aromatic ... · Supporting Information Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic ... (254 nm). Thin layer chromatography

S35

6. References

1. Moore, C. M.; Medina, C. R.; Cannamela, P. C.; McIntosh, M. L.; Ferber, C. J.; Roering,

A. J.; Clark, T. B. Org. Lett. 2014, 16, 6056-6059.

2. De Noronha, R. G.; Romão, C. C.; Fernandes, A. C. J. Org. Chem. 2009, 74, 6960-6964.

3. Feng, Y.-S.; Ma, J.-J.; Kang, Y.-M.; Xu, H.-J. Tetrahedron, 2014, 70, 6100-6105.

4. Kelly, S. M.; Lipshutz, B. H. Org.Lett. 2014, 16, 98-101.

5. Wu, Z.; Jiang, Z.; Wu, D.; Xiang H.; Zhou, X. Eur. J. Org. Chem. 2010, 2010, 1854-1857.

6. Schabel, T.; Belger, C.; Plietker, B. Org. Lett. 2013, 15, 2858-2861.

7. Gamble, A. B.; Garner, J.; Gordon, C. P.; O'Conner, S. M. J.; Keller, P. A. Syn.Comm.

2007, 37, 2777-2786.

8. Hameed P, S.; Patil, V.; Solapure, S.; Sharma, U.; Madhavapeddi, P.; Raichurkar, A.;

Chinnapattu, M.; Manjrekar, P.; Shanbhag, G.; Puttur, J.; Shinde, V.; Menasinakai, S.;

Rudrapatana, S.; Achar, V.; Awasthy, D.; Nandishaiah, R.; Humnabadkar, V.; Ghosh, A.;

Narayan, C.; Ramya, V. K.; Kaur, P.; Sharma, S.; Werngren, J.; Hoffner, S.; Panduga, V.;

Kumar, C. N. N.; Reddy, J.; Kumar Kn, M.; Ganguly, S.; Bharath, S.; Bheemarao, U.;

Mukherjee, K.; Arora, U.; Gaonkar, S.; Coulson, M.; Waterson, D.; Sambandamurthy, V.

K.; de Sousa, S. M. J. Med. Chem. 2014, 57, 4889-4905.

9. Cheung, C. W.; Surry, D. S.; Buchwald, S. L. Org. Lett. 2013, 15, 3734-3737.

10. Jasiński, M.; Gerding, J. S.; Jankowiak, A.; Gębicki, K.; Romański, J.; Jastrzębska, K.;

Sivaramamoorthy, A.; Mason, K.; Evans, D. H.; Celeda, M.; Kaszyński, P. J. Org. Chem.

2013, 78, 7445-7454.

11. Emenike, B. U.; Liu, A. T.; Naveo, E. P.; Roberts, J. D. J. Org. Chem. 2013, 78,

11765-11771.

12. Marqués-González, S.; Parthey, M.; Yufit, D. S.; Howard, J. A. K.; Kaupp, M.; Low, P. J.

Organometallics, 2014, 33, 4947-4963.

13. Junge, K.; Wendt, B.; Shaikh, N.; Beller, M. Chem. Comm. 2010, 46, 1769-1771.

14. Kasparian, A. J.; Savarin, C.; Allgeier, A. M.; Walker, S. D. J. Org. Chem. 2011, 76,

9841-9844.

15. Flynn, D. L.; Petillo, P. A.; Kaufman, M. D. International Patent Application

WO/2013/036232.